Draft Standard for

Local and metropolitan area networks—

Media Access Control (MAC) Security

Amendment 2: Extended Packet Numbering

Sponsor

LAN/MAN Standards Committee of the IEEE Computer Society

DRAFT FOR DISCUSSION OF PROPOSED PAR

Prepared by the Security Task Group of IEEE 802.1

The Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2010 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published 5 February 2010. Printed in the United States of America

IEEE and 802 are registered trademarks in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics Engineers, Incorporated.

IEEE prohibits discrimination, harassment, and bullying. For more information, visit <u>http://www.ieee.org/web/aboutus/</u>whatis/policies/p9-26.html.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document. 10

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied "AS IS."

15 The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, 16 or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the 17 time a standard is approved and issued is subject to change brought about through developments in the state of the art and 18 comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude 19 that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check 20 to determine that they have the latest edition of any IEEE Standard. 21

22 In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services for, 23 or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or entity to 24 another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a competent 25 professional in determining the exercise of reasonable care in any given circumstances. 26

27 Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare 28 appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any 29 interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its 30 societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests 31 except in those cases where the matter has previously received formal consideration. 32

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

> Secretary, IEEE-SA Standards Board 445 Hoes Lane P.O. Box 13 31 Piscataway, NJ 08855-1331 USA

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents for which a license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; (978) 750-8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

53 54

1

2

3

4

5

6

7 8

9

11

12

13

14

33

34

35

36

37

38

39

40

41 42 43

44

45

46

47 48

49

50

51

Editors' Foreword

<<Notes>>

 <<Throughout this document, all notes such as this one, presented between angle braces, are temporary notes inserted by the Editors for a variety of purposes; these notes and the Editors' Foreword will all be removed prior to publication and are not part of the normative text.>>

<<Comments and participation in 802.1 standards development

Comments on this draft are encouraged. PLEASE NOTE: All issues related to IEEE standards presentation style, formatting, spelling, etc. are routinely handled between the 802.1 Editor and the IEEE Staff Editors prior to publication, after balloting and the process of achieving agreement on the technical content of the standard is complete. Readers are urged to devote their valuable time and energy only to comments that materially affect either the technical content of the clarity of that technical content. Comments should not simply state what is wrong, but also what might be done to fix the problem.>>

Full participation in the development of this draft requires individual attendance at IEEE 802 meetings. Information on 802.1 activities, working papers, and email distribution lists etc. can be found on the 802.1 Website:

http://ieee802.org/1/

Use of the email distribution list is not presently restricted to 802.1 members, and the working group has had a policy of considering ballot comments from all who are interested and willing to contribute to the development of the draft. Individuals not attending meetings have helped to identify sources of misunderstanding and ambiguity in past projects. Non-members are advised that the email lists exist primarily to allow the members of the working group to develop standards, and are not a general forum. All contributors to the work of 802.1 should familiarize themselves with the IEEE patent policy and anyone using the mail distribution will be assumed to have done so. Information can be found at http://standards.ieee.org/db/patents/

Comments on this document may be sent to the 802.1 email exploder, to the Editor, or to the Chairs of the 802.1 Working Group and Security Task Group.

40		Mick Seaman
41		Editor, P802.1AE
41 42		Chair, 802.1 Security Task Group
42 43	Email:	Email:mick_seaman@sbcglobal.net
44		<i>"</i>
45		Iony Jeffree
46		Chair, 802.1 Working Group
17		11A Poplar Grove
47 48		Sale, Cheshire, M33 3AX, UK
10		+44 161 973 4278 (Tel)
49 50		+44 161 973 6534 (Fax)
51		Email: tony@jeffree.co.uk
52		
53	DIEASE NOTE: Commonte whose	distribution is restricted in any way connet

53 PLEASE NOTE: Comments whose distribution is restricted in any way cannot be 54 considered, and may not be acknowledged.>>

1 << Overview: Draft text and accompanying information 2 This document currently comprises: 3 4 A cover page, identical to the title page. 5 The editors' introductory notes to each draft, briefly summarizing the progress and focus of each 6 successive draft. 7 The title page for this amendment including an Abstract and Keywords. This title page will be retained 8 for the period that the amendment is published as a separate document. 9 The amendment proper, documented in the usual form for amendments to 802 standards; i.e., as an 10 explicit set of editing instructions that, if correctly applied to the text of 802.1Q, will create a corrected 11 document. 12 An Annex Z comprising the editors' discussion of issues. This annex will be deleted from the 13 document prior to sponsor ballot. 14 Editors' notes throughout the document, including requests for comment on specific issues and 15 pointing deficiencies in the current draft. IEEE boilerplate text. 16 17 The records of participants in the development of the standard, the introduction to 802 standards, and the 18 introduction to this revision of the standard are not included, and will be added at an appropriate time. 19 20 During the early stages of draft development, 802.1 editors have a responsibility to attempt to craft technically 21 coherent drafts from the resolutions of ballot comments and the other discussions that take place in the 22 working group meetings. Preparation of drafts often exposes inconsistencies in editor's instructions or exposes the need to make choices between approaches that were not fully apparent in the meeting. Choices 23 and requests by the editors' for contributions on specific issues will be found in the editors' introductory notes 24 to the current draft, at appropriate points in the draft, and in Annex Z. Significant discussion of more difficult 25 topics will be found in the last of these. 26 27 The ballot comments received on each draft, and the editors' proposed and final disposition of comments on 28 working group drafts, are part of the audit trail of the development of the standard and are available, along 29 with all the revisions of the draft on the 802.1 website (for address see above). 30 During the early stages of draft development the proposed text can be moved around a great deal, and even 31 minor rearrangement can lead to a lot of 'change', not all of which is noteworthy from the point of the reviewer, 32 so the use of automatic change bars is not very effective. In this draft change bars have been manually 33 applied, with a view to drawing the readers attention to the most significant areas of change. Readers 34 interested in viewing every change are encouraged to used Adobe Acrobat to compare the document with 35 their selected prior draft. >> 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

1 2	< <editor's current="" draft.<="" introduction="" th="" the="" to=""></editor's>
3	This document has no official standing, it has been prepared to facilitate discussion of a proposed PAR to amend 802 1AE to include extended packet numbering. It shows the patture and extent of changes that might
4 5	result from an ensuing project.
6 7 8	With this amendment the PN can be either 32-bit or 64-bit (varying by Cipher Suite). Descriptions of the frame format explain that only the low-order 32 bits of the PN are carried in the MACsec frame.
9	Some key points:
10 11	— No frame format changes
12 13	 No MIB changes No conformance clause changes (yet, anyway) as the inclusion of additional Cipher Suites is already provided for in the existing MIP.
14 15 16	 "Standalone" i.e. can be run as a project and yield a benefit without 802.1X amendment, though the latter is necessary to get in-service software upgrades
17	>>
18 19	<< Editor's Introduction to prior drafts (excerpts of continuing relevance).
20	
21 22	>>
22	
24	
25	
26	
27	
28	
29 30	
31	
32	
33	
34	
35	
36	
37	
38	
39 40	
40 41	
42	
43	
44	
45	
46	
47	
48	
49 50	
50 51	
51 52	
52 53	
55 54	
~ '	

<< Project Authorization Request, Scope, Purpose, and Five Criteria

A suggestion for a proposed PAR (Project Authorization Request) for this project follows.

Scope of Proposed Project:

This standard specifies the optional use of AES-128 and AES-256 GCM (Galois Counter Mode) Cipher Suites that make use of a 64-bit PN (packet number) as part of their IV (Initial Value) parameter while retaining the existing MACsec frame format by communicating only the least significant 32 bits in the SecTAG.

Purpose of Proposed Project:

This standard specifies the optional use of Cipher Suites that make use of a 64-bit PN to allow more than 2^{32} packets to be sent with a single Secure Association Key.

Need for the Project:

At very high speeds (100 Gb/s and above) the existing MACsec Cipher Suites can exhaust an SAK, thus demanding rekeying, at a rate (~9 seconds for full utilization with minimum Ethernet frame sizes at 400 Gb/s) that may conflict with some organizations' security policies and allowing inadequate time for in-service software upgrades that temporarily suspend key agreement protocol operation. There is significant broad interest in the use of MACsec at these speeds and a desire to address these issues while retaining a high degree of compatibility with existing implementations and deployment.

1. Broad Market Potential

A standards project authorized by IEEE 802 shall have a broad market potential. Specifically, it shall have the potential for:

a) Broad sets of applicability.

This amendment is applicable to all networks that are currently using or planning to use MACsec. The addition of this cipher suite will continue the appeal and applicability of IEEE 802.1AE for customers deploying or planning use of the fastest LAN technologies.

- b) Multiple vendors and numerous users A number of major equipment providers have indicated support for this amendment.
- c) Balanced costs (LAN versus attached stations) There is no imbalance of cost created by this amendment

2. Compatibility

IEEE 802 defines a family of standards. All standards shall be in conformance with the IEEE 802.1 Architecture, Management and Interworking documents as follows: 802 Overview and Architecture, 802.1D, 802.1Q and parts of 802.1f. If any variances in conformance emerge, they shall be thoroughly disclosed and reviewed with 802.

Each standard in the IEEE 802 family of standards shall include a definition of managed objects which are compatible with systems management standards.

This amendment fits within the framework of IEEE 802.1AE-2006 without changes to the frame formats. Implementations that conform to the existing standard will remain conformant. A definition of managed objects is already included in the base standard and will be retained with little (if any) extension, as it already provides for the addition of new Cipher Suites without changes to the MIB.

3. Dist	tinct Identity
Each I	EEE 802 standard shall have a distinct identity. To achieve this, each authorized project shall be
<i>a</i>)	Substantially different from other IEEE 802 standards.
	IEEE 802.1AE is already a recognized and established standard.
b)	One unique solution per problem (not two solutions to a problem).
-)	This project enhances IEEE 802.1AE to meet emerging and additional needs, it does not dup existing capabilities.
c)	Easy for the document reader to select the relevant specification.
,	IEEE Std 802.1AE is already an established reference for MAC Security.
For a j projec	project to be authorized, it shall be able to show its technical feasibility. At a minimum, the proj t shall show:
a)	Demonstrated system feasibility.
	The characteristics of the GCM-AES family of cipher suites is already well known. IEEE 802 was one of the first vehicles for this technology. Extended packet numbering techniques similate that proposed for this amendment have already been deployed for IP security.
b)	Proven technology, reasonable testing.
	Technology for testing cryptographic modes of operations is well advanced.
c)	Confidence in reliability.
	GCM-AES has been adopted by NIST. Extended packet numbering techniques have been use other purposes. This project is expected to pose no new reliability challenges.
d)	Coexistence of 802 wireless standards specifying devices for unlicensed operation.
	Not applicable.
5. Eco	nomic Feasibility
For a estima	project to be authorized, it shall be able to show economic feasibility (so far as can reasonal ated), for its intended applications. At a minimum, the proposed project shall show:
<i>a</i>)	Known cost factors, reliable data.
,	The economic factors for adoption of this technology outweigh the estimated costs of implementer the solution.
b)	Reasonable cost for performance.
,	The economic factors for adoption of this technology outweigh the estimated costs of implemente the solution.
c)	Consideration of installation costs.
	The economic factors for adoption of this technology outweigh the estimated costs of implementer the solution.
>>	
< <edi< td=""><td>tors' final checklist (items noted in development, to be applied to final text.</td></edi<>	tors' final checklist (items noted in development, to be applied to final text.

1	
1	
2	
3	
4	
5	
6	
7	
8	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
10	
18	
19	
20	
21	
21	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
21	
31	
32	
33	
34	
35	
55	
36	
37	
38	
39	
40	
40	
41	
42	
43	
11	
44	
45	
46	
47	
48	
40	
49	
50	
51	

- 52 53
- 55 54

DRAFT Amendment to

P802.1AEbt/D0.3 IEEE Std 802.1AE–2006 November 1, 2011

Draft Standard for

Local and metropolitan area networks-

Media Access Control (MAC) Security

Amendment 2: Extended Packet Numbering

Sponsor

LAN/MAN Standards Committee of the IEEE Computer Society

DRAFT FOR DISCUSSION OF PROPOSED PAR Prepared by the Security Task Group of IEEE 802.1 **Abstract:** This amendment specifies the GCM-AES-256 Cipher Suite as an option in addition to the existing mandatory to implement Default Cipher Suite, GCM-AES-128.

Keywords: authorized port, confidentiality, data origin authenticity, integrity, LANs, local area networks, MAC Bridges, MAC security, MAC Service, MANs, metropolitan area networks, port based network access control, secure association, security, transparent bridging.

The Institute of Electrical and Electronics Engineers, Inc. 3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2011 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved. Published x xxxxxx 2011. Printed in the United States of America

IEEE and 802 are registered trademarks in the U.S. Patent & Trademark Office, owned by The Institute of Electrical and Electronics Engineers, Incorporated.

PDF: ISBN xxxx Print: ISBN xxxx

IEEE prohibits discrimination, harassment, and bullying. For more information, visit <u>http://www.ieee.org/web/aboutus/</u> <u>whatis/policies/p9-26.html</u>.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus development process, approved by the American National Standards Institute, which brings together volunteers representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied "AS IS."

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change brought about through developments in the state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpretation requests except in those cases where the matter has previously received formal consideration.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board 445 Hoes Lane P.O. Box 1331 Piscataway, NJ 08855-1331 USA

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents for which a license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; (978) 750-8400. Permission to photocopy portions of any individual standard for educational classroom use can also be obtained through the Copyright Clearance Center.

Introduction

This introduction is not part of IEEE Std 802.1AExx-20xx, IEEE Standard for Local and metropolitan area networks—Media Access Control (MAC) Security—Amendment 2: Extended Packet Numbering.

The first edition of IEEE Std 802.1AE was published in 2006. A first amendment, IEEE Std 802.1AEbn-2011, added the option of using the GCM-AES-256 Cipher Suite. This second amendment adds optional Cipher Suites, GCM-AES-XPN-128 and GCM-AES-XPN-256, that allow more than 2³² frames to be protected with a single Secure Association Key (SAK) and so ease the timeliness requirements on key agreement protocols for very high speed (100 Gb/s plus) operation.

Relationship between IEEE Std 802.1AE and other IEEE Std 802 standards

IEEE Std 802.1X-2010 specifies Port-based Network Access Control, and provides a means of authenticating and authorizing devices attached to a LAN, and includes the MACsec Key Agreement protocol (MKA) necessary to make use of IEEE 802.1AE.

This standard is not intended for use with IEEE Std 802.11 Wireless LAN Medium Access Control. An amendment to that standard, IEEE Std 802.11i-2004, also makes use of IEEE Std 802.1X, thus facilitating the use of a common authentication and authorization framework for LAN media to which this standard applies and for Wireless LANs.

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the provisions of this standard does not imply compliance to any applicable regulatory requirements. Implementors of the standard are responsible for observing or referring to the applicable regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private uses. These include both use, by reference, in laws and regulations, and use in private self-regulation, standardization, and the promotion of engineering practices and methods. By making this document available for use and adoption by public authorities and private users, the IEEE does not waive any rights in copyright to this document.

Updating of IEEE documents

51 Users of IEEE standards should be aware that these documents may be superseded at any time by the 52 issuance of new editions or may be amended from time to time through the issuance of amendments, 53 corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the 54 document together with any amendments, corrigenda, or errata then in effect. In order to determine whether

a given document is the current edition and whether it has been amended through the issuance of amendments, corrigenda, or errata, visit the IEEE Standards Association website at <u>http://ieeexplore.ieee.org/xpl/standards.jsp</u>, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process, visit the IEEE-SA website at http://standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: <u>http://standards.ieee.org/</u> <u>reading/ieee/updates/errata/index.html</u>.Users are encouraged to check this URL for errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: <u>http://standards.ieee.org/reading/ieee/interp/index.html</u>.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents or patent applications for which a license may be required to implement an IEEE standard or for conducting inquiries into the legal validity or scope of those patents that are brought to its attention.

Contents

1.Overview		
2.Normative	references	
3.Definitions		
4.Abbreviatio	ons and acronyms	
5.Conforman	ce	
5.1	Requirements terminology	
5.2	Protocol Implementation Conformance Statement (PICS)	
5.3	Required capabilities	
5.4	Optional capabilities	
6.Secure prov	vision of the MAC Service	
7.Principles of	of secure network operation	
8.MAC Secu	rity Protocol (MACsec)	
8.3	MACsec operation	
9.Encoding o	f MACsec protocol data units	
9.3	Security TAG	
9.8	Packet Number (PN)	
9.9	Secure Channel Identifier (SCI)	
10.Principles	of MAC Security Entity (SecY) operation	
10.6	Secure frame verification	
10.7	SecY management	
11.MAC Sec	urity in Systems	
12.MACsec a	and EPON	
13.Managem	ent protocol	
13.7	Use of the MIB with extended packet numbering	
14.Cipher Su	ites	
14.1	Cipher Suite use	
14.4	Cipher Suite conformance	
14.6	GCM-AES-256	
14.7	GCM-AES-XPN-128	
14.0	CCM AES VDN 256	

1	Annex A	(normative)	PICS Proforma	
3	Annex B	(informative)	Bibliography	
5	Annex C	(informative)	MACsec Test Vectors	
6	C.	1 Integrity	protection (54-octet frame)	
7	C.	2 Integrity	protection (60-octet frame)	
8	C.	3 Integrity	protection (65-octet frame)	
9	C.	4 Integrity	protection (79-octet frame)	
10	C.	5 Confider	ntiality protection (54-octet frame)	
11	C.	6 Confide	ntiality protection (60-octet frame)	
12	C.	7 Confider	ntiality protection (61-octet frame)	
13	C.	8 Confider	ntiality protection (75-octet frame)	
14			······································	
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
20				
32 22				
33				
35				
36				
37				
38				
39				
40				
41				
42				
43				
44				
45				
46				
47				
48				
49				
50				
51				
52				
53				
54				

Figures

Figure 9-2	SecTAG format	12
Figure 14-1	Cipher Suite Protect and Validate operations	21

1	Tables		
2	Table 14-1	MACsec Cipher Suites	22
J 4	Table C-1	Unprotected frame (example)	31
- -	Table C-2	Integrity protected frame (example)	31
6	Table C-3	GCM-AES-128 Key and calculated ICV (example)	32
7	Table C-4	GCM-AES-256 Key and calculated ICV (example)	33
8	Table C-5	GCM-AES-XPN-128 Key and calculated ICV (example)	34
9	Table C-6	GCM-AES-XPN-256 Key and calculated ICV (example)	35
10	Table C-7	Unprotected frame (example)	36
11	Table C-8	Integrity protected frame (example)	36
12	Table C-11	GCM-AES-XPN-128 Key and calculated ICV (example)	37
13	Table C-12	GCM-AES-XPN-256 Key and calculated ICV (example)	38
14	Table C-13	Unprotected frame (example)	39
15	Table C-14	Integrity protected frame (example)	39
16	Table C-17	GCM-AES-XPN-128 Key and calculated ICV (example)	40
17	Table C-18	GCM-AES-XPN-256 Key and calculated ICV (example)	41
18	Table C-19	Unprotected frame (example)	42
19	Table C-20	Integrity protected frame (example)	42
20	Table C-23	GCM-AES-XPN-128 Key and calculated ICV (example)	43
21	Table C-24	GCM-AES-XPN-256 Key and calculated ICV (example)	44
22	Table C-25	Unprotected frame (example)	45
23	Table C-26	Confidentiality protected frame (example)	45
24	Table C-27	GCM-AES-128 Key, Secure Data, and ICV (example)	46
25	Table C-28	GCM-AES-256 Key, Secure Data, and ICV (example)	47
26	Table C-29	GCM-AES-XPN-128 Key, Secure Data, and ICV (example)	48
27	Table C-30	GCM-AES-XPN-256 Key, Secure Data, and ICV (example)	49
28	Table C-31	Unprotected frame (example)	50
29	Table C-32	Confidentiality protected frame (example)	50
30	Table C-35	GCM-AES-XPN-128 Key, Secure Data, and ICV (example)	51
31	Table C-36	GCM-AES-XPN-256 Key, Secure Data, and ICV (example)	52
32	Table C-37	Unprotected frame (example)	53
33	Table C-38	Confidentiality protected frame (example)	53
34	Table C-41	GCM-AES-XPN-128 Key, Secure Data, and ICV (example)	54
35	Table C-42	GCM-AES-XPN-256 Key, Secure Data, and ICV (example)	55
36	Table C-43	Unprotected frame (example)	56
37	Table C-44	Confidentiality protected frame (example)	56
38	Table C-47	GCM-AES-XPN-128 Key, Secure Data, and ICV (example)	57
39	Table C-48	GCM-AES-XPN-256 Key, Secure Data, and ICV (example)	58
40			
41			
42			
43			
44			
45			
46			
47			
48			
49			
50			
51			
52 52			
33			

Draft Standard for Local and Metropolitan Area Networks-

Media Access Control (MAC) Security

Amendment 2: Extended Packet Numbering

This amendment to IEEE Std 802.1AE-2006 allows more than 2³² MACsec protected frames to be sent using a single Secure Association Key (SAK) by enabling the use of a 64-bit Packet Number (PN) and specifying two Cipher Suites (GCM-AES-XPN-128 and GCM-AES-XPN-256) that use that extended packet numbering as part of their Initial Value (IV) construction. MACsec frame formats and principles of MAC Security Entity operation remain unchanged. Changes are applied to the base text of IEEE Std 802.1AE-2006 as amended by IEEE Std 802.1AEbn-2011.

IMPORTANT NOTICE: This standard is not intended to ensure safety, security, health, or environmental protection in all circumstances. Implementers of the standard are responsible for determining appropriate safety, security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers. These notices and disclaimers appear in all publications containing this document and may be found under the heading "Important Notice" or "Important Notices and Disclaimers Concerning IEEE Documents."They can also be obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

NOTE—The editing instructions contained in this amendment define how to merge the material contained therein into the existing base standard and its amendments to form the comprehensive standard.

The editing instructions are shown in **bold italic**. Four editing instructions are used: change, delete, insert, and replace. **Change** is used to make corrections in existing text or tables. The editing instruction specifies the location of the change and describes what is being changed by using strikethrough (to remove old material) and <u>underscore</u> (to add new material). **Delete** removes existing material. **Insert** adds new material without disturbing the existing material. Deletions and insertions may require renumbering. If so, renumbering instructions are given in the editing instruction. **Replace** is used to make changes in figures or equations by removing the existing figure or equation and replacing it with a new one. Editing instructions, change markings, and this NOTE will not be carried over into future editions because the changes will be incorporated into the base standard.

1. Overview

This amendment makes no changes to Clause 1 Overview.

2
3
1
-+
5
6
7
8
9
10
10
11
12
13
14
15
16
10
17
18
19
20
21
21
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
20
30
31
38
39
40
41
42
43
44
45
46
47
48

- 50 51
- 52
- 52 53
- 55 54

2. Normative references

This amendment makes no changes to Clause 2 Normative References.

3. Definitions

Change the definition of packet number as follows:

3.27 packet number (PN): A monotonically increasing value used to uniquely identify a MACsec frame in the sequence of frames transmitted using an SA that is guaranteed unique for each MACsec frame transmitted using a given SAK.

Add the following definition(s), in the appropriate collating order:

3.28 Short Secure Channel Identifier (SSCI): A 32-bit identifier, distributed by key agreement protocol, that uniquely identifies an SCI within the context of all SecY's using a given SAK.

4. Abbreviations and acronyms

Add the following abbreviation(s), in the appropriate collating sequence.

SSCI Short SCI

5. Conformance

This amendment makes no changes to Clause 5 Conformance.

<<The full text of the existing clause is provided here for the time being to aid review.>>

A claim of conformance to this standard is a claim that the behavior of an implementation of a MAC Security Entity (SecY) meets the requirements of this standard as they apply to the operation of the MACsec protocol, management of its operation, and provision of service to the protocol clients of the SecY, as revealed through externally observable behavior of the system of which the SecY forms a part.

A claim of conformance may be a claim of full conformance, or a claim of conformance with Cipher Suite variance, as specified in 5.4.

Conformance to this standard does not ensure that the system of which the MAC Security implementation forms a part is secure, or that the operation of other protocols used to support MAC Security, such as key management and network management do not provide a way for an attacker to breach that security.

5.1 Requirements terminology

For consistency with existing IEEE and IEEE 802.1 standards, requirements placed upon conformant implementations of this standard are expressed using the following terminology:

- a) *shall* is used for mandatory requirements;
- b) *may* is used to describe implementation or administrative choices (may means is permitted to, and hence, may and may not mean precisely the same thing);
- c) *should* is used for recommended choices (the behaviors described by should and should not are both permissible but not equally desirable choices).

The PICS proforma (see Annex A (normative)) reflects the occurrences of the words *shall, may,* and *should* within the standard.

The standard avoids needless repetition and apparent duplication of its formal requirements by using *is*, *is not*, *are*, and *are not* for definitions and the logical consequences of conformant behavior. Behavior that is permitted but is neither always required nor directly controlled by an implementor or administrator, or whose conformance requirement is detailed elsewhere, is described by *can*. Behavior that never occurs in a conformant implementation or system of conformant implementations is described by *cannot*. The word *allow* is used as a replacement for the cliche Support the ability for, and the word *capability* means can be configured to.

5.2 Protocol Implementation Conformance Statement (PICS)

The supplier of an implementation that is claimed to conform to this standard shall complete a copy of the PICS proforma provided in Annex A (normative) and shall provide the information necessary to identify both the supplier and the implementation.

5.3 Required capabilities

An implementation of a MAC Security Entity (SecY) for which conformance to this standard is claimed shall

a) Support the Controlled and Uncontrolled Ports, and use a Common Port as specified in Clause 10.

1 2	b)	Support the MAC status and point-to-point parameters for the Controlled and Uncontrolled Ports as specified in 6.4, 6.5, and 10.7.
3 4	c)	Process transmit requests from the Controlled Port as required by the specification of Secure Frame Generation (10.5).
5 6 7	d)	Process receive indications from the Common Port as required by the specification of Secure Frame Verification (10.6), prior to causing receive indications at the Controlled Port.
8	e)	Encode and decode MACsec PDUs as specified in Clause 9.
9 10	f)	Use a globally unique 48-bit MAC Address and a 16-bit Port Identifier unique within the scope of that address assignment to identify the transmit SCI, as specified in 8.2.1.
11	g)	Satisfy the performance requirements specified in Table 10-1 and 8.2.2.
12	b)	Support the Laver Management Interface (LMI) operations required by the Key Agreement Entity
13	11)	as specified in Clause 10.
15	i)	Provide the management functionality specified in 10.7.
16 17	j)	Protect and validate MACsec PDUs by using Cipher Suites as specified in 14.1.
18	k)	Support Integrity Protection using the Default Cipher Suite specified in Clause 14.
19	1)	For each Cipher Suite implemented, support a minimum of
20		1) One receive SC
21		2) Two receive SAKs
22		2) One of the two receive SAKs at a time for transmission with the shility to change from one to
23 24 25		the other within the time specified in Table 10-1
25 26	m)	Specify the following parameters for each Cipher Suite implemented
20		1) The maximum number of receive SCs supported
28		2) The maximum number of receive SAKs
29		
30	An im	plementation of a MAC Security Entity (SecY) for which conformance to this standard is claimed
31	shall no	ot
33	n)	Introduce an undetected frame error rate greater than that achievable by preserving the original FCS.
34	11)	as required by 10.4.
35 36	0)	Implement any Cipher Suite that is additional to those specified in Clause 14 and does not meet all the criteria specified in 14.2, 14.3, and 14.4.1.
37	p)	Support access to MACsec parameters using any version of SNMP prior to v3.
38		
39	An imp	plementation of a MAC Security Entity (SecY) for which full conformance to this standard is claimed
40 41	shall n	ot
42		Implement Cinker Suites other then these specified in Clause 14
43	q)	Implement Cipner Suites other than those specified in Clause 14.
44	NOTE-	-Conformance with Cipher Suite variance is allowed, as specified in 5.4 and in 14.4.1.
45		
46 47	5.4 O	ptional capabilities
48		
49	An imp	plementation of a SecY for which conformance to this standard is claimed may
50		
51	a)	Support network management using the MIB specified in Clause 13.
52	b)	Support access to the MIB specified in Clause 13 using SNMP version v3 or higher.
53 54	c)	Support more than one receive SC.
54	d)	Support more than two receive SAKs.

Support Confidentiality Protection using the Default Cipher Suite without a confidentiality offset, as e) specified in Clause 14. Support Confidentiality Protection using the Default Cipher Suite with a confidentiality offset, as f) specified in Clause 14. Include Cipher Suites that are specified in Clause 14 in addition to the Default Cipher Suite. g) An implementation of a MAC Security Entity (SecY) for which conformance with Cipher Suite variance is claimed may h) Use Cipher Suites not specified in Clause 14, but meeting the criteria specified in 14.2, 14.3, 14.4.1. NOTE—The term capability is used to describe a set of related detailed provisions of this standard. Each capability can comprise both mandatory provisions, required if implementation of the capability is to be claimed, and optional provisions. Each detailed provision is specified in one or more of the other clauses of this standard. The PICS, described in Annex A (normative), provides a useful checklist of these provisions.

6. Secure provision of the MAC Service

This amendment makes no change to Clause 6 Secure provision of the MAC Service.

7. Principles of secure network operation

Change the note that appears in clause 7.1 Support of the secure MAC Service by an individual LAN as follows:

NOTE—An SC can be required to last for many years without interruption, since interrupting the MAC Service can cause client protocols to re-initialize and recalculate aggregations, spanning trees, and routes (for example). An SC lasts through a succession of SAs, each using a new SAK, to defend against a successful attack on a key while it is still in use. In contrast it is desirable to use a new SAK at periodic intervals to defend against a successful attack on a key while it is still in use. In addition, the MACsec protocol (Clause 8 and Clause 9) only allows a limited number of frames to be protected with a single key unless a Cipher Suite that supports extended packet numbering is used. Since 2³² minimumsized IEEE 802.3 frames can be sent in approximately 5 min at 10 Gb/s, this can force the use of a new SA.

7.1.2 Use of the secure MAC Service by bridges

Change the first paragraph of clause 7.1.2 Secure Channel (SC) as follows:

Each SecY transmits frames conveying secure MAC Service requests on a single SC. Each SC provides unidirectional point-to-multipoint communication, and it can be long lived, persisting through SAK changes. Each SC is identified by a Secure Channel Identifier (SCI) comprising a uniquely allocated 48-bit MAC address concatenated with a 16-bit port number.

8. MAC Security Protocol (MACsec)

<<The editor notes that he has no idea what clause 8.2.6 means.>>

8.1.2 Manageability Requirements

Change the second paragraph of clause 8.1.2 as follows:

<<Only lower 32-bits of PN in frame so frame doesn't vary when using a Cipher Suite with extended packet numbering.>>

8.3 MACsec operation

Change the fourth through seventh paragraphs of clause 8.1 as follows:.

On transmission, the frame is first assigned to an SA (7.1.3), identified locally by its Association Number (AN) (see 7.1.3, 9.6). The AN is used to identify the SAK (7.1.3), and the next PN (3.27, 9.8) for that SA. The AN, the SCI (7.1.2), and the 32 least significant bits of the PN are encoded in the SecTAG (the SCI can be omitted for point-to-point CAs) along with the MACsec EtherType (9.8) and the number of octets in the frame following the SecTAG (SL, 9.7) if less than 48 (8.1.3).

The protection function (14.1) of the Current Cipher Suite is presented with the SAK, the PN and SCI, the destination and source addresses of the frame together with the octets of the SecTAG, and the User Data. It returns the ICV.

On receipt of a MACsec frame, the AN, SCI, PN, and SL field (if present) are extracted from the SecTAG. If (if the CA is point-to-point and the SCI is not present, the value previously communicated by the KaY will be used). The AN and SCI are used to assign the frame to an SA, and hence to identify the SAK. If the Current Cipher Suite uses extended packet numbering (a 64-bit PN), the full PN is recovered (as specified in 10.6) using the 32 least significant bits conveyed in the SecTAG and the 32 most significant bits used in a prior successful frame validation.

The validation function of the Current Cipher Suite is presented with the SAK, the PN and SCI, the destination and source addresses of the frame together with the octets of the SecTAG, and the Secure Data and ICV. If the integrity of the frame has been preserved and the User Data can be successfully decoded from the Secure Data, a VALID indication and the octets of the User Data are returned.

9. Encoding of MACsec protocol data units

Change clause 9.3 and Figure 9-2 as follows:

9.3 Security TAG

The Security TAG (SecTAG) is identified by the MACsec EtherType (9.4), and conveys the

- a) TAG Control Information (TCI, 9.5)
- b) Association Number (AN, 9.6)
- c) Short Length (SL, 9.7)
- d) Packet Number (PN, 9.8)
- e) Optionally encoded Secure Channel Identifier (SCI, 9.9).

The format of the SecTAG is illustrated in Figure 9-2.

Figure 9-2—SecTAG format

Change clause 9.8 as follows:

9.8 Packet Number (PN)

The <u>32 least significant bits of the PN is are</u> encoded in octets 5 through 8 of the SecTAG to

a) Provide a unique IV PDU for all MPDUs transmitted using the same SA

b) Support replay protection

NOTE<u>1</u>—As specified in this clause, the IV used by the default Cipher Suite (GCM-AES-128) comprises the SCI (even if the SCI is not transmitted in the SecTAG) and the <u>a 32-bit</u> PN. Subject to proper unique MAC Address allocation procedures, the SCI is a globally unique identifier for a SecY. To satisfy the IV uniqueness requirements of CTR mode of operation, a fresh key is used before PN values are reused.

NOTE 2—If the Current Cipher Suite provides extended packet numbering, i.e. uses a 64-bit PN, the 32 least significant
 bits of the PN are conveyed in this SecTAG field and the 32 most significant bits are recovered on receipt as specified in
 10.6. The IV used by such a Cipher Suite (e.g. GCM-AES-XPN-128, 14.7) comprises a 32-bit SSCI distributed by key
 agreement protocol and unique for each SCI within the scope of the CA (and hence within potential users of the same
 SAK) and the 64-bit non-repeating PN.

9.9 Secure Channel Identifier (SCI)

Change the last paragraph of clause 9.9 as follows:

An explicitly encoded SCI field in the SecTAG is not required on point-to-point links, which are identified by the operPointToPointMAC status parameter of the service provider. In the point-to-point case, the secure association created by the SecY for the peer SecYs, together with the direction of transmission of the secured MPDU, can be used to identify the transmitting SecY and therefore an explicitly encoded SCI is unnecessary. Although the SCI does not have to be repeated in each frame when only two SecYs participate in a CA (see Clause 8, Clause 9, and Clause 10), the SCI (for Cipher Suites using a 32-bit PN) or the SSCI (for Cipher Suites using a 64-bit PN) still forms part of the cryptographic computation.

10. Principles of MAC Security Entity (SecY) operation

Change clause 10.5.2, as follows:

10.5.2 Transmit PN assignment

The frame's PN is set to the value of nextPN for the SA, and nextPN is incremented. If the nextPN variable for the encodingSA is zero (or 2^{32} if the Current Cipher Suite does not support extended packet number, 2^{64} if it does) and the protectFrames control is set MAC_Operational transitions to False for the Controlled Port and frames are neither accepted or delivered. The initial value of nextPN is set by the KaY via the LMI prior to use of the SA, and its current value can be read both while and after the SA is used to transmit frames. The value of nextPN can be read, but not written, by network management.

10.6 Secure frame verification

Change the initial paragraphs of clause 10.6 Secure frame verification, as follows:

For each receive indication from the Receive Demultiplexer, the Secure Frame Verification process

- a) Examines the user data for a SecTAG
- b) Validates frames with a SecTAG as specified in 9.12
- c) Extracts and decodes the SecTAG as specified in 9.3 through 9.9
- d) Extracts the User Data and ICV as specified in 9.10 and 9.11
- e) Assigns the frame to an SA (10.6.1)
- f) <u>Recovers the PN and p</u>Performs a preliminary replay check against the last validated PN for the SA (10.6.2)
- g) Provides the validation function (14.1, 10.6.3) of the Current Cipher Suite with
 - 1) The SA Key (SAK)
 - 2) The SCI for the SC used by the SecY to transmit
 - 3) The PN
 - 4) The SecTAG
 - 5) The sequence of octets that compose the Secure Data
 - 6) The ICV
- h) Receives the following parameters from the Cipher Suite validation operation
 - 7) A Valid indication, if the integrity check was valid and the User Data could be recovered
 - 8) The sequence of octets that compose the User Data
- i) Updates the replay check (10.6.4)
 - j) Issues an indication to the Controlled Port with the DA, SA, and priority of the frame as received from the Receive Demultiplexer, and the User Data provided by the validation operation (10.6.5).

If the management control validateFrames is not Strict, frames without a SecTAG are received, counted, and delivered to the Controlled Port; otherwise, they are counted and discarded. If validateFrames is Disabled, cryptographic validation is not applied to tagged frames, but frames whose original service user data can be recovered are delivered. Frames with a SecTAG that has the TCI E bit set but the C bit clear are discarded, as this reserved encoding is used to identify frames with a SecTAG that are not to be delivered to the Controlled Port. Figure 10-5 summarizes the operation of management controls and counters.

Change clause 10.6.2 Preliminary replay check, as follows:

10.6.2 PN recovery and pPreliminary replay check

If the Current Cipher Suite does not use extended packet numbering, i.e. the PN comprises 32-bits, the value of the PN is that of the lower 32 bits decoded from the SecTAG of the received frame. If extended packet numbering is used, the 32 most significant bits are recovered for each received frame as specified in by applying the assumption that they have remained unchanged since their use in the frame with the lowest acceptable PN (10.6.2) — unless the most significant of the 32 least significant bits of the lowest acceptable PN is set and the corresponding bit of the received PN is not set, in which case the 32 most significant bits of the PN are those of the lowest acceptable PN incremented by one.

<u>NOTE—If a large number of successive frames were to be lost (2³⁰-1, corresponding to approximately 9 seconds of full utilization of a 400 Gb/s link by minimum sized Ethernet frames) subsequent receipt of MACsec frames might fail to establish a correct PN value. MKA, the MACsec Key Agreement protocol specified in IEEE Std 802.1X and its amendments communicates the value of the high order bits periodically to recover from this eventuality.</u>

<<An alternative to the above specification for incrementing the high order bits of the PN would have been to subtract the received bits from the lowest acceptable PN (lower order bits) and perform the high order increment if the answer was more than +0x8000 0000 0000 0000. However it is most likely that dedicated logic will be required for operation at the intended speed, and that operation would require more gates than the test described.>>

If replayProtect control is enabled and the PN of the received frame is less than the lowest acceptable packet number (see 10.6.5) for the SA, the frame is discarded and the InPktsLate counter incremented.

NOTE—If the SC is supported by a network that includes buffering with priority queueing, such as a provider bridged network, delivered frames can be reordered.

10.7 SecY management

Insert the following NOTE after the second paragraph (beginning "Figure 10-6 illustrates the management information ...') of clause 10.7 SecY management:

NOTE—Figure 10-6 omits parameters specific to extended packet numbering (used by some but not all Cipher Suites (14.7, 14.8)) and not accessible by network management. Specifically: 1. the createReceiveSA(), ReceiveSA(), createTransmitSA(), and TransmitSA() procedures all take an additional SSCI parameter, whose value becomes a parameter of the created SA; 2. the install_key() procedure takes an additional Salt parameter, whose value becomes an inaccessible parameter of the Data_key object. These parameters are specified in 10.7.13, 10.7.21, 10.7.23.

Change clause 10.7.8 Frame verification controls, as follows:

10.7.8 Frame verification controls

Frame verification is subject to the following controls, as specified in 10.6:

- a) validateFrames, taking values of Disabled, Check, or Strict, with a default of Strict.
- b) replayProtect, True or False, with a default of True.
- c) replayWindow, taking values between 0 and 2^{32} -1, with a default of 0.

51 The validateFrames and replayProtect controls are provided to facilitate deployment. They can be read by 52 management. Each may be written by management, but a conformant implementation shall provide a 53 mechanism to allow write access by network management to be disabled for each parameter individually. If 54 management access is prohibited to any of these parameters, its default value should be used. 1 If the Current Cipher Suite uses extended packet numbering, i.e. a 64-bit PN, then the maximum value of 2 replayWindow used in the Secure Frame Verification process (10.6) is 2^{30} -1, but any higher value set by 3 network management is retained for possible subsequent use with a different Cipher Suite and will be 4 reported if read by network management. This provision provides compatibility with prior revisions of this standard, though it is unlikely that such a high value of replayWindow would have been used. 5 6 7 Change clauses 10.7.13 and 10.7.14, as follows: 8 9 10.7.13 Receive SA creation 10 11 A receive SA is created for an existing SC on request from the KaY, with the following parameters: 12 13 a) The association number, AN, for the SA 14 b) nextPN (10.6, 10.6.5) 15 c) lowestPN, the lowest acceptable PN value for a received frame (10.6, 10.6.2, 10.6.4, 10.6.5) 16 A reference to an SAK that is unchanged for the life of the SA d) 17 18 and, if the Current Cipher Suite uses extended packet numbering (e.g. 14.7, 14.8), the following parameter: 19 20 an SSCI, unique within all the SecY's (each associated with a KaY, and identified by an SCI) using 21 <u>e)</u> the SAK, and subsequently available for Cipher Suite protection and validation operations 22 23 Frame verification statistics (10.7.9) for the SA are set to zero when the SA is created. Any prior SA with the 24 same AN for the SC is deleted. Creation of the SA fails unless the referenced SAK exists and is installed 25 (i.e., is available for use). A management protocol dependent reference is associated with each SA. This 26 reference allows each SA to be distinguished from any previously created for the same SCI and AN. 27 28 10.7.14 Receive SA status 29 30 31 The following parameters can be read, but not directly written, by management: 32 33 a) inUse 34 b) nextPN (10.6, 10.6.5) 35 lowestPN, the lowest acceptable PN value for a received frame (10.6, 10.6.2, 10.6.4, 10.6.5) c) 36 d) createdTime, the system time when the SA was created 37 e) startedTime, the system time when inUse last became True for the SA 38 f) stoppedTime, the system time when inUse last became False for the SA 39 40 If inUse is True, and MAC Operational is True for the Common Port, the SA can receive frames. 41 42 Change clauses 10.7.21 and 10.7.22, as follows: 43 44 10.7.21 Transmit SA creation 45 46 An SA is created for the transmit SC on request from the KaY, with the following parameters: 47 48 AN, the association number for the SA a) 49 50 b) nextPN, the initial value of Transmit PN (10.5.2) for the SA 51 confidentiality, True if the SA is to provide confidentiality as well as integrity for transmitted frames c) 52 d) A reference to an SAK that is unchanged for the life of the SA 53 54 and, if the Current Cipher Suite uses extended packet numbering(e.g. 14.7, 14.8), the following parameter:

e) an SSCI, unique within all the SecY's (each associated with a KaY, and identified by an SCI) using the SAK, and subsequently available for Cipher Suite protection and validation operations.

Frame generation statistics (10.7.18) for the SA are set to zero when the SA is created. Any prior SA with the same AN is deleted. Creation of the SA fails unless the referenced SAK exists and is installed (i.e., is available for use). A management protocol dependent reference is associated with each SA. This reference allows the transmit SA to be distinguished from any previously created with the same AN.

10.7.22 Transmit SA status

The following parameters can be read, but not directly written, by management:

a) inUse

- <u>b)</u> nextPN (10.5, 10.5.2)
- <u>c)</u> createdTime, the system time when the SA was created
- d) startedTime, the system time when inUse last became True for the SA
- e) stoppedTime, the system time when inUse last became False for the SA.

If inUse is True, and MAC_Operational is True for the Common Port, the SA can transmit frames.

Change clauses 10.7.26 and 10.7.27, as follows:

10.7.23 SAK creation

An SAK record is created on request from the KaY, with the following parameters:

- a) The SAK value
- b) A Key Identifier, used by network management to reference the key

and, if the Current Cipher Suite uses extended packet numbering, the following parameter:

c) Salt, a 96-bit parameter subsequently available for Cipher Suite protection and validation operations.

10.7.24 SAK status

The following parameters can be read, but not directly written, by management:

- a) transmits, True if the key has been installed for transmission, i.e., can be referenced by a transmit SA
- b) receives, True if the key has been installed for reception, i.e., can be referenced by a receive SA
- c) createdTime, the system time when the SAK record was created

11. MAC Security in Systems

This amendment makes no changes to Clause 11.
12. MACsec and EPON

This amendment makes no changes to Clause 12.

13. Management protocol

Insert a new clause 13.7 Use of the MIB with extended packet numbering, as follows:

13.7 Use of the MIB with extended packet numbering

Although originally defined prior to the specification of Cipher Suites using extended packet numbering, the MAC Security MIB is applicable both when such Cipher Suites are implemented and when they are not. A conformant implementation with extended packet numbering Cipher Suites also includes the Default Cipher Suite (to provide interoperability) and retention of the existing MIB minimizes any disruption to deployed network management. The MIB accommodates the addition and identification of new Cipher Suites.

The addition of the SSCI (10.7.13, 10.7.21) and Salt (10.7.23) parameters in support of extended packet numbering does not require any addition to the MIB. The Salt parameter has to remain secret (just like an SAK) if its benefits are to be realized, so inclusion in any MIB would be most undesirable. Allocation of the SSCI is a matter for key agreement protocol, and is monitored (if at all) by the management arrangements for that protocol.

The MIB contains a number of 32-bit statistic counters for each active SA (10.7.14, 10.7.22, 10.7.9). As an active SA is replaced by its successor these statistics are accumulated into a 64-bit counter for the parent SC, and each of the statistics reported by management for an SC comprise the sum of past accumulated values and the active SA values. If the Current Cipher Suite uses a 32-bit PN, none of these 32-bit counters can overflow. If the Current Cipher Suite uses extended packet numbering, each SC statistic is incremented each time a counter for a corresponding SA statistic overflows and wraps. Each of the counters for an SA statistic thus holds the lower 32-bits of the value accumulated since the creation of the SA. The createdTime for the SA remains unchanged when and if any counter wraps. Similarly the 32-bit SA object for the nextPN reports the lower 32-bits of that parameter. The relevant MIB objects are:

29		
30	secyTxSANextPN	Unsigned32
31	secyRxSANextPN	Unsigned32
32	secyTxSAStatsProtectedPkts	Counter32
33	secyTxSAStatsEncryptedPkts	Counter32
34 35	secyRxSAStatsUnusedSAPkts	Counter32
36	secyRxSAStatsNoUsingSAPkts	Counter32
37	secyRxSAStatsNotValidPkts	Counter32
38	secyRxSAStatsInvalidPkts	Counter32
39	secyRxSAStatsOKPkts	Counter32
40		

14. Cipher Suites

14.1 Cipher Suite use

Change footnote2 and footnote 3 in Figure 14-1 as follows:

¹ The SAK to be used on receipt of the frame is identified by the SCI and the AN.

² The SCI is extracted from the SCI field of the SecTAG if present. A value conveyed by key agreement (point-to-point only) is used otherwise.

In the GCM-AES-128 and GCM-AES-256 Cipher Suites (14.5, 14.6), the SCI is always included in the IV parameter whether included in the SecTAG or not

- (and thus always contributes to the ICV). However the Cipher Suite parameter A includes the SCI if and only if the SCI is included in the SecTAG. In the GCM-AES-XPN-128 and GCM-AES-XPN-256 Cipher Suites (14.7, 14.8), the {SCI, SAK} tuple (or equivalently the SA) identifies the SSCI (conveyed
- by key agreement) that is included in the IV parameter, and the Cipher Suite Suite parameter A includes the SCI if and only if the SCI is included in the SecTAG.
- ³ The <u>32 least significant bits of the PN are is conveyed in the SecTAG</u>
- ⁴ The validated PN can be used for replay protection.
- ⁵ All the transmitted octets of the SecTAG are protected, including the optional SCI field if present

⁶ The validated received SecTAG contains bits of the TCI, and optionally the SCI, these can be used for service multiplexing (11.7).

⁷ The length, in octets, of the User Data is conveyed by the User Data parameter, and is protected by Cipher Suite operation.

⁸ The length, in octets, of the Secure Data is conveyed by the MACsec frame, unless it is short, when it is conveyed by the SL parameter in the SecTAG TCI

Figure 14-1—Cipher Suite Protect and Validate operations

Change the fourth paragraph of clause 14.1 and add a NOTE as follows:

The PN (Packet Number, 3.27, 8.3) is a 32-bit number that is never zero, is incremented each time a protect request is made for a given SCI, and is never repeated for an SCI unless the SAK is changed. <u>The size of the PN depends on the Cipher Suite</u>, and is 32-bits unless otherwise specified. Cipher suites that provide extended packet numbering use a 64-bit PN. Irrespective of the size of the PN, only the least significant 32-bits are conveyed in the SecTAG. If extended packet numbering is used, the most significant 32-bits are recovered for each received frame as specified in 10.6.2.

14.4 Cipher Suite conformance

Change Table 14-1 as follows:

Table 14-1—MACsec Cipher Suites

		Serv prov	vices vided		lse
Cipher Suite # Identifier	Cipher Suite Name	Integrity without confidentiality	Integrity and confidentiality	Mandatory/Optional	Defining Clau
00-80-C2-00-01-00-00-01	GCM-AES-128	Yes	Yes	Mandatory	14.5
00-80-C2-00-01-00-00-02	GCM-AES-256	Yes	Yes	Optional	14.6
<u>00-80-C2-00-01-00-00-03</u>	GCM-AES-XPN-128	Yes	Yes	Optional	<u>14.7</u>
<u>00-80-C2-00-01-00-00-04</u>	GCM-AES-XPN-256	<u>Yes</u>	<u>Yes</u>	<u>Optional</u>	<u>14.8</u>

Change clause 14.6 as follows:

14.6 GCM-AES-256

GCM-AES-256 uses the Galois/Counter Mode of operation with the AES-256 symmetric block cipher, as specified in this clause by reference to the terms *K*, *IV*, *A*, *P*, *C*, *T* used in NIST SP 800-38D.

K is the 256 bit SAK. The 64 most significant bits of the 96-bit *IV* are the octets of the SCI, encoded as a binary number (9.1). The 32 least significant bits of the 96-bit *IV* are the octets of the PN, encoded as a binary number (9.1). *T* is the ICV, and is 128 bits long. When the bit-strings *A*, *P*, and *C* are specified in terms of octet strings, earlier octets compose earlier bits, and more significant bits in each octet are earlier.

NOTE—The bit strings obtained by transforming MAC Address and data octets using these rules do not correspond to 802.3 'wire order' for frame transmission.

When the Default this Cipher Suite is used for Integrity Protection

- *A* is the Destination MAC Address, Source MAC Address, and the octets of the SecTAG and User Data concatenated in that order.
- *P* is null.
- The Secure Data is the octets of the User Data, without modification.

When the Default this Cipher Suite is used for Confidentiality Protection without a confidentiality offset

- A is the Destination MAC Address, Source MAC Address, and the octets of the SecTAG concatenated in that order.
- *P* is the octets of the User Data.
- The Secure Data is *C*.

When the Default this Cipher Suite is used for Confidentiality Protection with a confidentiality offset

- A is the Destination MAC Address, Source MAC Address, and the octets of the SecTAG and the first confidentialityOffset (10.7.24) octets of the User Data concatenated in that order.
- *P* is the remaining octets of the User Data.
- The Secure Data is the first confidentialityOffset octets of the User Data concatenated with *C*, in that order.

Insert clause 14.7 as follows:

14.7 GCM-AES-XPN-128

Each instance of the GCM-AES-XPN-128 Cipher Suite, i.e. the protection and validation capabilities created for a given SAK at the request of the KaY (10.7.26, Figure 10-6) maintains an instance of the following parameter as specified in 10.7.23:

a) Salt, a 96-bit value distributed by key agreement protocol to all members of the CA.

The MACsec Key Agreement (MKA) protocol specified in IEEE 802.1X-2010 does not include explicit parameters for distributing the Salt (applicable to all SAs using a given SAK) or the SSCI (applicable to a given SA, using a given SAK) explicitly. Each KaY computes these parameters from the MKA protocol information as follows. The 64 least-significant bits of the Salt comprise the SCI of the MKA Key Server, and the 32 most significant bits of the Salt comprise the value obtain by the exclusive-or of the 32 most significant and the 32 least significant bits of that SCI. The KaY with numerically greatest SCI uses the SSCI value 0x0001, the KaY with the next to the greatest SCI uses the SSCI value 0x0002, and so on.

NOTE 1—This procedure does not ensure that the Salt is secret. Readers of this standard are encouraged to consult the latest revision of 802.1X and its amendments.

NOTE 2—MKA guarantees that each KaY that receives a given SAK has a unique SCI, and these SCIs are present in every MKPDU that conveys a (key-wrapped) SAK.

GCM-AES-XPN-128 uses the Galois/Counter Mode of operation with the AES-128 symmetric block cipher, as specified in this clause by reference to the terms *K*, *IV*, *A*, *P*, *C*, *T* used in NIST SP 800-38D.

K is the 128 bit SAK. The 32 most significant bits of the 96-bit *IV* are the octets of the SSCI, encoded as a binary number (9.1) and exclusive-or'd with the 32 most significant bits of the Salt. The 64 least significant bits of the 96-bit *IV* are the octets of the PN, encoded as a binary number (9.1) and exclusive-or'd with the 64 least significant bits of the Salt. *T* is the ICV, and is 128 bits long. When the bit-strings *A*, *P*, and *C* are specified in terms of octet strings, earlier octets compose earlier bits, and more significant bits in each octet are earlier.

NOTE 3—The bit strings obtained by transforming MAC Address and data octets using these rules do not correspond to 802.3 'wire order' for frame transmission.

- When this Cipher Suite is used for Integrity Protection
- A is the Destination MAC Address, Source MAC Address, and the octets of the SecTAG and User Data concatenated in that order.
- *P* is null.
- The Secure Data is the octets of the User Data, without modification.

When this Cipher Suite is used for Confidentiality Protection without a confidentiality offset

- A is the Destination MAC Address, Source MAC Address, and the octets of the SecTAG concatenated in that order.
- *P* is the octets of the User Data.
- The Secure Data is C.

This Cipher Suite does not provide Confidentiality Protection with a confidentiality offset.

Insert clause 14.8 as follows:

14.8 GCM-AES-XPN-256

Each instance of the GCM-AES-XPN-256 Cipher Suite, i.e. the protection and validation capabilities created for a given SAK at the request of the KaY (10.7.26, Figure 10-6) maintains an instance of the following parameter as specified in 10.7.23:

a) Salt, a 96-bit value distributed by key agreement protocol to all members of the CA.

The MACsec Key Agreement (MKA) protocol specified in IEEE 802.1X-2010 does not include explicit parameters for distributing the Salt (applicable to all SAs using a given SAK) or the SSCI (applicable to a given SA, using a given SAK) explicitly. Each KaY computes these parameters from the MKA protocol information as follows. The 64 least-significant bits of the Salt comprise the SCI of the MKA Key Server, and the 32 most significant bits of the Salt comprise the value obtain by the exclusive-or of the 32 most significant and the 32 least significant bits of that SCI. The KaY with numerically greatest SCI uses the SSCI value 0x0001, the KaY with the next to the greatest SCI uses the SSCI value 0x0002, and so on.

NOTE 1—This procedure does not ensure that the Salt is secret. Readers of this standard are encouraged to consult the latest revision of 802.1X and its amendments.

NOTE 2—MKA guarantees that each KaY that receives a given SAK has a unique SCI, and these SCIs are present in every MKPDU that conveys a (key-wrapped) SAK.

GCM-AES-XPN-256 uses the Galois/Counter Mode of operation with the AES-256 symmetric block cipher, as specified in this clause by reference to the terms *K*, *IV*, *A*, *P*, *C*, *T* used in NIST SP 800-38D.

K is the 256 bit SAK. The 32 most significant bits of the 96-bit *IV* are the octets of the SSCI, encoded as a binary number (9.1) and exclusive-or'd with the 32 most significant bits of the Salt. The 64 least significant bits of the 96-bit *IV* are the octets of the PN, encoded as a binary number (9.1) and exclusive-or'd with the 64 least significant bits of the Salt. *T* is the ICV, and is 128 bits long. When the bit-strings *A*, *P*, and *C* are specified in terms of octet strings, earlier octets compose earlier bits, and more significant bits in each octet are earlier.

NOTE 3—The bit strings obtained by transforming MAC Address and data octets using these rules do not correspond to 802.3 'wire order' for frame transmission.

- When this Cipher Suite is used for Integrity Protection
- A is the Destination MAC Address, Source MAC Address, and the octets of the SecTAG and User Data concatenated in that order.
- *P* is null.
 - The Secure Data is the octets of the User Data, without modification.

When this Cipher Suite is used for Confidentiality Protection without a confidentiality offset

- A is the Destination MAC Address, Source MAC Address, and the octets of the SecTAG concatenated in that order.
- *P* is the octets of the User Data.
- 52 The Secure Data is C.
 - This Cipher Suite does not provide Confidentiality Protection with a confidentiality offset.

1			
2			
2			
3			
4			
5			
6			
7			
7			
8			
9			
10			
11			
12			
12			
15			
14			
15			
16			
17			
18			
10			
19			
20			
21			
22			
23			
24			
24			
23			
26			
27			
28			
29			
30			
31			
20			
32			
33			
34			
35			
36			
37			
29			
30			
39			
40			
41			
42			
43			
13			
44			
45			
46			
47			
48			
49			
50			
50			
51			
52			
53			
54			

1 2	Ar
3	(nc
4 5	,
6 7	PI
8	Th
9 10	
10	
12	
13 14	
14	
16	
17 18	
19	
20	
21	
22	
24	
25 26	
20 27	
28	
29	
30 31	
32	
33	
34 35	
36	
37	
38 39	
40	
41	
43	
44	
45 46	
47	
48	
49 50	
51	
52	
53 54	
<i></i>	

Annex A (normative)

(normative)

PICS Proforma

This amendment makes no changes to Annex A, PICS Proforma.

Annex B (informative)

(informative)

Bibliography

Change the text of this clause as follows, updating cross-references as necessary.

<<References to IP related uses of GCM that use 96-bit IV with 64-bit PNs (or equivalent) may be added, if suitable. The following text is that of the Bibliography after applying the 802.1AEbn amendment, with the correction that the later duplicated an entry in the Bibliography.>>

[B1] Fowler, M., "UML Distilled: A Brief Guide to the Standard Object Modeling Language, Third Edition," Pearson Education Inc., Boston, 2004, ISBN 0-321-19368-7.

[B2] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.

[B3] IETF RFC 2279, UTF-8, a Transformation format of ISO 10646, Yergeau, F., January 1998.

[B4] IETF RFC 2406, IP Encapsulating Security Payload (ESP), Kent, S., Atkinson, R., November 1998.

[B5] IETF RFC 2737, Entity MIB (Version 2), McCloghrie, K., Bierman, A., December 1999.

[B6] IETF RFC 3232, Assigned Numbers: RFC 1700 is Replaced by an On-line Database, Reynolds, J., January 2002.

[B7] IETF RFC 3410, Introduction and Applicability Statements for Internet-Standard Management Framework, Case, J., Mundy, R., Partain, D., and Stewart, B., December 2002.

[B8] IETF RFC 3411, An Architecture for Describing Simple Network Management Protocol (SNMP) Manage-ment Frameworks, Harrington, D., Presuhn, R., and Wijnen, B., December 2002.

[B10] IETF RFC 5116, An Interface and Algorithms for Authenticated Encryption, McGrew, D., January 2008.

[B11] ISO 6937-2: 1983, Information processing—Coded character sets for text communication—Part 2: Latin alphabetic and non-alphabetic graphic characters.¹

[B12] ISO/IEC TR 11802-2: 1997, Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Technical reports and guidelines—Part 2: Standard Group MAC addresses.

[B13] The Galois/Counter Mode of Operation (GCM), David A. McGrew and J. Viega. May 31, 2005.²

[B14] The Security and Performance of the Galois/Counter Mode (GCM) of Operation. D. McGrew and J. Viega. Proceedings of INDOCRYPT '04, Springer-Verlag, 2004.³

 ¹ISO and ISO/IEC documents are available from the ISO Central Secretariat, 1 rue de Varembé, Case Postale 56, CH-1211, Genève 20,
 Switzerland/Suisse; and from the Sales Department, American National Standards Institute, 11 West 42nd Street, 13th Floor, New York,
 NY 10036, USA.

⁵¹²A prior revision of this document was the normative reference for GCM in IEEE Std 802.1AE-2006, but has been superseded by NIST SP 800-38D for that purpose. It does contain additional background information, and can be downloaded from

⁵³ http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf

³Available from the IACR Cryptology ePrint Archive: Report 2004/193, <u>http://eprint.iacr.org/2004/193</u>

ны. Өр	-5] McGrew, eration (Full	- D. A., Vieg Version), httj	,a, J., "The So p://eprint.iacr	ecurity and F org/2004/193	erformance e 3.pdf.	of the Galois	Counter Moc	le (GCM

Annex C (informative)

(informative)

MACsec Test Vectors

<<The results for the GCM-AES-XPN-128 and GCM-AES-XPN-256 test vectors have yet to be added, Place holders for the hexadecimal representation of intermediate vales and results are shown as '??'.>>

Change the third paragraph of the initial text of this Annex, as follows:

Test cases are provided for both the Default Cipher Suite (GCM-AES-128, 14.5), and GCM-AES-256 (14.6), <u>GCM-AES-XPN-256 (14.7)</u>, and <u>GCM-AES-XPN-256 (14.8)</u>. The notation used in this Annex is that specified in Clause 14 (Cipher Suites) and NIST SP 800-38D. Fields in the MACsec header are specified in Clause 9. Summaries of the computation and intermediate outputs are provided.

C.1 Integrity protection (54-octet frame)

Change the initial paragraphs and tables of clause C.1 as follows:

The MAC Destination Address, MAC Source Address, and MAC Service Data Unit (MSDU, User Data) of a MAC Service data request and a corresponding data indication are shown in Table C-1. These comprise the octets of an unprotected frame when concatenated in the order given (with the addition of any media dependent additional fields such as padding). The User Data shown includes the IP EtherType.

Table C-1—Unprotected frame (example)

Field								Va	alue							
MAC DA	D6	09	В1	FO	56	63										
MAC SA	7A	0D	46	DF	99	8D										
User Data	08 1D 2D	00 1E 2E	0F 1F 2F	10 20 30	11 21 31	12 22 32	13 23 33	14 24 34	15 25 00	16 26 01	17 27	18 28	19 29	1A 2A	1B 2B	1C 2C

The MAC Security TAG (SecTAG) comprises the MACsec EtherType, the TCI, the AN, the SL, the PN (32 least significant bits for Cipher Suites using extended packet numbering), and the (optional) SCI. The PN differs for each protected frame transmitted with any given SAK (*K*) and has been arbitrarily chosen (for this and in other examples) as have the other parameter values. The fields of the protected frame are shown (in the order transmitted) in Table C-2.

Field								Va	lue							
MAC DA	D6	09	В1	FO	56	63										
MAC SA	7A	0D	46	DF	99	8D										
MACsec EtherType	88	E5														
TCI and AN	22															
SL	2A															
PN	в2	C2	84	65												
SCI	12	15	35	24	C0	89	5E	81								
Secure Data	08	00	OF	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
	1D	1E	1F	20	21	22	23	24	25	26	27	28	29	2A	2B	2C
	2D	2E	2F	30	31	32	33	34	00	01						
ICV	Cip (se and	ohei ee 1 d Ta	r Su Fabl	uite Le (e C-	e ar 2-3- - <u>6</u>)	nd F and	(еу] , Т	(SA abl	AK) e C	der -4 <u>,</u>	oenc Ta	lent ble	C-	5,		

Table C-2—Integrity protected frame (example)

The GCM parameter *A*, the additional data to be authenticated, is formed by concatenating the MAC DA, the MAC SA, the SecTAG, and the User Data. This input is then processed through the authentication only operation of the GCM module. The SCI and the PN are concatenated (in that order) to form the 96 bit *IV* used by GCM. The computed GCM parameter *T* is the ICV.

C.1.1 GCM-AES-128 (54-octet frame integrity protection)

Change clause C.1.1 as follows:

Table C-3 specifies an arbitrary 128-bit key (SAK), and the ICV generated by the GCM-AES-128 Cipher Suite when that key is used in conjunction with the frame field data of Table C-2. <u>The GCM parameter A</u>, the additional data to be authenticated, is formed by concatenating the MAC DA, the MAC SA, the SecTAG, and the User Data. This input is then processed through the authentication only operation of the GCM module. The SCI and the PN are concatenated (in that order) to form the 96-bit IV used by GCM. The computed GCM parameter T is the ICV. Details of the computation follow the table.

Table C-3—GCM-AES-128 Key and calculated ICV (example)

	Field	Value															
	Key (SAK)	AD	7A21	BD03	BEAC	2835	5A61	762	0FD	СВ5()6B	345					
	ICV	FO	94	78	A9	в0	90	07	D0	бF	46	E9	В6	A1	DA	25]
kev s	ize = 128 bits																
P:	0 bits																
A:	560 bits																
IV:	96 bits																
ICV:	128 bits																
к:	AD7A2BD03EAC835	A6F62	0FD	CB5)6B	345											
P:	112711222022110000		01.2	020													
A:	D609B1F056637A0	D46DF	998	D881	E522	22A											
	B2C284651215352	4C089	5E8	1080	000	F10											
	111213141516171	8191A	1B1	C1D	1E11	F20											
	212223242526272	8292A	282	C2D2	2E21	F30											
	313233340001																
IV:	12153524C0895E81B2C28465																
GCM-AF	ES Authentication	ſ															
н:	73A23D80121DE2D	5A850	253	FCF4	431:	20E											
Y[0]:	12153524C0895E8	1B2C2	846	5000	000	001											
E(K,Y	[0]): EB4E051CB54	48A6B5	490	F6F	11A	27C	B7D	0									
x[1]:	6B0BE68D67C6EE0	3EF79	98E	3990	2010	CA4		-									
x[2]:	5AABADF6D7806EC	OCCCB	028	4413	1971	B22											
x[3]:	FE072BFE2811A68	AD7FD	B06	8719	92D	293											
x[4]:	A47252D1A7E09B4	9FB35	6E4	35DI	3840	CD0											
wгг 1.	18EBF4C65CE89BF	'69EFB	498	1 CEI	ו 2 רק												
A[J]·	100000000000000000000000000000000000000				וכבי	DB3											
GHASH	(H,A,C): 1BDA7DB	505D8A	165	264	986	DB9 A70	3A6	920	D								
GHASH C:	(H,A,C): 1BDA7DB	505D8A	165	264	986	DB9 A70	3A6	920	D								

C.1.2 GCM-AES-256 (54-octet frame integrity protection)

Change clause C.1.2 as follows:

1

2 3

4 5

6

7

8

9

10

11 12 13

Table C-4 specifies an arbitrary 256-bit key (SAK), and the ICV generated by the GCM-AES-256 Cipher Suite when that key is used in conjunction with the frame field data of Table C-2. <u>The GCM parameter A</u>, the additional data to be authenticated, is formed by concatenating the MAC DA, the MAC SA, the SecTAG, and the User Data. This input is then processed through the authentication only operation of the GCM module. The SCI and the PN are concatenated (in that order) to form the 96-bit IV used by GCM. The computed GCM parameter T is the ICV. Details of the computation follow the table.

Table C-4—GCM-AES-256 Key and calculated ICV (example)

Field	Value						
Key (SAK)	3C08A8F06C6E3AD95A70557B23F7548						
	3CE33021A9C72B7025666204C69C0B72						
ICV	2F 0B C5 AF 40 9E 06 D6 09 EA 8B 7D 0F A5 EA 50						

20		
21	key si	ze = 256 bits
22	Þ:	0 bits
23	A:	560 bits
23	IV:	96 bits
27	ICV:	128 bits
25	к:	E3C08A8F06C6E3AD95A70557B23F7548
20		3CE33021A9C72B7025666204C69C0B72
27	P:	
28	A:	D609B1F056637A0D46DF998D88E5222A
29		B2C2846512153524C0895E8108000F10
30		1112131415161718191A1B1C1D1E1F20
31		2122232425262728292A2B2C2D2E2F30
32		313233340001
33	IV:	12153524C0895E81B2C28465
34	GCM-AE	S Authentication
35	н:	286D73994EA0BA3CFD1F52BF06A8ACF2
36	Y[0]:	12153524C0895E81B2C2846500000001
37	E(K,Y[0]): 714D54FDCFCEE37D5729CDDAB383A016
38	X[1]:	BA7C26F578254853CF321281A48317CA
39	X[2]:	2D0DF59AE78E84ED64C3F85068CD9863
40	X[3]:	702DE0382ABF4D42DD62B8F115124219
41	X[4]:	DAED65979342F0D155BFDFE362132078
42	X[5]:	9AB4AFD6344654B2CD23977E41AA18B3
43	GHASH(H,A,C): 5E4691528F50E5AB5EC346A7BC264A46
44	C:	
45	T: 2F0	BC5AF409E06D609EA8B7D0FA5EA50
46		
47		
48		
40 /Q		
50		
51		
52		
52		
55		
34		

Insert a new clause C.1.3 as follows:

C.1.3 GCM-AES-XPN-128 (54-octet frame integrity protection)

Table C-5 specifies an arbitrary value for the 32 most significant bits of the 64-bit PN (the 32 least significant bits are those of the PN field in the SecTAG), a 96-bit Salt, and 128-bit key (SAK), with the ICV generated by the GCM-AES-XPN-128 Cipher Suite when that key is used in conjunction with the foregoing and the frame field data of Table C-2. The GCM parameter A, the additional data to be authenticated, is formed by concatenating the MAC DA, the MAC SA, the SecTAG, and the User Data. This input is then processed through the authentication only operation of the GCM module. The 32 most significant bits of the 96-bit IV are the octets of the SCI, encoded as a binary number (9.1) and exclusive-or'd with the 32 most significant bits of the Salt. The 64 least significant bits of the 96-bit IV are the octets of the CCM module as a binary number (9.1) and exclusive-or'd with the 64 least significant bits of the Salt. The computed GCM parameter T is the ICV. Details of the computation follow the table.

Table C-5—GCM-AES-XPN-128 Key and calculated ICV (example)

Field	Value
PN (ms 32-bits)	B0DF459C
Salt	E630E81A48DF
Key (SAK)	AD7A2BD03EAC835A6F620FDCB506B345
ICV	.

23		Suit	200020111021
24		Key (SAK)	AD7A2BD03EAC835A6F6201
25		ICV	55 55 55 55 55 55 55 55 55 55 55 55 55
26			
27	kev si	ze = 128 bits	
28	P:	0 bits	
29	A:	560 bits	
30	IV:	96 bits	
31	ICV:	128 bits	
32	к:	AD7A2BD03EAC835	A6F620FDCB506B345
33	л.		
34	P۰		
35	A:	D609B1F056637A0	D46DF998D88E5222A
36		B2C284651215352	4C0895E8108000F10
37		111213141516171	8191A1B1C1D1E1F20
38		212223242526272	8292A2B2C2D2E2F30
39		313233340001	
40	IV:	???????????????????????????????????????	?????????
41	GCM-AF	S Authentication	2
42	н:	???????????????????????????????????????	
43	Y[0]:	???????????????????????????????????????	???????????????????????????????????????
44	E(K,Y[0]): ??????????	???????????????????????????????????????
45	X[1]:	???????????????????????????????????????	???????????????????????????????????????
46	X[2]:	???????????????????????????????????????	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
47	X[3]:	???????????????????????????????????????	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
48	X[4]:	???????????????????????????????????????	\$\$\$\$\$\$\$\$\$
49	X[5]:	???????????????????????????????????????	???????????????????????????????????????
50	GHASH (H,A,C): ???????	???????????????????????????????????????
51	C:		
52	т:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
53	1.		
54			

Insert a new clause C.1.4 as follows:

1

2 3

4 5

6

7

8

9

10

11

12

13

14

15 16 17

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

C.1.4 GCM-AES-XPN-256 (54-octet frame integrity protection)

Table C-6 specifies an arbitrary value for the 32 most significant bits of the 64-bit PN (the 32 least significant bits are those of the PN field in the SecTAG), a 96-bit Salt, and 256-bit key (SAK), with the ICV generated by the GCM-AES-XPN-256 Cipher Suite when that key is used in conjunction with the foregoing and the frame field data of Table C-2. The GCM parameter A, the additional data to be authenticated, is formed by concatenating the MAC DA, the MAC SA, the SecTAG, and the User Data. This input is then processed through the authentication only operation of the GCM module. The 32 most significant bits of the 96-bit IV are the octets of the SCI, encoded as a binary number (9.1) and exclusive-or'd with the 32 most significant bits of the Salt. The 64 least significant bits of the 96-bit IV are the octets of the CV parameter T is the ICV. Details of the computation follow the table.

Table C-6—GCM-AES-XPN-256 Key and calculated ICV (example)

Field	Value
PN (ms 32-bits)	B0DF459C
Salt	E630E81A48DF
Key (SAK)	E3C08A8F06C6E3AD95A70557B23F7548 3CE33021A9C72B7025666204C69C0B72
ICV	.5 .5 <td< td=""></td<>

```
key size = 256 bits
Ρ:
    0 bits
    560 bits
A:
IV:
    96 bits
ICV:
   128 bits
к:
    E3C08A8F06C6E3AD95A70557B23F7548
    3CE33021A9C72B7025666204C69C0B72
P:
A:
   D609B1F056637A0D46DF998D88E5222A
    B2C2846512153524C0895E8108000F10
    1112131415161718191A1B1C1D1E1F20
    2122232425262728292A2B2C2D2E2F30
    313233340001
IV:
    GCM-AES Authentication
н:
```

47	X[3]: ????????????????????????????????????
48	x[4]: ????????????????????????????????????
49	X[5]: ????????????????????????????????????
50	GHASH(H,A,C): ????????????????????????????????????
51	C:
52	Δ: 555555555555555555555555555555555555
53	

C.2 Integrity protection (60-octet frame)

Change the initial paragraphs and tables of clause C.2 as follows:

The MAC Destination Address, MAC Source Address, and MAC Service Data Unit (MSDU, User Data) of a MAC Service data request and a corresponding data indication are shown in Table C-7. These comprise the octets of an unprotected frame when concatenated in the order given (with the addition of any media dependent additional fields such as padding). The User Data shown includes the IP EtherType.

Table C-7—Unprotected frame (example)

Field								Va	lue							
MAC DA	E2	01	06	D7	CD	0D										
MAC SA	FO	76	1E	8D	CD	3D										
User Data	08	00	OF	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
	1D	1E	1F	20	21	22	23	24	25	26	27	28	29	2A	2В	2C
	2D	2E	2F	30	31	32	33	34	35	36	37	38	39	3A	00	03

The MAC Security TAG comprises the MACsec EtherType, the TCI, the AN, the SL, the PN. In this example the optional SCI has been omitted. The fields of the protected frame are shown (in the order transmitted) in Table C-8.

Field								Va	alue							
MAC DA	E2	01	06	D7	CD	0D										
MAC SA	FO	76	1E	8D	CD	3D										
MACsec EtherType	88	E5														
TCI and AN	40															
SL	00															
PN	76	D4	57	ED												
Secure Data	08	00	OF	10	11	12	13	14	15	16	17	18	19	1A	1в	1C
	1D	1E	1F	20	21	22	23	24	25	26	27	28	29	2A	2B	2C
	2D	2E	2F	30	31	32	33	34	35	36	37	38	39	3A	00	03
ICV	Cip (se Tab	Cipher Suite and Key (SAK) dependent (see Table C-7 and Table C-8 <u>Table C-9,</u> Table C-10, Table C-11, and Table C-12)														

Table C-8—Integrity protected frame (example)

Insert a new clause C.2.3 as follows, renumbering subsequent tables as required:

C.2.3 GCM-AES-XPN-128 (60-octet frame integrity protection)

Table C-11 specifies arbitrary values for the 32 most significant bits of the 64-bit PN (the 32 least significant bits are those of the PN field in the SecTAG), 96-bit Salt, and 128-bit key (SAK), with the ICV generated by the GCM-AES-XPN-128 Cipher Suite when that key is used in conjunction with the foregoing and the frame field data of Table C-7.

Table C-11—GCM-AES-XPN-128 Key and calculated ICV (example)

Field	Value
PN (ms 32-bits)	B0DF459C
Salt	E630E81A48DF
Key (SAK)	071B113B0CA743FECCCF3D051F737382
ICV	.

key size = 128 bit	S
--------------------	---

21	key s	ize = 128 bits
21	P:	0 bits
22	A:	544 bits
25	IV:	96 bits
24	ICV:	128 bits
25	к:	071B113B0CA743FECCCF3D051F737382
26	P:	
27	A:	E20106D7CD0DF0761E8DCD3D88E54000
28		76D457ED08000F101112131415161718
29		191A1B1C1D1E1F202122232425262728
30		292A2B2C2D2E2F303132333435363738
31		393A0003
32	IV:	???????????????????????????????????????
33	GCM-AI	ES Authentication
34	н:	222222222222222222222222222222222222222
35	Y[0]:	???????????????????????????????????????
36	E(K,Y	[0]): ????????????????????????????????????
37	X[1]:	???????????????????????????????????????
38	X[2]:	\$
39	X[3]:	\$
40	X[4]:	??????????????????????????????????????
41	X[5]:	???????????????????????????????????????
42	GHASH	(H,A,C): ????????????????????????????????????
43	C:	
44	т:	??????????????????????????????????????
45		
46		
47		
48		
49		
50		
51		
52		
53		

2 3 4

5 6

7 8

9

10

11 12 13

Insert a new clause C.2.4 as follows:

C.2.4 GCM-AES-XPN-256 (60-octet frame integrity protection)

Table C-12 specifies arbitrary values for the 32 most significant bits of the 64-bit PN (the 32 least significant bits are those of the PN field in the SecTAG), a \96-bit Salt, and 256-bit key (SAK), with the ICV generated by the GCM-AES-XPN-256 Cipher Suite when that key is used in conjunction with the foregoing and the frame field data of Table C-7.

Table C-12—GCM-AES-XPN-256 Key and calculated ICV (example)

Field	Value												
PN (ms 32-bits)	B0DF459C												
Salt	630E81A48DF												
Key (SAK)	591D3EE909D7F54167FD1CA0B5D76908 LF2BDE1AEE655FDBAB80BD5295AE6BE7												
ICV	.												

23		
24	key si	ze = 256 bits
25	P:	0 bits
26	A:	544 bits
27	IV:	96 bits
28	ICV:	128 bits
29		
30	K:	691D3EE909D7F54167FD1CA0B5D76908
31		1F2BDE1AEE655FDBAB80BD5295AE6BE7
32	P:	
33		
34	A:	E20106D7CD0DF0761E8DCD3D88E54000
35		76D457ED08000F101112131415161718
36		191A1B1C1D1E1F202122232425262728
37		292A2B2C2D2E2F303132333435363738
38		393A0003
39		
40	IV:	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
41	GCM-AE	S Authentication
42	н:	???????????????????????????????????????
43	Y[0]:	???????????????????????????????????????
44	E(K,Y[0]): 3333333333333333333333333333333333
45	x[1]:	\$
46	x[2]:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4/	v[2].	
48	x[J]·	
49	A[4]·	
50	X[5];	
51	GHASH(H,A,C): ????????????????????????????????????
52 53	C:	
54	T: ???	???????????????????????????????????????

C.3 Integrity protection (65-octet frame)

Change the initial paragraphs and tables of clause C.3 as follows:

The MAC Destination Address, MAC Source Address, and MAC Service Data Unit (MSDU, User Data) of a MAC Service data request and a corresponding data indication are shown in Table C-13. These comprise the octets of an unprotected frame when concatenated in the order given (with the addition of any media dependent additional fields such as padding). The User Data shown includes the IP EtherType.

Table C-13—Unprotected frame (example)

Field								Va	alue							
MAC DA	84	C5	D5	13	D2	AA										
MAC SA	F6	E5	BB	D2	72	77										
User Data	08	00	0F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
	1D	1E	1F	20	21	22	23	24	25	26	27	28	29	2A	2В	2C
	2D	2E	2F	30	31	32	33	34	35	36	37	38	39	3A	3B	3C
	3D	3E	3F	00	05											

The MAC Security TAG comprises the MACsec EtherType, the TCI, the AN, the SL, the PN, and the (optional) SCI. The fields of the protected frame are shown (in the order transmitted) in Table C-14.

Field								Va	lue							
MAC DA	84	C5	D5	13	D2	AA										
MAC SA	F6	E5	BB	D2	72	77										
MACsec EtherType	88	E5														
TCI and AN	23															
SL	00															
PN	89	32	D6	12												
SCI	7C	FD	Е9	F9	E3	37	24	C6								
Secure Data	08	00	0F	10	11	12	13	14	15	16	17	18	19	1A	1В	1C
	1D	1E	1F	20	21	22	23	24	25	26	27	28	29	2A	2B	2C
	2D	2E	2F	30	31	32	33	34	35	36	37	38	39	3A	3B	3C
	3D	3E	3F	00	05											
ICV	(se	ee <mark>-</mark>	Fab:	le (2-11	l ar	nd 1	[ab]	le (-12	2 <u>T</u> a	able	e C-	-15,		
	Tak	ole	C-1	16,	Tak	ole	C-1	L7,	and	l Ta	able	e C-	-18)		

Table C-14—Integrity protected frame (example)

C.3.3 GCM-AES-XPN-128 (65-octet frame integrity protection)

Table C-17 specifies arbitrary values for the 32 most significant bits of the 64-bit PN (the 32 least significant bits are those of the PN field in the SecTAG), 96-bit Salt, and 128-bit key (SAK), with the ICV generated by the GCM-AES-XPN-128 Cipher Suite when that key is used in conjunction with the foregoing and the frame field data of Table C-13.

Table C-17—GCM-AES-XPN-128 Key and calculated ICV (example)

	Field	Value											
	PN (ms 32-bits)	B0DF459C											
	Salt	E630E81A48DF											
	Key (SAK)	013FE00B5F11BE7F866D0CBBC55A7A90											
	ICV	3.5 3											
key si	.ze = 128 bits												
Þ:	0 bits												
A:	648 bits												
IV:	96 bits	b DITS 28 bits											
TCA:	128 bits	3 bits											
K:	013FE00B5F11BE7F8)13FE00B5F11BE7F866D0CBBC55A7A90											
Þ:													
A:	84C5D513D2AAF6E5B	BD2727788E52300											
	8932D6127CFDE9F9E	33724C608000F10											
	11121314151617181	91A1B1C1D1E1F20											
	21222324252627282	92A2B2C2D2E2F30											
	31323334353637383	93A3B3C3D3E3F00											
	05												
IV:	???????????????????????????????????????												
GCM-AE	S Authentication												
H:	???????????????????????????????????????	???????????????????????????????????????											
Y[0]:	??????????????????????????????????????	???????????????????????????????????????											
E(K,YL	0]): ????????????????	???????????????????????????????????????											
X[1]:	???????????????????????????????????????	????????????????											
X[2]: v[2]:	??????????????????????????????????????	222222222222222											
X[3]• V[4]•		//////////////////////////////////////											
x[5]		· · · · · · · · · · · · · · · · · · ·											
x[6]:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
GHASH(H.A.C): ???????????	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
C:													
с т:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	22222222222222											
1.		• • • • • • • • • • • • • • • • •											

C.3.4 GCM-AES-XPN-256 (65-octet frame integrity protection)

Table C-18 specifies arbitrary values for the 32 most significant bits of the 64-bit PN (the 32 least significant bits are those of the PN field in the SecTAG), a \96-bit Salt, and 256-bit key (SAK), with the ICV generated by the GCM-AES-XPN-256 Cipher Suite when that key is used in conjunction with the foregoing and the frame field data of Table C-13.

Table C-18—GCM-AES-XPN-256 Key and calculated ICV (example)

s 32-bits) AK) 56 bits 56 bits 58 58 58 58 58 58 58 58 58 58 58 58 58	B0DF459C E630E81A48DF 83C093B58DE7F 9AC1C80FEE1B6 ????????????? ??????????????????????	FE1C0DA926 24497EF942 ? ?? ?? ?? 0 3 0 0 0	AC43FB36 2E2F79A82 ? ?? ?? ?	50 23 ?????	??	??	??	??
AK) 56 bits 55 bits 55 bits 55 bits 55 bits 55 bits 55 bits 55 bits 56 bits 56 bits 57 bits 56 bits 57 bits 57 bits 57 bits 57 bits 58	E630E81A48DF 83C093B58DE7F 9AC1C80FEE1B6 ???????????? C0DA926AC43FB36 97EF942E2F79A82 BBD2727788E5230 E33724C608000F1 191A1B1C1D1E1F2 292A2B2C2D2E2F3 393A3B3C3D3E3F0	FE1C0DA926 24497EF942 ? ?? ?? ?? 0 3 0 0 0	AC43FB36 2E2F79A82	50 23 ?????	??	??	??	??
AK) 56 bits 56 bits 55 55 55 55 55 55 55 55 55 55 55 55 55	83C093B58DE7F 9AC1C80FEE1B6 ??????????? ?????????? CODA926AC43FB36 97EF942E2F79A82 BBD2727788E5230 E33724C608000F1 191A1B1C1D1E1F2 292A2B2C2D2E2F3 393A3B3C3D3E3F0	FE1C0DA926 24497EF942 ? ?? ?? ?? 0 3 0 0 0	AC43FB36 E2F79A82 ???????	50 23 ?? ??	??	??	??	??
56 bits ts ts 3858DE7FFE 30FEE1B624 513D2AAF6E 5127CFDE9F 3141516171 3242526272 3343536373	9AC1C80FEE1B6 ???????????? C0DA926AC43FB36 97EF942E2F79A82 BBD2727788E5230 E33724C608000F1 191A1B1C1D1E1F2 292A2B2C2D2E2F3 393A3B3C3D3E3F0	24497EF942 ? ?? ?? ?? 0 3 0 0	E2F79A82	23	??	??	??	<u></u>
56 bits 55 55 55 55 55 55 55 55 55 5	?? ?? ?? ?? ?? ? CODA926AC43FB36 97EF942E2F79A82 98BD2727788E5230 193724C608000F1 191A1B1C1D1E1F2 292A2B2C2D2E2F3 393A3B3C3D3E3F0	0 0 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	. <u>.</u>		??	<u></u>	<u>.</u>	??
56 bits 58 58 58 58 58 58 58 58 58 58	C0DA926AC43FB36 97EF942E2F79A82 BBD2727788E5230 E33724C608000F1 191A1B1C1D1E1F2 292A2B2C2D2E2F3 393A3B3C3D3E3F0	0 3 0 0						
50 bits 51 bits 52 bits 53 bits 54 bits 54 bits 54 bits 55 bits 56 bits 57 bits 57 bits 58	C0DA926AC43FB36 97EF942E2F79A82 BBD2727788E5230 E33724C608000F1 191A1B1C1D1E1F2 292A2B2C2D2E2F3 393A3B3C3D3E3F0	0 3 0 0 0						
ts s 3858DE7FFE 30FEE1B624 513D2AAF6E 5127CFDE9F 3141516171 3242526272 3343536373	C0DA926AC43FB36 97EF942E2F79A82 BBD2727788E5230 E33724C608000F1 191A1B1C1D1E1F2 292A2B2C2D2E2F3 393A3B3C3D3E3F0	0 3 0 0						
s 3858DE7FFE 30FEE1B624 513D2AAF6E 5127CFDE9F 3141516171 3242526272 3343536373	C0DA926AC43FB36 97EF942E2F79A82 9BBD2727788E5230 1E33724C608000F1 191A1B1C1D1E1F2 292A2B2C2D2E2F3 393A3B3C3D3E3F0	0 3 0 0 0						
ts 3858DE7FFE 30FEE1B624 513D2AAF6E 5127CFDE9F 3141516171 3242526272 3343536373	CODA926AC43FB36 97EF942E2F79A82 BBD2727788E5230 E33724C608000F1 191A1B1C1D1E1F2 292A2B2C2D2E2F3 393A3B3C3D3E3F0	0 3 0 0 0						
3858DE7FFE 30FEE1B624 513D2AAF6E 5127CFDE9F 3141516171 3242526272 3343536373	C0DA926AC43FB36 97EF942E2F79A82 BBD2727788E5230 E33724C608000F1 191A1B1C1D1E1F2 292A2B2C2D2E2F3 393A3B3C3D3E3F0	0 3 0 0 0						
513D2AAF6E 5127CFDE9F 8141516171 8242526272 8343536373	BBD2727788E5230 E33724C608000F1 191A1B1C1D1E1F2 292A2B2C2D2E2F3 393A3B3C3D3E3F0	0 0 0						
513D2AAF6E 5127CFDE9F 3141516171 3242526272 3343536373	BBD2727788E5230 E33724C608000F1 191A1B1C1D1E1F2 292A2B2C2D2E2F3 393A3B3C3D3E3F0	0 0 0						
5127CFDE9F 3141516171 3242526272 3343536373	E33724C608000F1 191A1B1C1D1E1F2 292A2B2C2D2E2F3 393A3B3C3D3E3F0	0						
3141516171 3242526272 3343536373	191A1B1C1D1E1F2 292A2B2C2D2E2F3 393A3B3C3D3E3F0	0						
3242526272 3343536373	292A2B2C2D2E2F3 393A3B3C3D3E3F0	0						
343536373	393A3B3C3D3E3F0	0						
		0						
· ? : ? : ? : ? : ? : ? : ? : ? : ? : ?	??????????????????????????????????????							
entication								
		?						
·?????????????	???????????????????????????????????????	?						
**********		, , , , , , , , , , , , , , , , , , ,						
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	۰ ۲						
	222222222222222222	• ?						
???????????????????????????????????????	???????????????????????????????????????	- -						
???????????????????????????????????????	???????????????????????????????????????	•						
· ? ? ? ? ? ? ? ? ? ? ? ? ? ?	???????????????????????????????????????	?						
: ?????????	???????????????????????????????????????	???????????????????????????????????????						
	22222222222222							
; ; ; ; ; ; ; ; ; ;			<pre>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>	<pre>\$</pre>	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	<pre>////////////////////////////////////</pre>

C.4 Integrity protection (79-octet frame)

Change the initial paragraphs and tables of clause C.4 as follows:

The MAC Destination Address, MAC Source Address, and MAC Service Data Unit (MSDU, User Data) of a MAC Service data request and a corresponding data indication are shown in Table C-19. These comprise the octets of an unprotected frame when concatenated in the order given (with the addition of any media dependent additional fields such as padding). The User Data shown includes the IP EtherType.

Table C-19—Unprotected frame (example)

Field	Value															
MAC DA	68	F2	E7	76	96	CE										
MAC SA	7A	E8	E2	CA	4E	C5										
User Data	08	00	0F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
	1D	1E	1F	20	21	22	23	24	25	26	27	28	29	2A	2B	2C
	2D	2E	2F	30	31	32	33	34	35	36	37	38	39	3A	3B	3C
	3D	3E	3F	40	41	42	43	44	45	46	47	48	49	4A	4B	4C
	4D	00	07													

The MAC Security TAG comprises the MACsec EtherType, the TCI, the AN, the SL, and the PN. In this example the optional SCI has been omitted. The fields of the protected frame are shown (in the order transmitted) in Table C-20.

Field								Va	lue							
MAC DA	68	F2	E7	76	96	CE										
MAC SA	7A	E8	E2	CA	4E	C5										
MACsec EtherType	88	E5														
TCI and AN	41															
SL	00															
PN	2E	58	49	5C												
Secure Data	08	00	0F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
	1D	1E	1F	20	21	22	23	24	25	26	27	28	29	2A	2B	2C
	2D	2E	2F	30	31	32	33	34	35	36	37	38	39	3A	3B	3C
	3D	3E	3F	40	41	42	43	44	45	46	47	48	49	4A	4B	4C
	4D	00	07													
ICV	(se	ee 🗄	[ab]	le (<u>;-1</u> !	5 ar	nd T	[ab]	le (2-10	Ta	able	e C-	-21,		
	Tak	ole	C-2	22,	Tab	ole	C-2	23,	and	d Ta	able	e C-	-24)		

C.4.3 GCM-AES-XPN-128 (79-octet frame integrity protection)

Table C-23 specifies arbitrary values for the 32 most significant bits of the 64-bit PN (the 32 least significant bits are those of the PN field in the SecTAG), 96-bit Salt, and 128-bit key (SAK), with the ICV generated by the GCM-AES-XPN-128 Cipher Suite when that key is used in conjunction with the foregoing and the frame field data of Table C-19.

Table C-23—GCM-AES-XPN-128 Key and calculated ICV (example)

	Field	Value
	PN (ms 32-bits)	B0DF459C
	Salt	E630E81A48DF
	Key (SAK)	88EE087FD95DA9FBF6725AA9D757B0CD
	ICV	.
key si	ze = 128 bits	
P:	0 bits	
A:	696 bits	
TCV:	90 DILS 128 hite	
v.		6725330D757D00D
к.	OOLEUO/FD95DA9FBF	0/25AA9D/5/BUCD
P:		
A:	68F2E77696CE7AE8E	2CA4EC588E54100
	2E58495C08000F101	12222425262728
	292A2B2C2D2E2F303	132333435363738
	393A3B3C3D3E3F404	142434445464748
	494A4B4C4D0007	
IV:	???????????????????????????????????????	??????
GCM-AE	S Authentication	
н:	???????????????????????????????????????	???????????????
Y[0]:	???????????????????????????????????????	???????????????????????????????????????
E(K,Y[0]): ????????????	555555555555555555555555555555555555555
X[1]:	???????????????????????????????????????	???????????????????????????????????????
X[2]:	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	???????????????????????????????????????
X[3]:	???????????????????????????????????????	???????????????
X[4]:	· · · · · · · · · · · · · · · · · · ·	222222222222222
X[5]· X[6]:	·····	***************************************
GHASH(H.A.C): ??????????	
C:		
т.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	000000000000
1.		

C.4.4 GCM-AES-XPN-256 (79-octet frame integrity protection)

Table C-24 specifies arbitrary values for the 32 most significant bits of the 64-bit PN (the 32 least significant bits are those of the PN field in the SecTAG), a 96-bit Salt, and 256-bit key (SAK), with the ICV generated by the GCM-AES-XPN-256 Cipher Suite when that key is used in conjunction with the foregoing and the frame field data of Table C-19.

Table C-24—GCM-AES-XPN-256 Key and calculated ICV (example)

	Field	Value
	PN (ms 32-bits)	B0DF459C
	Salt	E630E81A48DF
	Key (SAK)	4C973DBC7364621674F8B5B89E5C1551
		1FCED9216490FB1C1A2CAA0FFE0407E5
	ICV	55 55 <td< th=""></td<>
1		
кеу s: р:	1Ze = 256 DIts	
д:	696 bits	
TV:	96 bits	
ICV:	128 bits	
к:	4C973DBC736462167	4F8B5B89E5C1551
	1FCED9216490FB1C1	A2CAA0FFE0407E5
P:		
A:	68F2E77696CE7AE8E	2CA4EC588E54100
	2E58495C08000F101	112131415161718
	191A1B1C1D1E1F202	122232425262728
	292A2B2C2D2E2F303	132333435363738
	393A3B3C3D3E3F404	142434445464748
T17.	494A4B4C4D0007	
	FG Authentication	
H:	22222222222222222222222222222222222222	
Y[0]:	222222222222222222222222222222222222222	
E(K,Y	[0]): ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	???????????????????????????????????????
X[1]:	???????????????????????????????????????	???????????????????????????????????????
X[2]:	???????????????????????????????????????	555555555555555555555555555555555555555
X[3]:	???????????????????????????????????????	???????????????????????????????????????
X[4]:	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	???????????????????????????????????????
X[5]:	??????????????????????????????????????	???????????????????????????????????????
X[6]:	???????????????????????????????????????	???????????????????????????????????????
GHASH	(H,A,C): ????????????	2233323333333333333333333
C:		
T: ??	???????????????????????????????????????	?????????????

C.5 Confidentiality protection (54-octet frame)

Change the initial paragraphs and tables of clause C.5 as follows:

The MAC Destination Address, MAC Source Address, and MAC Service Data Unit (MSDU, User Data) of a MAC Service data request and a corresponding data indication are shown in Table C-25. These comprise the octets of an unprotected frame when concatenated in the order given (with the addition of any media dependent additional fields such as padding). The User Data shown includes the IP EtherType.

Table C-25—Unprotected frame (example)

Field								Va	lue							
MAC DA	E2	01	06	D7	CD	0D										
MAC SA	FO	76	1E	8D	CD	3D										
User Data	08	00	OF	10	11	12	13	14	15	16	17	18	19	1A	1в	1C
	1D	1E	1F	20	21	22	23	24	25	26	27	28	29	2A	2в	2C
	2D	2E	2F	30	31	32	33	34	00	04						

The MAC Security TAG (SecTAG) comprises the MACsec EtherType, the TCI, the AN, the SL, and the PN. In this example the optional SCI has been omitted. The fields of the protected frame are shown (in the order transmitted) in Table C-26.

Table C-26—Confidentialit	v	protected fram	ne	(exam	ple)
	· J	protootoa man		(Onaini	P.0	J

Field	Value
MAC DA	E2 01 06 D7 CD 0D
MAC SA	F0 76 1E 8D CD 3D
MACsec EtherType	88 E5
TCI and AN	4C
SL	2A
PN	76 D4 57 ED
Secure Data	Cipher Suite and Key (SAK) dependent
	(see Table C-19 and Table C-20 Table C-27, Table C-28, Table C-29, and Table C-30)
ICV	Cipher Suite and Key (SAK) dependent
	(see Table C-19 and Table C-20 Table C-27, Table C-28, Table C-29, and Table C-30)

The GCM parameter *P*, the data to be encrypted, is the User Data. The additional data *A* to be authenticated is formed by concatenating the MAC DA, the MAC SA, and the SecTAG. The SCI and the PN are concatenated (in that order) to form the 96 bit *IV* used by GCM. The computed GCM parameter *T* is the ICV.

C.5.1 GCM-AES-128 (54-octet frame confidentiality protection)

Table C-27 specifies an arbitrary 128-bit key (SAK), the Secure Data, and the ICV generated by the GCM-AES-128 Cipher Suite when that key is used in conjunction with the frame field data of Table C-25. The GCM parameter P, the data to be encrypted, is the User Data. The additional data A to be authenticated is formed by concatenating the MAC DA, the MAC SA, and the SecTAG. The SCI and the PN are concatenated (in that order) to form the 96-bit IV used by GCM. The computed GCM parameter T is the ICV. Details of the computation follow the table.

Table C-27—GCM-AES-128 Key, Secure Data, and ICV (example)

Field								Va	lue							
Key (SAK)	073	1811	L3B()CA	7431	FEC	CCF	3D05	51F7	7373	382					
Secure Data	13	в4	C7	2в	38	9D	C5	01	8E	72	A1	71	DD	85	Α5	D3
	75	22	74	D3	A0	19	FB	CA	ED	09	Α4	25	CD	9B	2E	1C
	9B	72	ΕE	E7	C9	DE	7D	52	В3	F3						
ICV	D6	Α5	28	4F	4A	6D	3F	E2	2A	5D	6C	2В	96	04	94	C3

20		-	
21	key si	ze = 12	8 bits
22	P:	336 bi	ts
23	A:	160 bi	ts
24	IV:	96 bit	5
25	ICV:	128 bi	ts
26	к:	071B11	3B0CA743FECCCF3D051F737382
27	P:	08000F	101112131415161718191A1B1C
28		1D1E1F	202122232425262728292A2B2C
29		2D2E2F	30313233340004
30	A:	E20106	D7CD0DF0761E8DCD3D88E54C2A
31		76D4571	ED
32	TV:	F0761E	8DCD3D000176D457ED
33			
34	GCM-AE.	5 Encry	
35	v[0]:		F0761F8DCD3D000176D457FD00000001
36	E(K V[01):	FC25539100959B80FE3ABED435E54CAB
37	Y[1]:	01/-	F0761E8DCD3D000176D457ED0000002
38	E(K,Y[]	1]):	1BB4C83B298FD6159B64B669C49FBECF
39	C[1]:	- /	13B4C72B389DC5018E72A171DD85A5D3
40	Y[2]:		F0761E8DCD3D000176D457ED00000003
41	E(K,Y[2]):	683C6BF3813BD8EEC82F830DE4B10530
42	C[2]:		752274D3A019FBCAED09A425CD9B2E1C
43	Y[3]:		F0761E8DCD3D000176D457ED00000004
44	E(K,Y[3]):	B65CC1D7F8EC4E66B3F7182C2E358591
45	C[3]:		9B72EEE7C9DE7D52B3F3
46	X[1]:		A0AE6DFAE25C0AE80E9A1AAC0D5123D3
47	X[2]:		EAEA2A767986B7D5B9E6ED37A3CBC63B
47	X[3]:		8809F1263C02DC9BD09FDF0F34575BA6
40	X[4]:		AI / 3C5A2C03DE08C025C93945B2E / 4B /
49 50	X[5];		05D113082551014E556BFAA8UAA2FA/A
51	GIIABII(I	II,A,C)·	
52	C:	13B4C72	2B389DC5018E72A171DD85A5D3
52 52		/522/4	
55		2R/ZEE	FICADEID28313
34	т:	D6A528	4F4A6D3FE22A5D6C2B960494C3

C.5.2 GCM-AES-256 (54-octet frame confidentiality protection)

Table C-28 specifies an arbitrary 256-bit key (SAK), the Secure Data, and the ICV generated by the GCM-AES-256 Cipher Suite when that key is used in conjunction with the frame field data of Table C-25. The GCM parameter *P*, the data to be encrypted, is the User Data. The additional data *A* to be authenticated is formed by concatenating the MAC DA, the MAC SA, and the SecTAG. The SCI and the PN are concatenated (in that order) to form the 96-bit *IV* used by GCM. Details of the computation follow the table.

Table C-28—GCM-AES-256 Key, Secure Data, and ICV (example)

		Field								Va	alue							
	Key (SAK)	69	1D31	EE9	09D'	7F54	416'	7FD	1CA)B51	D76	908					
			1F	2BDI	E1A	EE6!	55FI	DBAI	3801	BD5	295	AE 61	BE7					
	Secur	e Data	C1	62	3F	55	73	0C	93	53	30	97	AD	DA	D2	56	64	96
			61 92	25 9C	35 E4	2B 63	43 0E	AD A7	AC 9F	BD 6C	61 E5	C5 19	EF	3A	C9	0B	5B	ΕĒ
	ICV		12	AF	39	C2	D1	FD	C2	05	1F	8B	7B	3C	9D	39	7E	F2
key s	ize = 1	128 bits	1															
Þ:	336 b	oits																
A:	160 b	oits																
IN:	96 bi	ts																
ICV:	128 b	oits																
к:	691D3 1F2BD	EE909D7F5416 E1AEE655FDBA	57FC B80	1CA BD5	0B5 295	D76 AE6	908 BE7											
Þ:	08000 1D1E1 2D2E2	F10111213141 F20212223242 F30313233340	.516 2526	171 272	819 829	1A1 2A2	B1C B2C											
A:	E2010 76D45	6D7CD0DF0761 7ED	.E8D	CD3	D88	E54	C2A											
IV:	F0761	E8DCD3D00017	6D4	57E	D													
GCM-A	ES Enci	rvption																
н:		1E693C484A	в89	4B26	566	BC	L2E6	5D5I	5776	5								
Y[0]:		F0761E8DCD	3D0	001'	76D-	4571	ED00	0000	000	1								
E(K,Y	[0]):	87E183649A	E3E	7DBI	72	5659	9152	2C39	9A22	2								
Y[1]:		F0761E8DCD	3D0	001	76D	457I	ED00	0000	0002	2								
Е(К,Ү	[1]):	C962304562	1E8	0472	258	1BAC	C2CE	34C	7F82	7								
C[1]:		C1623F5573	0C9	3533	309'	7ADI	DAD2	2566	5496	5								
Y[2]:		F0761E8DCD	3D0	001	76D	457I	ED00	0000	000	3								
E(K,Y	[2]):	7C3B2A0B62	8F8	F994	44E	3C81	L2E()217	70C2	2								
C[2]:		6125352B43	ADA	CBD	51C!	5EF3	BACS	90B5	5BEI	Ξ								
Y[3]:		F0761E8DCD	3D0	001	76D	457I	ED0(0000	0004	1								
Е(К,Ү	[3]):	BFB2CB533F	95A	C581	E511	0660)8DE	BEBI	DBC2	2								
C[3]:		929CE4630E	A79	F6CI	E519	9												
X[1]:		F268EF5B38	A96	2612	A139	9D06	SCD.	7F43	3A33	3								
X[2]:		9AE3BF42A2	0F4	FB7	73E1	EFD	5B50	C5DE	BDD:	3								
X[3]:		22A7FA0F7E	5FC	4971	153'	74D6	5В72	2EC	7FBI	3								
X[4]:		2FE103C665	1C8	45A'	712	17C1	LC7E	E80I	0559	9								
X[5]:		FA94D93A0A	7D2	35A1	EED'	7891	LF5E	E381	LA1'	7								
GHASH	(H,A,C)	31E2	25DE	E87	E1E	ADC	FFA	E4D	0									
C:	C1623 61253 929CE	F55730C93533 52B43ADACBD6 4630EA79F6CF	097 1C5	ADD EF3	ad2 aC9	566 0B5	496 BEE											
т:	12AF3	9C2D1FDC2051	F8F	37B3	C9D	397	EF2											

C.5.3 GCM-AES-XPN-128	(54-octet frame confidentiality	v protection)
-----------------------	---------------------------------	---------------

Table C-27 specifies arbitrary values for the 32 most significant bits of the 64-bit PN (the 32 least significant bits are those of the PN field in the SecTAG), 96-bit Salt, and 128-bit key (SAK), with the Secure Data and ICV generated by the GCM-AES-XPN-128 Cipher Suite when used in conjunction with the foregoing and the frame field data of Table C-25. The GCM parameter P, the data to be encrypted, is the User Data. The additional data A to be authenticated is formed by concatenating the MAC DA, the MAC SA, and the SecTAG. The computed GCM parameter T is the ICV.

	Fiel	d							V	alue							
	PN (ms 32-bi	its) B(DF4	59C													
	Salt	Εe	530E	81A	48DI	F											
	Key (SAK)	0'	/1B1	13B	0CA'	743	FEC	CCF	3D0	51F'	737	382					
	Secure Data	?:	>	2 ?? 2 ?? 2 ??	?? ?? ??	?? ?? ??	?? ??	?? ??	?? ??	?? ??	?? ??	?? ??	?? ??	?? ??	?? ??	?? ??	??
	ICV	?:	· ??	??	??	??	??	??	??	??	??	??	??	??	??	??	??
ey si : : : : :	ze = 128 bi 336 bits 160 bits 96 bits	ts															
	120 DILS		ייכב		רכרי	201											
:	08000F1011 1D1E1F2021 2D2E2F3031	121314151 222324252 323334000	5171 5272 1	L819 2829	1A1 2A2	B1C B2C											
<i>∀</i> :	E20106D7CD 76D457ED	0DF0761E8	DCD3	3D88	E54	C2A											
IV:	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	????	??													
CM-AE	S Encryptic	n															
<pre>[[0]: (K,Y[]); ([1]: (K,Y[]); ([2]: ([2]: ([2]: ([3]:([3]:([3]:([3]:([3]:([3]:([3]:([3]:</pre>	??? 0]): ??? 1]): ??? 2]): ??? 2]): ??? 3]): ??? 3]): ??? ??? ??? ??? ??? ??? ??? ???		<pre>\$</pre>	<pre>\$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$\$\$ \$\$</pre>				<pre>\$ 555. 555. 555. 555. 555. 555. 555. 55</pre>									
HASH()	H,A,C): ???	· ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	???	????	。???	???	???	????	·?								
:	<pre>3.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5</pre>	<pre>555555555555555555555555555555555555</pre>	???? ????? ?	???????????????????????????????????????	???	????											

Table C-29—GCM-AES-XPN-128 Key, Secure Data, and ICV (example)

т:

C.5.4 GCM-AES-XPN-256 (54-octet frame confidentiality protection)

Table C-30 specifies arbitrary values for the 32 most significant bits of the 64-bit PN (the 32 least significant bits are those of the PN field in the SecTAG), a 96-bit Salt, and 256-bit key (SAK), with the Secure Data and ICV generated by the GCM-AES-XPN-256 Cipher Suite when used in conjunction with the foregoing and the frame field data of Table C-25. The GCM parameter P, the data to be encrypted, is the User Data. The additional data A to be authenticated is formed by concatenating the MAC DA, the MAC SA, and the SecTAG. The computed GCM parameter T is the ICV.

Table C-30—GCM-AES-XPN-256 Key, Secure Data, and ICV (example)

		Field								V	alue							
	PN (n	ns 32-bits)	в0	DF4	59C													
	Salt		E630E81A48DF															
	Key (SAK)	69 1F	1D3 2BD	EE9 E1A	09D' EE6!	7F5 55F1	416 DBA	7FD B80	1CA BD5	0B51 2952	D76 AE61	908 BE7					
	Secur	e Data	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ??	?? ??	?? ??	?? ??	??	??
	ICV		??	??	??	??	??	??	??	??	??	??	??	??	??	??	??	??
key size = 128 bits IV: 96 bits				P: ICV	:	330 128	5 b: 3 b:	its its		A	:		160	bi	ts			
ζ:	691D3 1F2BD	EE909D7F541 E1AEE655FDE	L67FD BAB80	1CA BD5	0B5 295	D76 AE6	908 BE7											
Þ:	08000 1D1E1 2D2E2	F1011121314 F2021222324 F3031323334	1516 2526 0004	171 272	819 829	1A1 2A2	B1C B2C											
A:	E2010 76D45	6D7CD0DF076 7ED	51E8D	CD3	D88	E54	C2A											
IV:	?????	???????????????????????????????????????	?????	???	?													
GCM-A	ES Enci	ryption																
н:			????	???	???	????	???	???'	???	?								
Y[0]:		???????????	????	???	???	????	???	???	???	?								
E(K,Y	[0]):	??????????	????	???	???	????	???	???	???	?								
Y[1]:		???????????	????	???	???	????	???	???	???	?								
E(K,Y	[1]):	???????????	????	???	???	????	???	???	???	?								
C[1]:		??????????	????	???	???	???1	???	???	???	?								
Y[2]:		??????????	????	???	???	????	???	???	???	?								
 Е(К,Ү	[2]):	??????????	????	???	???	????	???	???	???	?								
C[2]:	/	??????????	????	???	???	???	???	???	???	?								
Y[3]:		???????????????????????????????????????	????	???	???	???	???	???	???	?								
E(K.Y	[3]):	??????????	????	???	???	????	???	???	???'	?								
C[3]:		333333333	2525	???	???	?				-								
X[]]:		3333333333	····	???'	???'	????	, , , , ,	???'	???	?								
x[2]:		3333333333 	2222	· · · ? ? ? '	· · · ? ? ? '	· · · · ? ? ? ?	· · · · ·	· · · ·	· · · ? ? ? '	• ?								
x[3]:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	····	· · · ? ? ? '	· · · ? ? ? '	· · · ·		· · ·	· · · › › › ·	• ?								
x[4]•	1]: ???????????			, 	· · · ? ? ? '	· · · · ? ? ? ?		· · · > ? ? ?	, 	• >								
x[5]:		2222	, 	· · · ? ? ? '	· · · · ? ? ? ?		· · · > ? ? ?	, 	• >									
лнусн	(нас)		,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	· · ·	· · ·	· · · · ·	222	222	· · ·	• • • •								
							•••	• • •	• • •	•								
::	??????	???????????????????????????????????????	?????	???	333	???	233											
	2222?	???????????????????????????????????????	??????	???	???	???	???											
	22222	???????????????????????????????????????	??????															
г:	?????	???????????????????????????????????????	?????	???	???	???	???											

C.6 Confidentiality protection (60-octet frame)

Change the initial paragraphs and tables of clause C.6 as follows:

The MAC Destination Address, MAC Source Address, and MAC Service Data Unit (MSDU, User Data) of a MAC Service data request and a corresponding data indication are shown in Table C-31. These comprise the octets of an unprotected frame when concatenated in the order given (with the addition of any media dependent additional fields such as padding). The User Data shown includes the IP EtherType.

Table C-31—Unprotected frame (example)

Field								Va	lue							
MAC DA	D6	09	В1	FO	56	63										
MAC SA	7A	0D	46	DF	99	8D										
User Data	08	00	0F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
	1D	1E	1F	20	21	22	23	24	25	26	27	28	29	2A	2В	2C
	2D	2E	2F	30	31	32	33	34	35	36	37	38	39	3A	00	02

The MAC Security TAG comprises the MACsec EtherType, the TCI, the AN, the SL, the PN, and the (optional) SCI. The fields of the protected frame are shown (in the order transmitted) in Table C-32.

Table C-32–	-Confidentiality	protected	frame	(example)
	· · · · · · · · · · · · · · · · · · ·			(

Field	Value
MAC DA	D6 09 B1 F0 56 63
MAC SA	7A 0D 46 DF 99 8D
MACsec EtherType	88 E5
TCI and AN	2E
SL	00
PN	B2 C2 84 65
SCI	12 15 35 24 C0 89 5E 81
Secure Data	Cipher Suite and Key (SAK) dependent
	(see Table C-23 and Table C-24 Table C-33, Table C-34, Table C-37, and Table C-38)
ICV	Cipher Suite and Key (SAK) dependent
	(see Table C-23 and Table C-24 Table C-33, Table C-34, Table C-37, and Table C-38)

C.6.3 GCM-AES-XPN-128 (60-octet frame confidentiality protection)

Table C-35 specifies arbitrary values for the 32 most significant bits of the 64-bit PN, 96-bit Salt, and 128-bit key (SAK), with the Secure Data and ICV generated by the GCM-AES-XPN-128 Cipher Suite when used with the frame field data of Table C-31.

Table C-35—GCM-AES-XPN-128 Key, Secure Data, and ICV (example)

Field								Va	lue							
PN (ms 32-bits)	BOI	OF45	59C													
Salt	E63	30E8	31A4	18DI	?											
Key (SAK)	AD7	7A2E	3D03	BEAG	2835	5A61	7620)FD(СВ50)6B3	345					
Secure Data	?? ?? ??	?? ??														
ICV	??	??	??	??	??	??	??	??	??	??	??	??	??	??	??	??

20	key si	ze = 128 bits
21	P:	384 bits
22	A:	224 bits
23	IV:	96 bits
24	ICV:	128 bits
25	к:	AD7A2BD03EAC835A6F620FDCB506B345
26	D .	000005101110101415161510101010101010
27	Þ:	08000F101112131415161/18191AIBIC
28		IDIEIF202122232425262728292A2B2C
29		ZDZEZF 503132333435305736393A0002
30	A:	D609B1F056637A0D46DF998D88E52E00
31		B2C2846512153524C0895E81
32	IV:	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$
33	GCM-AE	S Encryption
34	н:	\$
35	Y[0]:	???????????????????????????????????????
36	E(K,Y[0]): ????????????????????????????????????
37	Y[1]:	\$
38	Ε(Κ,Υ[1]): ????????????????????????????????????
39	C[1]:	???????????????????????????????????????
40	Y[2]:	???????????????????????????????????????
41	Е(К,Ү[2]): ????????????????????????????????????
42	C[2]:	??????????????????????????????????????
43	Y[3]:	
44	E(K,YL	3]): ????????????????????????????????????
45	v[1]	
46	x[2]:	
47	x[3]:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
48	x[4]:	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
<u>4</u> 9	x[5]:	???????????????????????????????????????
50	GHASH(H,A,C): ????????????????????????????????????
51	C:	222222222222222222222222222222
52	U ·	??????????????????????????????????????
53		???????????????????????????????????????
54		
	τ.	

C.6.4 GCM-AES-XPN-256 (60-octet frame confidentiality protection)

Table C-36 specifies arbitrary values for the 32 most significant bits of the 64-bit PN, 96-bit Salt, and 256-bit key (SAK), with the Secure Data and ICV generated by the GCM-AES-XPN-256 Cipher Suite when used with the frame field data of Table C-31.

Table C-36—GCM-AES-XPN-256 Key, Secure Data, and ICV (example)

Field	Value
PN (ms 32-bits)	B0DF459C
Salt	E630E81A48DF
Key (SAK)	E3C08A8F06C6E3AD95A70557B23F7548 3CE33021A9C72B7025666204C69C0B72
Secure Data	55 55 <td< th=""></td<>
ICV	3.5 3

key	size	=	256	bits
P:	38	4	bits	;
A:	22	4	bits	

IV:	96 bits
ICV:	128 bits
к:	E3C08A8F06C6E3AD95A70557B23F7548
	3CE33021A9C72B7025666204C69C0B72
P:	08000F101112131415161718191A1B1C
	1D1E1F202122232425262728292A2B2C
	2D2E2F303132333435363738393A0002

A:	D609B1F056637A0D46DF998D88E52E00
	B2C2846512153524C0895E81

IV:	?	??	? י	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?

22		
33	CCM-AES	Encryption
24		Lifet yperon
54	н:	???????????????????????????????????????
25		
33	Y[0]:	222222222222222222222222222222222222222

	п۰				::		: :			::				:	::	٠.	:	::		:	::	í ;		:	::
35	Y[0]:		?1	??	??	?	?1	??	?	??	??	?1	??	?	??	?	?	??	??	?	?7	??	?	?'	??
36	E(K,Y[():	?1	??	??	?	?1	??	?	??	??	?1	??	?	??	·?	?	??	??	?	??	??	?	?'	??
37	Y[1]:		?1	??	??	?	?1	??	?	??	??	?1	??	?	??	?	?	??	??	?	??	??	?	?'	??
38	E(K,Y[1]):	?1	??	??	?	? ?	??	?	??	??	?1	??	?	??	?	?	??	??	?	??	??	?	?'	??
39	C[1]:		?1	??	??	?	?1	??	?	??	??	?1	??	?	??	?	?	??	??	?	??	??	?	?`	??
40	Y[2]:		?1	??	??	?	?1	??	?	??	??	?1	??	?	??	?	?	??	??	?	??	??	?	?:	??
41	E(K,Y[2	2]):	?1	??	??	?	?1	??	?	??	??	?1	??	?	??	?	?	??	??	?	??	??	?	?:	??
42	C[2]:		?1	??	??	??	??	??	?	??	??	?1	??	?	??	?	?	??	??	?	??	??	?	?`	??
43	Y[3]:		?1	??	??	??	??	??	?	??	??	?1	??	?	??	?	?	??	??	?	??	??	?	?`	??
44	E(K,Y[3	3]):	?1	??	??	??	??	??	?	??	??	?1	??	?	??	?	?	??	??	?	??	??	?	?`	??
45	C[3]:		?1	??	??	??	?1	??	?	??	??	?1	??	?	??	??	?	??	??	?	??	??	?	?`	??
15 //6	X[1]:		?:	??	??	??	? ?	??	?	??	??	?`	??	?	??	??	?	??	??	?	??	??	?	?`	??
40	X[2]:		?1	??	??	??	? :	??	?	??	??	?1	??	?	??	? ?	?	??	??	?	??	??	?	?:	??
4/	X[3]:		?1	??	??	??	? :	??	?	??	??	? ?	??	?	??	? י	?	??	??	?	??	??	?	?`	??
48	X[4]:		?1	??	??	?	??	??	?	??	??	?1	??	?	??	?	?	??	??	?	??	??	?	? :	??
49	X[5]:		?1	??	??	?	?1	??	?	??	??	?1	??	?	??	?	?	??	??	?	??	??	?	?`	??
50	GHASH(H	H,A,C):	?	?	??	??	??	?'	?7	??	?:	??	?	??	?	?'	??	?	?:	? ?	??	?	?1	??	???
51	C:	??????	??	??	??	??	?	??	??	?	??	?	??	??	?	??	?	?'	??	?					
52		??????	??	??	??	??	?	??	??	?	??	?	??	??	?	??	?	?'	??	?					
53		??????	??	??	??	??	?	??	??	?	??	?	??	??	?	??	?	?'	??	?					
54	т:	??????	??	??	??	??	?	??	??	?	??	?	??	??	?	??	?	?'	??	?					

C.7 Confidentiality protection (61-octet frame)

Change the initial paragraphs and tables of clause C.7 as follows:

The MAC Destination Address, MAC Source Address, and MAC Service Data Unit (MSDU, User Data) of a MAC Service data request and a corresponding data indication are shown in Table C-37. These comprise the octets of an unprotected frame when concatenated in the order given (with the addition of any media dependent additional fields such as padding). The User Data shown includes the IP EtherType.

Table C-37—Unprotected frame (example)

Field								Va	lue							
MAC DA	84	C5	D5	13	D2	AA										
MAC SA	F6	E5	BB	D2	72	77										
User Data	08	00	0F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
	1D	1E	1F	20	21	22	23	24	25	26	27	28	29	2A	2В	2C
	2D	2E	2F	30	31	32	33	34	35	36	37	38	39	3A	3B	00
	06															

The MAC Security TAG comprises the MACsec EtherType, the TCI, the AN, the SL, the PN, and the (optional) SCI. The fields of the protected frame are shown (in the order transmitted) in Table C-38.

Field	Value
MAC DA	84 C5 D5 13 D2 AA
MAC SA	F6 E5 BB D2 72 77
MACsec EtherType	88 E5
TCI and AN	2F
SL	00
PN	89 32 D6 12
SCI	7C FD E9 F9 E3 37 24 C6
Secure Data	Cipher Suite and Key (SAK) dependent
	(see Table -27 and Table C-28 Table C-39, Table C-40, Table C-41, and Table C-42)
ICV	Cipher Suite and Key (SAK) dependent
	(see Table -27 and Table C-28 Table C-39, Table C-40, Table C-41, and Table C-42)

Table C-38—Confidentiality protected frame (example)

key size = 128 bits

392 bits

224 bits

128 bits

013FE00B5F11BE7F866D0CBBC55A7A90

08000F101112131415161718191A1B1C 1D1E1F202122232425262728292A2B2C 2D2E2F303132333435363738393A3B00

84C5D513D2AAF6E5BBD2727788E52F00

8932D6127CFDE9F9E33724C6

96 bits

06

GCM-AES Encryption

E(K,Y[0]):

E(K,Y[3]):

E(K,Y[4]):

??

??

P:

A:

к:

р:

A:

TV:

н: Y[0]:

Y[1]:

C[1]:

Y[2]:

C[2]:

Y[3]:

C[3]:

Y[4]:

C[4]:

X[1]:

X[2]:

X[3]:

X[4]:

X[5]:

X[6]:

C:

т:

50

51

52

53

54

IV:

ICV:

C.7.3 GCM-AES-XPN-128 (61-octet frame confidentiality protection)

Table C-41 specifies arbitrary values for the 32 most significant bits of the 64-bit PN, 96-bit Salt, and 128bit key (SAK), with the Secure Data and ICV generated by the GCM-AES-XPN-128 Cipher Suite when used with the frame field data of Table C-37.

Table C-41—GCM-AES-XPN-128 Key, Secure Data, and ICV (example)

Field	Value								
PN (ms 32-bits)	B0DF459C								
Salt	E630E81A48DF								
Key (SAK)	013FE00B5F11BE7F866D0CBBC55A7A90								
Secure Data	3.5 3.5 3								
ICV	3.5 3								

2
3
1
+ -
2
6
7
8
9
10
10
11
12
13
14
15
16
10
1/
18
19
20
21
21
22
23
24
25
26
27
20
20 20
29
30
31
32
33
24
54 27
35
36
37
38
39
40
40
41
42
43
44
45
16
40
4/
48
49
C.7.4 GCM-AES-XPN-256 (61-octet frame confidentiality protection)

Table C-42 specifies arbitrary values for the 32 most significant bits of the 64-bit PN, 96-bit Salt, and 256bit key (SAK), with the Secure Data and ICV generated by the GCM-AES-XPN-256 Cipher Suite when used with the frame field data of Table C-37.

Table C-42—GCM-AES-XPN-256 Key, Secure Data, and ICV (example)

22 22	2
?? ??	?
?? ??	?
?? ??	?

C.8 Confidentiality protection (75-octet frame)

Change the initial paragraphs and tables of clause C.8 as follows:

The MAC Destination Address, MAC Source Address, and MAC Service Data Unit (MSDU, User Data) of a MAC Service data request and a corresponding data indication are shown in Table C-43. These comprise the octets of an unprotected frame when concatenated in the order given (with the addition of any media dependent additional fields such as padding). The User Data shown includes the IP EtherType.

Table C-43—Unprotected frame (example)

Field		Value														
MAC DA	68	F2	E7	76	96	CE										
MAC SA	7A	E8	E2	CA	4E	C5										
User Data	08	00	0F	10	11	12	13	14	15	16	17	18	19	1A	1B	1C
	1D	1E	1F	20	21	22	23	24	25	26	27	28	29	2A	2В	2C
	2D	2E	2F	30	31	32	33	34	35	36	37	38	39	3A	3B	3C
	3D	3E	3F	40	41	42	43	44	45	46	47	48	49	00	08	

The MAC Security TAG comprises the MACsec EtherType, the TCI, the AN, the SL, and the PN. The optional SCI has been omitted. The fields of the protected frame are shown (in the order transmitted) in Table C-44.

Table C-44—Confidentialit	v protected frame (exam	ple)
		F/

Field	Value
MAC DA	68 F2 E7 76 96 CE
MAC SA	7A E8 E2 CA 4E C5
MACsec EtherType	88 E5
TCI and AN	4D
SL	00
PN	2E 58 49 5C
Secure Data	Cipher Suite and Key (SAK) dependent
	(see Table C-31 and Table C-32 Table C-45, Table C-46, Table C-47, and Table C-48)
ICV	Cipher Suite and Key (SAK) dependent
	(see Table C-31 and Table C-32 Table C-45, Table C-46, Table C-47, and Table C-48)

C.8.3 GCM-AES-XPN-128 (75-octet frame confidentiality protection)

Table C-47 specifies arbitrary values for the 32 most significant bits of the 64-bit PN, 96-bit Salt, and 128bit key (SAK), with the Secure Data and ICV generated by the GCM-AES-XPN-128 Cipher Suite when used with the frame field data of Table C-43.

Table C-47—GCM-AES-XPN-128 Key, Secure Data, and ICV (example)

		Field	Value															
	PN (n	ns 32-bits)	B0	DF4	59C													
	Salt																	
	Key (SAK)	88	EEOS	87F1	0951	DA9I	BF	572	5AA	9D7	57B	0CD					
	Secur	e Data	?? ?? ?? ??	?? ?? ??	?? ?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ?? ??	?? ?? ??	?? ?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ?? ??	?? ?? ??
	ICV		??	??	??	??	??	??	??	??	??	??	??	??	??	??	??	??
key si p: A: IV: ICV:	ze = 1 504 b 160 b 96 bi 128 b	.28 bits its its ts its																
к:	88EE0	87FD95DA9FBF	672	5AA	9D7	57B	0CD											
Þ:	08000 1D1E1 2D2E2 3D3E3	08000F101112131415161718191A1B1C 1D1E1F202122232425262728292A2B2C 2D2E2F303132333435363738393A3B3C 3D3E3F404142434445464748490008																
A:	68F2E77696CE7AE8E2CA4EC588E54D00 2E58495C																	
IV:	?????	???????????????????????????????????????	???	???	?													
H: Y[0]: E(K,Y[Y[1]: E(K,Y[C[1]: Y[2]: E(K,Y[C[2]: Y[3]: E(K,Y[C[3]: Y[4]: E(K,Y[C[4]: X[1]: X[1]: X[2]: X[2]: X[3]: X[4]: X[5]: X[6]: GHASH(<pre>0]): 1]): 2]): 3]): 4]): H,A,C)</pre>	<pre>: 5:5:5:5:5:5: 5:5:5:5:5:5:5: 5:5:5:5:5:</pre>																
C:	<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	\$??? ??? ???	??? ??? ???	??? ??? ???	??? ??? ???	??? ??? ???											
т:	?????		· · · ???	··· ???	· · · ???	· · · ???	• ???											

C.8.4 GCM-AES-XPN-256 (75-octet frame confidentiality protection)

Table C-48 specifies arbitrary values for the 32 most significant bits of the 64-bit PN, 96-bit Salt, and 256-bit key (SAK), with the Secure Data and ICV generated by the GCM-AES-XPN-256 Cipher Suite when used with the frame field data of Table C-43.

Table C-48—GCM-AES-XPN-256 Key, Secure Data, and ICV (example)

		Field								Va	alue							
	PN (r	ns 32-bits)	B01	DF4	59C													
	Salt		E6	30E	81A	48D	F											
	Kev	(SAK)	K) 4C973DBC7364621674F8B5B89F5C1551															
	KCy ((57 HX)	1FCED9216490FB1C1A2CAA0FFE0407E5															
	Secur	re Data	?? ?? ??	?? ?? ??	?? ?? ??	;; ;; ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	?? ?? ??	;; ;; ??	?? ?? ??	??	?? ?? ??
			??	??	??	??	??	??	??	??	??	??	??	??	??	??	??	
	ICV		??	??	??	??	??	??	??	??	??	??	??	??	??	??	??	??
ey s V:	ize = 2 96 bi	256 bits ts		P: ICV	:	504 128	4 b: 8 b:	lts lts		A	:		160	bi	ts			
	4C973 1FCED	DBC736462167 9216490FB1C1	4F8 A2C	858 AA0	89E FFE	5C1 040	551 7E5											
	08000 1D1E1 2D2E2 3D3E3	0F10111213141 .F20212223242 2F30313233343 3F40414243444	516 526 536 546	171 272 373 474	819 829 839 849	1A1 2A2 3A3 000	B1C B2C B3C 8											
	68F2E 2E584	:77696CE7AE8E 195C	2CA	4EC	588	E54	D00											
7:	?????		???	???	?													
CM-A	ES Enci	ryption																
:			???:	???	???	???	???	???	???:	?								
[0]:		<pre></pre>	???:	???	;;;	???	???	???	???:	?								
(K,Y	[0]):	???????????	???:	???	???	???	???:	???	???:	?								
.] :	[1].	3333333333333 3	222C	5.5.5. 5.5.5.		???: ????:	2223 2223	2333	2223 2222	?								
(K,Y	[1]):	22222222222	222	222	222	???	2221	222	222	? ``								
. ⊥] • : つ] •			((())))	::: 	· · ·	((())))	((()))) (((()	((())))	f D								
Z]· VV	[2]).	11111111111	::: 	;;; , ,,,,,	· · ·	((()))) (((()))) (((())))))	(() 	: >								
21:	LZ]/•	222222222222 1111111111111111111111111	, ; ; ; , ; ; ;	;;; ;;;	。 、 、 、 、	, ; ; ; ; ; ; ;	, , , , , , , , ,	, ; ; ; ; ;	,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	: ?								
31: 21:		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , ,	· · · ? ? ? '	, , , , , , ,	· · · · ? ? ? '	· · · · ·	· · · ·	· · · ·	• ?								
K.V	[3]):	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 	,	, 	, 	, , , , , , , , ,	, , , , ,	, , , , , , , , , , , , , , , , , , ,	• ?								
31:		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	???	· · · ? ? ? '	· · · ? ? ? '	???	???	· · · ·	???	?								
4]:		?????????????	???	???	???	???	???	???	???	?								
к, ү	[4]):	???????????	???	???	???	???	???	???	???	?								
4]:	/	???????????	???	???	???	???	???	???	??	-								
1]:		???????????	???	???	???	???	???	???	???	?								
2]:		???????????	???	???	???	???	???	???	???	?								
3]:		???????????????	???	???	???	???	???	???	???	?								
4]:		???????????????	???	???	???	???	???	???	???	?								
5]:		???????????????	???	???	???	???	???	???	???	?								
6]:		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	???	???	???	???	???	???	???	?								
IASH	(H,A,C)): ??????????	????	????	????	????	????	???	????	?								
	?????	???????????????????????????????????????	???	???	???	???	???											
	?????	???????????????????????????????????????	???	???	???	???	???											
	?????	???????????????????????????????????????	???	???	???	???	???											
	?????	???????????????????????????????????????	???	???	???	???	?											
	22222	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	222	222	200	222	222											
			• • •	• • •	• • •	• • •	• • •											