Physics arguments for upstream encryption in PONs

Marcus Leech Advisor, Security Engineering Nortel Networks

IEEE 802 Link Layer Security: March, 2003

xPON risks in the upstream

- Combiners have variable directivity
 - 30-50dB common
 - another 15db of path loss for a 32 port combiner
- ONU output power varies from -5dBm to -12dBm
- Newer off-the-shelf APD receivers have typical sensitivities down to -40dBm for 10e-12 BER
- Within "reasonable" for OTS receiver
- Simple cooling of the APD improves sensitivity dramatically. SINGLE PHOTON detection using InGaAs APD and TEC has been regularly demonstrated over the last several years.

xPON upstream: Scenario 1

- 30 subscribers on combiner
 - 14.7dB attenuation
- Cheap combiner
 - 30dB effective attenuation
- Powerful transmitter
 - -5dBm

Signal arrives at "bad" guy at -50dBm

- within 10-15dB of detection for current APD receiver at room temperature (depending on BER tolerance of our bad guy)
- probably detectable using modest cooling techniques
 - peltier devices
 - stick receiver in the deep freeze in the basement

xPON Upstream: Scenario 2

Bad splice on OLT side of combiner

- very common occurance: -3dB (50%) to -10dB (10%) reflectance
 - not bad enough to affect normal operations
 - link margins usually quite high, no reason to replace bad splice
 - costs money to fix splice that has almost no impact on BER

Calculation

- -10dB from splice
- -11dBm from ONU
- -5dB fiber attenuation (0.5dB/Km @ 10 km)
- 15dB for 32:1 combiner

Signal arrives at "bad guy" at -40dBm to -45dBm

easily within detection threshold

Basic detector physics

Noise Equivalent Power

- input power level required to produce 1:1 SNR at device output
- defined as watts/sqrt(hz bandwidth)
- NEP of 1.0e-15W/sqrt(BW) for low noise silicon photodiodes achievable

• NEP consists of thermal noise (Ij):

- lj = sqrt(4kTBF/Rsh)
 - k Boltzmanns constant (1.38e-23 joules/K)
 - B noise bandwidth
 - T absolute temperature (IMPORTANT--reduce temperature, reduce thermal noise!)
- divided by Radiant Sensitivity (A/W)
- At low signal levels, SNR is dominated by thermal noise of the device.

Detector physics: example

- Assume detector with NEP of 9.9e-15 W/sqrt(BW)
 - (Ref: HAMAMATSU S2386-33BR Pin Photodiode)
- Assume simple (NRZ) modulation of 155mbit signal
- Define bandwidth to be 2.5 x bitrate = 388MHZ
- Total noise power is:
 - 9.9e-15 * sqrt(3.88e8)

VORKS

- -67.0 dBm noise power
- 10dB SNR requires signal at -57dBm or better
- If willing to tolerate high BER (the bad guy IS willing to tolerate high BER!!), then only a few dB SNR required
- Improved NEP (by 2-3dB) can be achieved by cooling

Signal detection strategies

- Higher path loss simply reduces BER
- OTS receivers specified at 10e-12 BER for given input power levels
- Bad guy willing to tolerate poorer BER, even by several orders of magnitude (10e-8 rather than 10e-12, for example).
- Diversity reception (multiple legitimate subscriptions) can improve detection by 3dB for every doubling. Have to deal with clock skew, but at modest bit rates, not hard.

Conclusions

Encryption of UPSTREAM essential

- within 10-15dB of "disaster" under ideal circumstances
- minimal magic required if bad splice on OLT side of distribution network
- Reliance on transient physical properties very risky proposition
 - advances in single-photon detection moving forward very rapidly using InGaAs APD detectors. No reason to expect such advances not to map into optical network receivers.
 - Problems that are only within 1 or 2 orders of magnitude of being solved make cryptographers and security people very nervous.

References

- OTS APD receivers:
 - OCP SRX-12-APD receiver
 - -40.5dBm typical sensitivity for BER of 10e-10 at 622Mbit
 - AGERE RA194W
 - -26dBm typical sensitivity for BER of 10e-12 at 10gbit
 - OPTOCOM OPT1275
 - -41dBm typical sensitivity for BER of 10e-13 at 622Mbit
 - OKI AAR1525 LV
 - -44dBm typical sensitivity for BER of 10e-11 at 155Mbit

Single photon detection

- "Secure Optical Cryptography Moves Closer to Reality"
 - article on optics.org
- "A 1550nm single-photon detector using a thermoelectrically cooled InGaAs avalanche photodiode" Yoshizawa A., Tsuchida H. Japanese Journal of Applied Physics, Vol 40, Issue 1.

