Motivation & Approaches for Edge Virtual Bridging or NIC Aggregation

January 2009

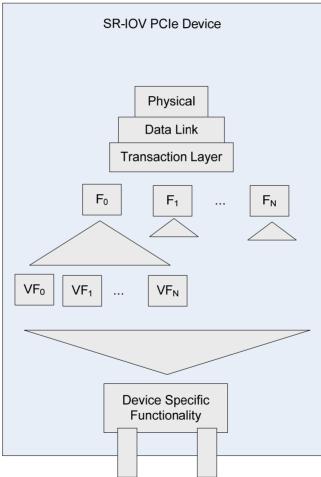
Chuck Hudson (HP)

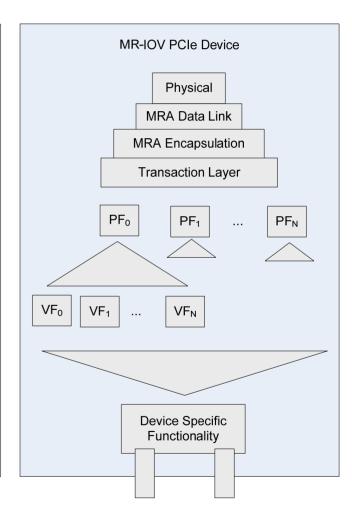
Paul Congdon (HP)

Joe Pelissier (Cisco)

c.hudson@hp.com

ptcongdon@ucdavis.edu


jopeliss@cisco.com


Possible Motivations

- 1. Need simple aggregation capability to be integrated into new NICs
 - PCI Virtual Functions (VFs) bypass vSwitches
 - Shared PCI IO virtualization (IOV) Ethernet devices
- Allow bridge control of vNIC network connectivity
- 3. Create stand-alone edge devices that surrender bridging features to a higher level bridge device

PCI Device Evolution

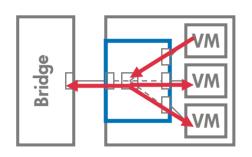
Motivation 1-a PCI Virtual Functions (VFs) Bypass vSwitches

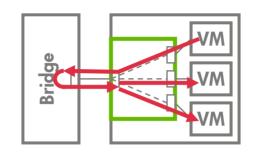
- Each VM has some number of vNICs
- PCI VFs provide direct vNIC access to hardware queues and improve IO performance
- Direct access bypasses the software vswitches
- Something needs to replace the software vswitches to control Ethernet frame flow and packet replication.
- Full embedded bridges are problematic
 - Expensive (gates & management processor complexity)
 - Puts NICs on 802.1 feature tread mill
- Need a solution that allows for simple NIC hardware

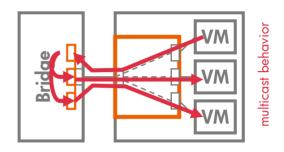
Motivation 1-b Shared PCI IO Virtualization Devices

- PCI has technologies that allow device sharing
 - A single physical device can contain the NICs (really vNICs) for multiple physical servers.
- Something must be done to converge these (v)NICs onto a single link to the network infrastructure.
- Full embedded bridges are problematic
 - Expensive (gates & mgmt processor cycless)
 - Puts NICs on 802.1 tread mill
- Need a solution that allows for simple NIC hardware

Motivation 2 Allow bridge control of vNIC network connectivity


- Virtual Machine environments must provide network access to the individual guest operating systems
- VM environments are typically owned by "server admins"
- Allowing consistent control of network access for single-OS physical servers and individual virtual machines simplifies data center management.
- Need a solution that allows edge bridges to control virtual machine network connections in the station.


Motivation 3 Provide increased fan-in / fan-out for core switches


- Extend core/distribution switch to edge
 - Control and functionality remain in core/distribution devices
 - Provides full capability scaling in a more cost effective manner
 - Reduced number of managed nodes / Cost of ownership
 - Simplified and more flexible VM migration

7

Summary of Possible Technical Approaches

Virtual Ethernet Bridge (VEB)

uses MAC+VID to steer frames

Tag-less VEPA

uses MAC+VID to steer frames

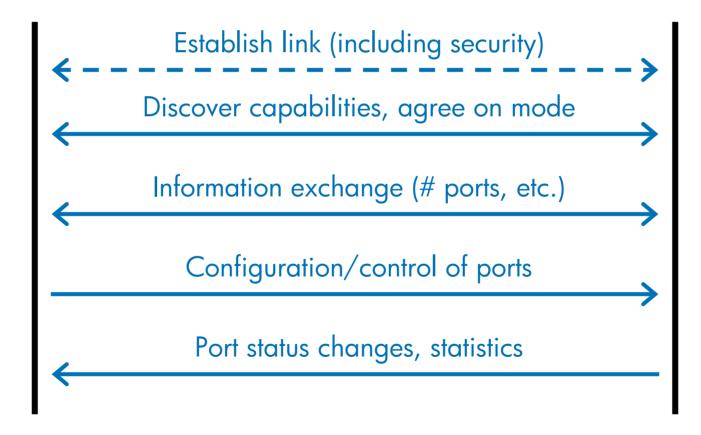
Tagged

uses <u>new</u> tag to steer frames

- Emulates 802.1 Bridge
- Limited controls
- Managed by station
- Works with all existing bridges
- No changes to existing frame format.
- Open-ended changes to NIC

- Extends 802.1 Bridge
- Advanced controls
- Managed by bridge
- Works with many existing bridges
- No changes to existing frame format.
- Limits NIC changes

- Extends 802.1 Bridge
- Advanced controls
- Managed by bridge
- Works with few or no existing bridges
- Changes to existing frame format.
- Limits NIC changes


Elements of a solution

- Frame format and flow
 - Tagged vs. tag-less approach
 - If tagged, the tagging approach
- Requirements for controlling bridge
- Requirements for virtual bridging device
- Discovery/control protocol

Discovery/Control

Controlling Bridge

Virtual Bridging Device

10

Call to Action

- Obtain consensus on the need for a virtual bridging effort
- Invite interested parties to participate in the generation of a PAR and 5 criteria proposals