COGNITIVE RADIO APPLICATIONS IN SOFTWARE DEFINED RADIOS

John Polson, Ph.D. General Dynamics C4 Systems Scottsdale, Arizona john.polson@gdc4s.com 480.441.4390

Cognitive Radio Enabling Technology

• General Purpose RF Technology

- ► Wide Coverage
- ► "Wide" Instantaneous Bandwidth

• General Purpose Digital Processing (Distributed)

- ► FPGA
- ► DSP
- ► GPP

• Artificial Intelligence Technology

- ➤ Sensors
- ► Actuators
- ► Agent Models

Continuum of Radio Capabilities Leading to Cognitive Radio

Cognitive Radio Characteristics*

- Sensors creating awareness in the environment
- Actuators enabling interaction with the environment
- Memory and a model of the environment
- Learning and modeling of specific beneficial adaptations
- Specific performance goals

```
*SDRF CRWG: Heuristic Radio
```

RF Frontend (superhet architecture)

• Preselector / Power Amplifier

- ► Coverage
- ► Range

• Transmit Chain

- ► Instantaneous BW
- ► Dynamic Range

Receive Chain

- ► Instantaneous BW
- ► Dynamic Range

• Synthesizer

- ► IF Frequencies
- ► Stability etc.

General SDR RF Frontend

Classes of Processing Resources

• FPGA

- ► High sample rate
- ► Highly concurrent computations
- ► Reconfigurable
- DSP
 - ► Low power
 - ► Low cost
 - Good Multiply Accumulate performance
- GPP
 - ► Good for protocol stacks
 - ► Good for Artificial Intelligence Applications

MODEM Block Diagram & Resources

Software Architecture

- Layered
- Standard Interfaces
 - ► POSIX RTOS
 - CORBA if Software Communication Architecture Compliant

SDR Software Architecture

Smart Agents

• Simple Reflex Agent

- ► Maps Inputs to Outputs
- ► Aware Application / Radio

• Reflex Agent With State

- ► Has Memory
- Adaptive Application / Radio

Goal-Based Agent

- ► Model of Environment
- Minimum Requirement for Cognitive Application / Radio

• Utility-Based Agent

- ► Model of Environment
- ► Utility / Judgment Function

Smart Agent Architectures

Searching for A Solution

• Given a Model of the Environment, What Actions Take the System To A Desirable Outcome

State Space Searching Algorithms

- ► Breadth First Search
- ► Depth First Search
- ► Depth Limited Search
- ► Iterative Deepening Depth First Search

Common State Space Search Algorithms

July 7, 2005 14

Sensors and Actuators

Sensors

- RF
- Acoustic
- HMI
- Biometric
- Camera (still or motion)
- Geolocation
- Chemical

Actuators

- RF
- Aural
- HMI

Spectrum Awareness Applications

- Low Spectrum Occupancy
- Spectrum Policy Task Force Recommendations
- Spectrum Harvesting And Rendezvous
- Policy Controls
- Sensors
- Non-interference

Spectrum Awareness Applications

Geo-location & Networking Applications

• Reporting (function of position)

- ► Blue Force Tracking
- ► Teenager Tracking
- ► Others

Networking

- ► Location of Services
- ► Location Augmented Routing
- ► Policy Changes as Function of Position

Location Awareness Applications

Geographically Aware

- Local Policies
- Local Transmitters _
- Local receivers _
- Local terrain _
- Local propagation _ channel
- Current position all _ network members

Locally Available Services Aware

- And the bandwidth to access them
- Access Points & Networks to access them

Authentication

- Voice Print
- Video
- Biometric

Biometric Authentication Applications

Biometrics In Order of Effectiveness

- 1. Palm Scan
- 2. Hand Geometry
- 3. Iris Scan
- 4. Retina Scan
- 5. Finger Print
- 6. Voice Print
- 7. Facial Scan
- 8. Signature Dynamics
- 9. Keyboard Dynamics

Biometrics In Order of Social Acceptability

- Iris Scan *
 Keyboard Dynamics
- 3. Signature Dynamics
- 4. Voice Print **
- 5. Facial Scan *
- 6. Finger Print ***
- 7. Palm Scan ***
- 8. Hand Geometry ***
- 9. Retina Scan *

A Cognitive Radio may authenticate a user through a variety of biometric measures. Traditional handsets (left) may be modified to capture the necessary inputs for redundant biometric authentication.

* Requires a camera sensor ** Utilizes a copy of the voice input (low impact) *** Requires a Sensor in the PTT Hardware

Planning Applications of the Future

- Navigation / Route Planning
- Battery Management
- Noise and Light Discipline
- Information Flow Planning
- Role Assignment as Function of operator's skills
- Talk Group Assignment
- Smart Calibration
- Smart Bridging

Planning Applications

Planning => a sequence of actions enabling a problem solver to accomplish a specific task

- Robotics Applications
- Expert Systems *
- Natural Language Understanding *

 * Natural extension for Cognitive Radio Applications

Conclusions

• Cognitive Radio Technology is enabled by:

- ► General Purpose RF Sections
- ► High Powered Digital Computation Engines
- ► Artificial Intelligence Technology

• Multiple Cognitive Radio Applications Are Of Interest

- ► Spectrum Access
- ► Geo-location and Networking
- ► Authentication
- ► Planning

Cognitive Radio Applications are on the horizon