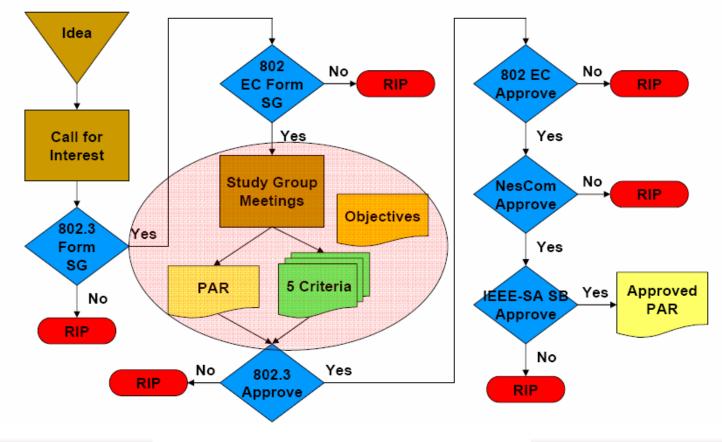
10GBASE-CR1 Study Group Call-For-Interest IEEE 802.3 Working Group San Francisco, CA July 2009

Chris DiMinico MC Communications <u>cdiminico@ieee.org</u>


1

CFI meeting objectives

- To <u>measure the interest</u> in starting a study group for 10GBASE-CR1, a low-cost physical layer copper option for 10 Gigabit Ethernet.
- We don't need to
 - Fully explore the problem
 - Debate strengths and weaknesses of solutions
 - Choose any one solution
 - Create PAR or five criteria
 - Create a standard or specification
- Anyone in the room may speak / vote
- **RESPECT**... give it, get it

Study group activities

- Develop
 - Objectives
 - 5 Criteria responses
 - Project Authorization Request (PAR)

CFI: 10GBASE-CR1 – July 2009

Potential study group items

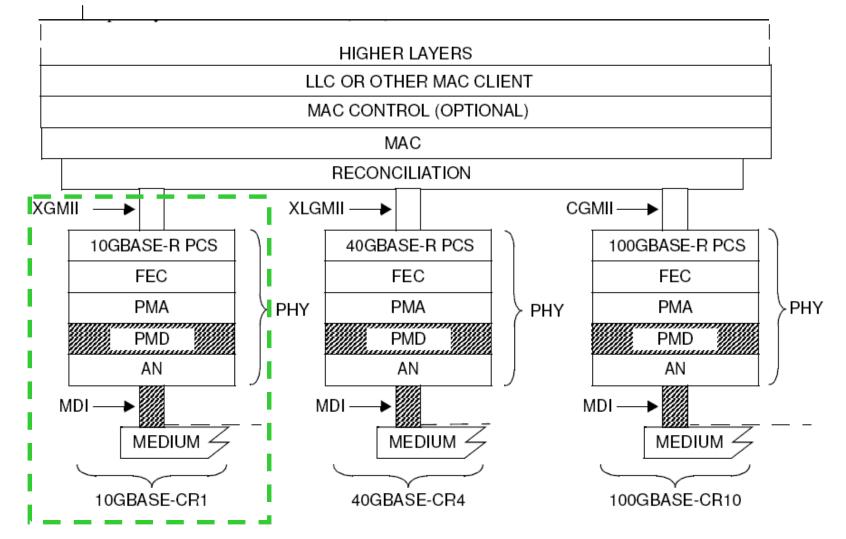
- Consider industry available specifications
 - 40GBASE-CR4/100GBASE-CR10 (Clause 85) electricals and channel to specify 10GBASE-CR1
 - SFF-8431
- Consider smaller form factor MDI (smaller than SFP)
- Support IEEE P802.3az, Energy Efficient Ethernet
- Compatibility with SFI hosts
 - Supportable copper reach (CR1 host ← →SFI host)

Supporters

 Michael Bennett - Lawrence Berkeley National Laboratory Chris DiMinico - MC Communications •Galen Fromm, Jay Neer - Molex •Rita Horner, Brian Misek - Avago Technologies Ryan Latchman - Gennum Corporation Greg McSorley - Amphenol •Shimon Muller - Sun Microsystems •Gourgen Oganessyan - Quellan Inc. •Robert Winter - Dell, Inc. Ilango Ganga, David Chalupsky, Rich Mellitz - Intel •George Zimmerman - Solarflare Dan Dove - HP ProCurve •Jim McGrath - Cinch Connectors •Nathan Tracy - Tyco Ron Nordin - Panduit •Atul Sharma - Volex Rick Rabinovich - Alcatel-Lucent •Henning Hansen - LEONI Cables & Systems LLC

Contributors

Market Requirements and Potential
Michael Bennett, LBNL - Energy Efficiency
Robert Winter, Dell, Inc. - Need for IEEE standard
Dan Dove - smaller form factor MDI (smaller than SFP)


•Technical Feasibility

- Chris DiMinico, MC Communications
- Brian Misek, Avago Technologies

Amir Mezer, Intel

Basic concept for CR1/CR4/CR10

•Utilize 40GBASE-CR4 (Clause 85) to specify 10GBASE-CR1

•CR1/CR4/CR10 - common electricals •CR1/CR4/CR10 - common channel characteristics

CFI: 10GBASE-CR1 – July 2009

SFF-8431

•Considerations for use of SFF-8431 Specifications for Enhanced Small Form Factor Pluggable Module SFP+

- •SFI High Speed Electrical Specifications
- SFP+ Direct Attach Copper "10GSFP+Cu"

Market Potential

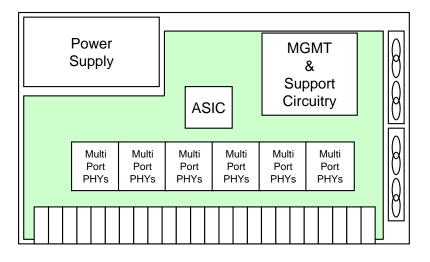
Energy Efficiency and 10GBASE-CR

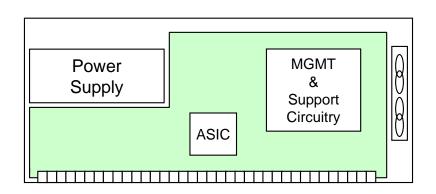
- Target market is the data center
 - Data centers are still constrained by power, cooling, and energy costs
 - Energy density of devices going in the data center is increasing
 - Leads to wasted space
- 802.3az will alleviate some of the energy crunch in the data center by taking advantage of periods of low utilization using Low Power Idle to reduce energy use
- 10GBASE-CR concept is based on 10GBASE-R
- Low Power Idle is specified for Clause 49 (10GBASE-R PCS) so you get LPI "for free"
 - Additional energy can be saved beyond the PHY
- EPA is preparing to add 802.3az as a requirement for future Energy Star specifications for servers.
- Regardless of the approach, energy efficiency must be considered in future projects

Source: Michael Bennett, Lawrence Berkeley National Laboratory

Market need for IEEE standard

- •Twin-axial copper cabling between SFP+ connectors are often marketed as variants of 10GBASE-XX (e.g., 10GBASE-CU, 10GBASE-CR1, 10GBASE-CX1, etc...)
- •These names are misleading as they give the appearance of being IEEE phy types.
- In fact, there is no <u>one</u> reference document that fully defines these interconnects which are currently in wide spread use.
- •The opportunity exists for non-interoperable cable and interface assemblies to be developed to the possible harm of the vendor and user community.
- •The market need is obvious, it is therefore appropriate and necessary for the IEEE to correctly and completely specify this interconnect as soon as possible.
- •I support the basic concept of considering the use of 40GBASE-CR4 (Clause 85) to specify 10GBASE-CR1.
 - Source: Robert Winter, Dell Inc.

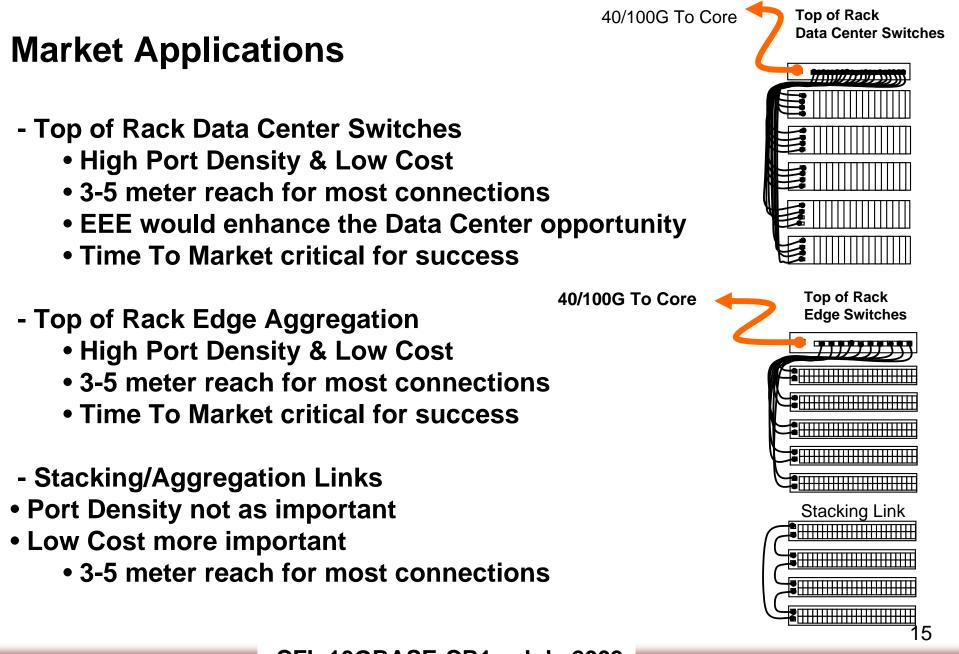

Market Need


- Higher Density
 - Shorter (Y), thinner (X), shallower (Z) than SFF-8431 desired
 - Unique form factor to eliminate interoperability challenges with SFF-8431
 - Single MDI definition (copper only, not pluggable optics)
- Lower Power
 - Equalization for linear channel @ 10.3125Gb
 - No external PHY chips required
 - EEE capability
- Simplified Signaling
 - No need to support EDC
- Low Cost
 - Higher Density, Lower Power, Simplified Signaling will drive cost/port down
- Compatibility
 - Create a unique form factor that does not create confusion for customers in the market (SFF-8431 linear, SFF-8431 limited, SFF-8461)

Implementation Advantage in Real Products

SFP+ Switch

- Depth of SFP+ Receptacles impacts product depth
- Width of SFP+ Receptacles impacts # of ports
- Need for EDC impacts power, depth, cost


Comparison of Proposed CR1 to other 10G PHY types

10Gigabit Physical Layer Options

	Fiber	CX4	BASE-T	SFP+ Cu	CR1
Cost	High	Low	Medium	Medium	Low
Size	Medium	Medium	Medium	Medium	Low
Power	Medium	Low	High	Medium	Low
Thermal Management	High	Low	High	Low	Low
Distance	High	Low*	Medium	Low*	Low*
Multi-Rate Support	No	No	Yes	Yes	Yes
EEE Support	No	No	Yes	No	Yes

* For Stacking/Aggregation, short links acceptable

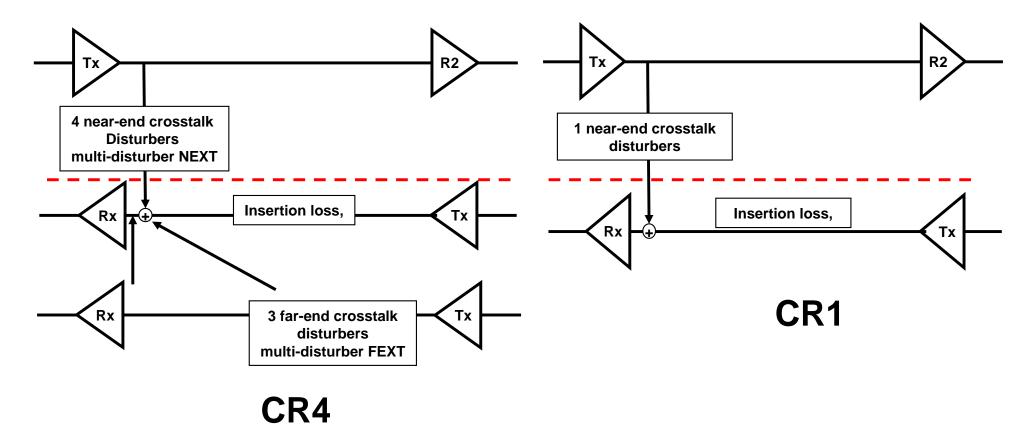
Topology Use Cases and Resulting Reach Needs

Technical Feasibility

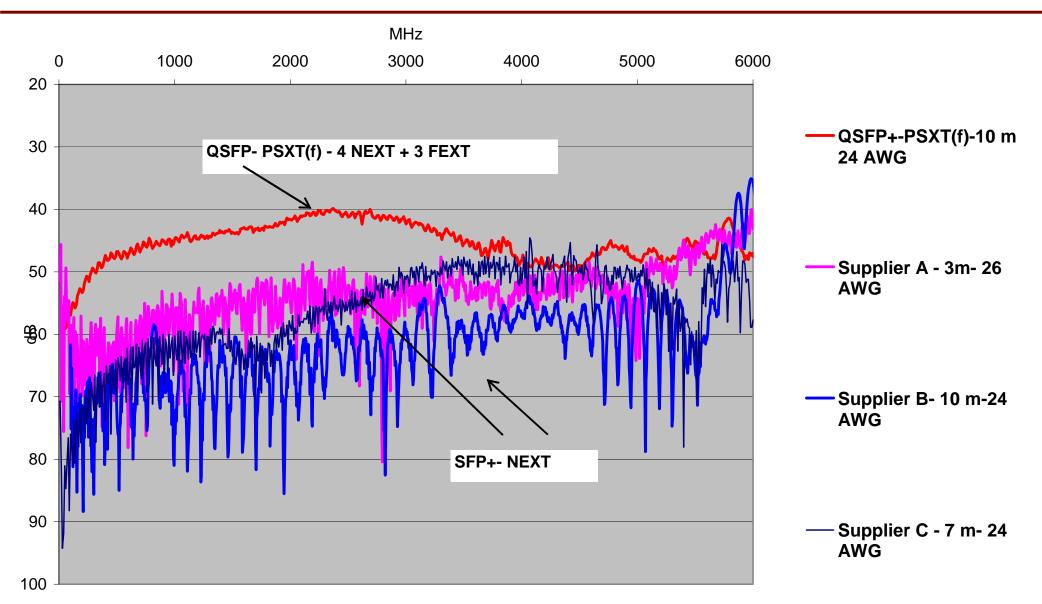
10GBASE-KR cable assembly demonstration - Intel

- 10GBASE-KR based device tested over 10 m passive copper assembly under the following setup and conditions
 - 10 meter Leoni 26 AWG passive twinaxial cable with 2 x SFP+ connectors and 1 x 2" and 1 x 4" FR-4 traces on test boards (6" total); ~5 dB worse @ 5 GHz than QSFP 10 meter cable assembly
 - Single NEXT aggressor
 - Adaptive TXFFE with the 10GBASE-KR protocol
 - 5-tap DFE at the receiver
- <u>Test results</u>
 - BER=0 with PRBS31 was measured for 1500 seconds
- Summary
 - Feasibility demonstrated at 10 Gb/s, very promising results with single NEXT aggressor
 - Margin should be sufficient for QSFP Xtalk environment

Source: Amir Mezer, Intel


Reference document: diminico_02_0708.pdf "802.3ba copper cable assembly baseline proposal"

CFI: 10GBASE-CR1 – July 2009


CR1 and CR4 channel comparisons

•For CR1, insertion loss to crosstalk ratio determined from single disturber near-end crosstalk and insertion loss

•For CR4, insertion loss to crosstalk ratio determined from multidisturber NEXT, multi-disturber FEXT and insertion loss.

QSFP+ and SFP+ crosstalk

Summary

- This Call for Interest (CFI) proposes to specify 10GBASE-CR1, a low-cost physical layer copper option for 10 Gigabit Ethernet.
- Consider industry available specifications
 - 40GBASE-CR4/100GBASE-CR10 (Clause 85) electricals and channel to specify 10GBASE-CR1
 - SFF-8431
- Consider smaller form factor MDI (smaller than SFP)
- Support IEEE P802.3az, Energy Efficient Ethernet
- Compatibility with SFI hosts
 - Supportable copper reach (CR1 host $\leftarrow \rightarrow$ SFI host)

Straw Polls

- Should a Study Group be formed for "10GBASE-CR1"?
 - Y: N: A:

Participation

• I would participate in the "10GBASE-CR1" Study Group in IEEE 802.3.

Tally:

• My company would support participation in the "10GBASE-CR1" Study Group in IEEE 802.3.

Tally:

- Ask 802.3 to form CR1 Study Group on Thursday
- If approved
 - 802 EC informed of CR1 Study Group on Friday
 - First 10GBASE-CR1 meeting, week of TBD