

Agenda

- Introduction
 - Motivation for EPoC
 - P802.3bn overview
 - EPoC Application
 - Overview of Challenges
- Cable Network Requirements
 - Terms
 - EPoC Topologies
 - RF Spectrum availability and flexibility
 - Common component architecture elements

- PHY Link Channel
 - What it is, why we need it
 - DS PHY Link
 - US PHY Link
 - CNU bring up
 - PHY Link Tasks
- Summary
- Q&A

Introduction

- EPoC -> EPON Protocol Over Coax
- This tutorial overview can be viewed as a Part 1. We can do go into more into technical depth for next plenary – if needed
- National Cable Television Association 2014 conference technical paper:
 - Publicly available
 - IEEE P802.3bn EPoC Status Overview

- Cable operator IP / data services deployment:
 - DOCSIS®
 - Residential and business
 - Refer to CableLabs[®] site: www.cablelabs.com/specs/
 - EPON
 - Business, cellular backhaul, some residential
 - Fiber typically runs "next to" coaxial trunk cable
 - Fiber only to customers where cost effective
 - DOCSIS Provisioning of EPON (DPoE™) managed
- Opportunity expressed both in China and U.S.:
 - Extend EPON over coax extend life of coax network
 - Opportunistic, instead of \$'s for fiber all the way
 - Unified management and Quality of Service
 - Increase the number of choices for providing gigabit services

DOCSIS® and DPoETM are registered trademarks of CableLabs®

IEEE 802.3 Course of Events

- Call for Interest (CFI) and Study Group November 2011
 - Reference: EPoC <u>www.ieee802.org/3/epoc/</u>
- P802.3bn project approved, Task Force chartered August 2012
 - Project Authorization Request, 5 Criteria, Objectives: www.ieee802.org/3/bn
 - Addendum to IEEE 802.3-2012 Ethernet Standard
- IEEE P802.3bn EPoC PHY Task Force face-to-face meetings:
 - Sep 2012, Geneva, Switzerland
 - Oct 2012 Hangzhou, China
 - Nov 2012, San Antonio, Texas
 - Jan 2013, Phoenix, Arizona
 - Mar 2013, Orlando, Florida
 - May 2013, Victoria, BC, Canada
 - Jul 2013, Geneva, Switzerland
 - Sep 2013, York, England, UK
 - Nov 2013, Dallas, Texas
 - Jan 2014, Indian Wells, California
 - Mar 2014, Beijing, China
 - May 2014, Norfolk, Virginia
 - Sep 2014, Kanata, Ottawa, Canada
 - Nov 2014, San Antonio, Texas

- Draft 1.1 comment resolution this meeting
- Task Force Status: www.ieee802.org/3/bn/
 - 143 Technical Decisions (updated 9/16/14)
 - Task Force Timeline (updated 7/16/14)
 - Targeting March 2014 for Working Group ballot
 - Current Work Items list

- Detailed objectives at http://www.ieee802.org/3/bn/
- Major points:
 - Compatibility with 10G-EPON
 - High modulation rate on coaxial cable networks
 - Downstream: to 12 bits / sec / Hz: 4096-QAM
 - Upstream: to 10 bits / sec / Hz: 1024-QAM
 - Up to 10 Gbps (downstream)
 - Symmetric and asymmetric configurations
 - Efficiency and error performance goals for cable services and for Ethernet
 - Operation without causing harmful interference to any signals or services carried in the remainder of the cable spectrum.
- Other
 - Minimal augmentation to EPON MPCP and OAM
 - Consider of common component architecture with DOCSIS 3.1 (D3.1) PHY where it makes sense; CableLabs copyright permission for P802.3bn

Project Focus

CLT – COAX LINE TERMINAL CNU – COAX NETWORK UNIT MDI – MEDIUM DEPENDENT INTERFACE OAM – OPERATIONS, ADMINISTRATION, & MAINTENANCE PCS – PHYSICAL CODING SUBLAYER
PHY – PHYSICAL LAYER DEVICE
PMA – PHYSICAL MEDIUM ATTACHMENT
PMD – PHYSICAL MEDIUM DEPENDENT
XGMII – GIGABIT MEDIA INDEPENDENT INTERFACE

EPoC Application

Enabled Products

C

Same future IEEE P802.3bn EPoC PHY Standard

CableLabs EPoC Systems Specification Project

Defining:

 EPoC system and architecture based on the IEEE P802.3bn PHY

DPoE Extensions

Fiber Conversion Unit (FCU);

Bridge and repeater modes

aka media converter

- Cable industry push to gigabit services over existing coax cable networks, includes:
 - Orthogonal Frequency Division Multiplexing (OFDM)
 - "Next generation" Forward Error Correction
 - Low Density Parity Coding (LDPC)
 - Denser modulation rates
 - 4096 QAM (12 bits/second/Hz) and beyond
 - Multiple RF channel multiplexing (e.g. "bonding")
 - Flexible configuration for matching to available RF spectrum, channel conditions, and well known interference
 - PHY layer data rate follows cable operator configuration

Decisions to date:

- LDPC FEC, single rate 14400/16200
- 40-bit CRC per information word to meet 802.3 MTTFPA
- OFDM 192 MHz, 4K FFT, 3800 50 KHz subcarriers per channel
 - Subcarrier use types: excluded, data, PHY Link, continuous pilots
- 24 MHz minimum RF spectrum
- PHY Link channel
 - Well known configuration and placement in RF spectrum;
 - easily discoverable
 - Used for PHY discovery, initialization, ranging, and maintenance
 - Performs Ethernet "link negotiation"
- Repeating 128 symbol cycle Superframe

Downstream (and Upstream) Challenges:

- IEEE 802.3 layer model and conventions
- Rate matching to 10 Gbps EPON XGMII
- Multiple OFDM channels multiplexed for operation up to 10 Gbps

Decisions:

- LDPC FEC, 3 code word rates/sizes (similar to D3.1)
- 40-bit CRC per information word
- OFDMA 192 MHz, 4K FFT, 3800 50 KHz subcarriers
- Single channel. RF spectrum: 10 MHz minimum to 192 MHz

Challenges:

- OFDMA "Super Frame" concept to organize various signal types:
 - Frame size: 5 or 6 probe symbols + 256 symbols, repeating
 - Wide band probes: OFDM timing, synchronization, channel estimation
 - PHY Link channel
 - PHY Discovery, Fine Ranging
 - Resource Blocks for MAC data, pilots,
- Resource Blocks (RBs): 8 or 16 symbols in time, 1 subcarrier in frequency contain: data, pilots, start / end burst marker

CABLE NETWORK REQUIREMENTS

- DOCSIS Data-Over-Cable Service Interface Specification
 - CM Cable Modem
 - Device at the customer's premises
 - CMTS Cable Modem Termination System
 - Device at the operator's headend
- EPoC IEEE P802.3bn
 - CNU Coax Network Unit
 - CLT Coax Line Terminal
- EPON IEEE Std 802.3™-2012
 - ONU Optical Network Unit
 - OLT Optical Line Terminal
- HFC Hybrid-Fiber Coax
 - The physical media that separates the CM & CMTS.
 - A Fiber Node performs the electrical <> optical conversion between the analog modulated fiber and the coax network.

Hybrid Fiber-Coaxial Network (Access Network)

© Cable Television Laboratories, Inc. 2005. All Rights Reserved.

EPoC Topologies

C

Why OFDM?

- OFDM for better noise immunity
 - Narrower carriers (50 KHz)
- Up to 192 MHz of occupied spectrum per channel
 - 3800 usable subcarriers
- Independent configuration per subcarrier
 - Excluded (off, no energy)
 - Data (bit loading from BPSK to 4096+ QAM)
 - Unused (not modulated)
 - Pilots
- Excluded subcarriers -> permit "notches" to deploy around other services and well known stable noise sources (e.g. LTE) while maximizing spectrum use

Spectrum Allocation Overview

- <u>Downstream</u> Deploy EPoC in available spectrum
 - Other services: Digital video channels, DOCSIS 3.0 and 3.1 (N * 6 MHz + OFDM)
- <u>Upstream</u> Deploy EPoC in available spectrum
 - Other services: DOCSIS 3.0 and 3.1
 - Note: DOCSIS 3.1 can TDMA share with DOCSIS 3.0 channels, EPoC cannot
- Cable operators will provision RF spectrum for EPoC allocation versus other services.
 Flexibility for adjusting allocations is a must.
- Upstream / downstream frequency split will likely change:
 - e.g., 5 to 42 MHz moving to 5 to 85 MHz (5 to 234 MHz is EPoC maximum)
- Top end downstream passband will change from 1000 MHz to 1200+ MHz

Common Component Architecture Elements with DOCSIS 3.1

- Same/similar OFDM / OFDMA numerology
 - 4K FFT size (note: D3.1 also has 8K FFT)
 - 204.8 MHz sample rate
 - Similar Cyclic Prefix and Window sizes
- Same Upstream LDPC FEC coding and rates
 - Note: P802.3bn selected a different downstream LDPC FEC
- Same electrical input and output requirements
 - Power and spurious emissions
 - Similar frequency ranges
- Proactive Network Management (PNM) support

PHY LINK CHANNEL

- Separate link used to establish OFDM & OFDMA channel parameters:
 - DS Number of OFDM channels
 - US & DS channel frequency bounds; upper extreme, lower extreme, internally excluded bands
 - US & DS channel profile; modulation level for each of the 4096 subcarriers
 - DS & US Cyclic Prefix, Windowing & Time interleaving parameters
 - US PHY Link frequency and OFDMA frame parameters: Probe Period size (5/6 symbols), Pilot pattern

DS PHY Link

O

Establishes the downstream OFDM Frame

128 Symbols										
Preamble	Timestamp	Common control	Message Block 1	Parity		Message Block 2	MB3	Pad	FEC ptr	Parity
	FEC (384,288)				FEC (384,288)					

Easy to find!

0

- Known parameters:
 - 8 adjacent subcarriers (400 kHz wide),
 - 4 continuous pilots above and below PHY Link at known distances
 - fixed preamble (8 symbols)
 - fixed OFDM frame (preamble + 128 symbols)

US PHY Link

- Parameters provisioned via DS PHY Link
- Access scheduled by DS PHY Link
- Conform to US OFDMA frame

CNU bring up using PHY Link

- CNU acquires the DS PHY Link
- CNU gathers DS & US OFDM/A channel parameters
 - CLT broadcasts OFDM/A channel parameters
- CLT opens a PHY Discovery opportunity
 - Special use of the 5/6 symbol Probe Period
- CNU responds to PHY Discovery with MAC Address
- CLT assigns a CNU_ID, performs Fine Ranging, sets pre-equalizer settings, etc.
- CLT declares CNU to be "Link-UP" and informs upper layers a new CNU has been found.

Other PHY Link tasks

- DS PHY Link
 - schedules channel Probe opportunities
 - Performs ongoing channel fine ranging
 - IEEE tasks (TBD)
- US PHY Link
 - Could maintain CNU synchronization during sleep periods (TBD)

0

PHY Link Summary

0

- Well known downstream configuration in well known locations
- Removes complexities of OFDM configuration, timing, and routine management from higher layers; e.g. MPCP, OAM, DBA

Summary

- P802.3bn represents the application of OFDM / OFDMA to extend EPON over Coax
- Final architecture and operational details will be determined by consensus of the Task Force and the ballot approval process.
- The resulting PHY standard will enable several deployment models, increasing the number of choices for cable operators.

Ethernet is constantly evolving.

O

0

A&Q

Questions:

- Was this tutorial worthwhile?
- Should we plan to do a Part 2 for next plenary?
 - Downstream / upstream framing
 - Upstream 1D to 2D mapping

O

0

THANK YOU!!

