

Common Switch Interface for Fabric Independence and Scalable Switching IEEE TUTORIAL NOVEMBER 9, 1998

> Colin Mick, The Mick Group Russell Johnson, Power X Praveen Kumar, XaQti

Presentation Overview

- Introduction
- The Market Issues
- The Technology Issues
- Q & A

Introduction

- What is CSIX[™]?
- Project status
- Product status

What is CSIX?

 CSIX: The Common Switch Interface, is a detailed interface specification between port/packet processor logic and interconnect fabric logic.

Common Switch Interface

November 9, 1998

Interface

Common Switch

CSIX is the Common Switch Interface

- CSIX is a scalable parallel interface with separate data and control paths
- It is a generic multi-vendor specification to promote the deployment and development of highly scalable network switches
- Permits hardware and software interoperability
- Permits mix and match of interchangeable silicon components, hardware and software
- Concept can be used to expand existing switch architectures: Pt-to-Pt; Shared Memory; Shared Bus

CSIX Interoperability Goals

- Logical or Message Level
 - ensure that data or control message protocol exchanged over the interface are properly understood by each end and properly processed by the appropriate function.
 - Interconnection Level
 - define all the signals with specific functions, meanings, and bit widths, input or output, signal handshake protocols, etc.
 - Physical Level
 - specify the electrical characteristics such as voltage levels, capacitance, drive strengths, timings etc.

Benefits

- Enables the design of products that can scale from <5 Gbps to 10s of Tbps and from Layer 2 through Layer 3/4+.
- Much lower cost of development for high-speed, high aggregation systems
- Much lower cost of maintaining and operating these new networking systems
- Creates an open and dynamic marketplace for vendors/OEMs with interoperable switch logic and/or fabric expertise
- Dramatic increase in price performance of new network equipment

7

Current Status

- Project status:
 - Initial draft of CSIX specification will be released 4Q98
 - Target date for completion of the specification is 3Q99.
- Product status:
 - First products, based on the first draft of the CSIX interface, will ship in 2Q99.

Market Issues

- The changing switch market
- Managing growth
- Evolving switch technology
- Fabric: the point of concentration, where the interconnection happens
- Evolving switch fabric technology
- What does it mean?

The changing switch market

- Switch throughput needs to increase due to:
 - Increase in port bandwidth (10-> 100->1000->...)
 - Increase in number of ports
- Demands for QoS and better management capabilities are increasing.
- The squeeze
 - Increased functionality
 - Constrained resources
 - Stability, availability, capability
- The need for individuality
 - Responsiveness, Differentiation, Value add

November 9, 1998

Managing growth

Evolving Switch Technology

- Multiservice and policy based networks
- Soft control of extensive and complex packet processing in hardware before forwarding
- Higher port and bandwidth aggregation increase the density of interconnect fabric hardware
- Efficient scheduling and arbitration across a system of many interconnected ports with guaranteed fairness and QOS
- Increasing Management and Reliability eliminates single point of failure through redundancy.

Fabric: the point of Concentration, where the Interconnection Happens

Evolving Switch Fabric Technology

- Ability to handle increasing port speeds: - 10, 100, 1000, 2500...
- High data density
 - Utilization of high speed serial links
- Simplicity
 - Self Routing Switches
 - Buffer management support
- Efficiency
 - Intelligent Flow control and Congestion handling
 - Handling of priorities and QoS issues
 - Efficient handling of Multicast
- Scalability

Interface

Common Switch

What does it mean?

- Features and functions are added at the media processing layer
- Scalability is added at the fabric layer
- Port and Fabric processing must exchange messages on routing instructions, status, priorities, policies, and service requirements
- We NEED a common electrical and messaging interface to plug the two together

Technical Issues

- CSIX Interfaces
- CSIX Parameters
- Typical Implementation
- CSIX based Systems

Two Classes of CSIX Interfaces

- CSIX CLASS A interface supports intelligent switching fabrics with integrated routing.
 - requires forwarding and flow control messages to be delivered in line with the data
- CSIX CLASS B interface supports nonintelligent switching fabrics
 - requires connection scheduling as well as other control messages to be routed to a central or distributed set of intelligent controllers independent of, and in parallel with, the data.
- This yields Interoperability within each class

Class A Interface

November 9, 1998

Copyright 1998 by CSIX, All rights reserved

Parameters (1)

Clock rate	Up to 100MHz, synchronous or asynchronous to
	system clock
Data path	1, 2 or 4 bytes
width	
Packet types	Unicast, multicast-with-mask, multicast-with-
	ID, broadcast, configuration, user-to-user
Destination	Up to 4096 traffic managers. Sub addressing per
addresses	traffic manager is supported through user-to-user
	packets
Priorities	Up to 16 user-definable and configurable priority
	levels
Urgency	16 levels of urgency within each priority
Header	4 bytes for Class A
	None on data for Class B

Parameters (2)

Payload	1-256 bytes		
Flow Control	In-band for Class A, or through control bus on Class B, per queue, proportional or "pause/resume"		
Error management	Parity		
Signals	Data(8/16/32), Control (3), Parity (1), Clock (1) in each direction for both Class A and Class B; plus for Class B ControlData(4/8)		
Electrical signaling	LVTTL		

Typical Class A implementation

	Data	Packet	Avail.	Util. of	Total
	path	size	Payload	interface	pin
	(bits)	(bytes)	BŴ	BW	count
OC-12	8	57	0.74	84%	26
OC-48	32	60	2.83	88%	74
Gigabit	16	5-80	>1.3	<75%	42
Ethernet					

A Scalable Fabric based Switch

November 9, 1998

November 9, 1998

Common Switch Interface Fabric Card

Common Switch Interface

November 9, 1998

Open Issues

- OC192--pin speed
- Electrical signaling
- Refinement

For more information:

www.csix.org

November 9, 1998