

Craig Gunther (craig.gunther@harman.com) May 2011 – Santa Fe interim (Updated 19May2011)

Acknowledgements

Reference materials:

- 1. new-kim+goetz-Ultra-Low-Latency-Switching-v5.pdf
- 2. ba-kw-stream-latency-Improvements-0311.pdf
- 3. ba-pannell-latency-math-1110-v5.pdf
- 4. ba-boiger-per-hop-class-a-wc-latency-0311.pdf

Introduction

- Ultra-low latency¹ & Preemption¹ are two separate topics
- The focus of this presentation is not ultra-low latency, but to explore the benefits of preemption on existing AVB Classes
- **Goal**: Make preemption available to all AVB shapers

Definitions

- Interfering Traffic (IT): frames of a lower priority which cause delays to transmission of higher priority frames.
- **Preemption:** Suspending transmission of a lower priority frame so a higher priority frame can be transmitted, followed by resumption of the lower priority frame. This can occur more than once to a large low priority frame.

Multi-Class Preemption (with separate UL frames)

*Note: This slide assumes UL frames are separate from SR Class A & B frames

Multi-Class Preemption (with UL in SR Class A)

Possible Preemption Marking¹

- After peer Gen-2 devices agree they can do Preemption (via LLDP?) they know <u>every</u> packet sent between them has a new 8-bit header that defines characteristics of each preempted frame
- 8-bit header contains:
 - 2 flag bits: begin, previousEnd
 - Three preemption classes requires 2 bits to identify
 - Note: two preemption classes would require a 1-bit field
 - 4-bit sequence number per preemption class

Reassembling the pieces

- If "previousEnd" bit is set then previous frame has been completely reassembled; pass it on
 - Sequence numbers can be used to detect missing pieces. Note that there are only 16 sequence numbers so this can fail if there are 16 missing pieces in a row.
- If "begin" bit is set then reset the class reassembly buffer pointer to the beginning
- Append piece to per-class reassembly buffer

Multi-Class Preemption Concerns

- One Ingress buffer for each preemption class
 - Class A and Class B buffers are limited size
 - Best Effort buffer must support Jumbo frames
- MACsec, etc, concerns?
- Effects on PHY/MAC/CAM?
- Will 8-bit preemption header work?
 - Note: an alternative was suggested that would use a 32-bit header with 16 bits used for a new EtherType

Multi-Class Preemption Benefits

- Jumbo frames are back!
- Talker burst limit of two back-to-back frames⁴
 Can we now define a latency formula?
- Gen-1 and Gen-2 switches can co-exist between Talkers and Listeners
 - Obviously preemption (and reduced latency) can only occur between Gen-2 devices
- Reduced latency for higher priority frames

Bridge Port Latency Math with Preemption³

Max Latency = $t_{\text{Device}} + t_{\text{Interval}} + t_{\text{MaxFrameSize}} + t_{\text{Stream}} - t_{(\text{Stream+Gap})} * 1.333$		
t _{Device}	= 5.12µs	
t _{Interval}	= 125µs	
t _{MaxFrameSize}	= 6.72μ s (for 64 bytes + IFG + preamble), 7.68μ s (for 96 bytes + IFG + preamble)	
t _{Stream}	= $5.12\mu s$ (assuming 64-byte frames)	
t _(Stream+Gap)	= 5.12μs + 1.6μs	

Max Latency_{100 MB/s} = 5.12μ s + 125μ s + 6.72μ s + 5.12μ s - ((5.12μ s + 1.6μ s) * 1.333) = **133.00µs** Max Latency_{100 MB/s} = 0.512μ s + 125μ s + 0.672μ s + 0.512μ s - ((0.512μ s + 0.16μ s) * 1.333) = **125.80µs**

	100 MB/s [x7]	1000 MB/s [x7]
Without SaR	249.64µs [1747µs]	137.46µs [962µs]
With 64-byte SaR	133.00µs [931µs]	125.80µs [881µs]
With 96-byte SaR	135.56µs [949µs]	126.06µs [882µs]

Thanks

Change history

- v01 original presentation at Santa Fe
- v02 presented on 18May2011 AVB weekly call
 - Slide 2: Update presentation references
 - Slide 3: Fragmentation should only be used by UL & SR Classes
 - Slide 5: Fix packet diagram on ingress ports
 - Slide 6: Sequence #s are not optional
 - Slide 8: Address reassembly buffer requirements
 - Slide 9: Jumbo packets are more important than originally thought
- V03 changes suggested on 18May2011 AVB weekly call
 - Don't say "fragmentation" or "SaR", use "preemption" to reduce confusion
 - Slide 2: Number Acknowledgements as footnotes
 - Slide 3: Make goal of presentation more obvious
 - Slide 6: Insert new diagram for UL contained in SR Class A
 - Slide 7: Add note about a 1-bit field for preemption class ID
 - Slide 9: Add note about possible 32-bit header w/EtherType