Resilient Packet Ring Motivation (& MAC)

Robert D. Love LAN Connect Consultants rdlove@ieee.org

> Slides courtesy of RPR Alliance

March 10, 2003

Applications Driven Demand For Bandwidth

Current "Bandwidth" Driven Applications

- Web-Servers: Hosting
- Web-Based: Distance Learning
- Web-Casting and Web-Based meetings
- (10/100)M Ethernet access

New & Emerging "Bandwidth" Driven Applications

- Web-Casting as Broadcasting Services
- Storage Area Networks (SANs)
- Video-on-Demand
- Web-TV: Movies and Entertainment
- Video Streaming: Video Mail
- Interactive TV
- Web-Based: Interactive Gaming

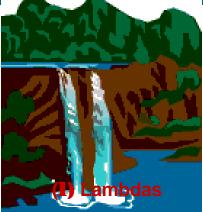
Long-Haul DWDM: Decade of Exuberance!

L-H: DWDM Networks – Current Excess Capacity!

Optical Networks: Long-Haul DWDM Multi-Lambda (1) Nets Offering huge surplus of Bandwidth ... Service Providers: CapEX sharply Lower, but holding steady And, promises to pick up ... ?

Metro DWDM: Decade of Neglect!

L-H DWDM Networks – Current Excess Capacity!



Metro DWDM Networks – Currently under served Market!

Metro DWDM – Need Efficient Multi-Services Network ... Technology and Standard – Such as the IEEE 802.17 (RPR)

Metro "Access" Networks: Decade of In-Action!



Metro DWDM Networks – Currently under served market!

Metro Access Networks – Need for Bandwidth!

Need Efficient Multi-Services Network ... Technology and Standard like IEEE 802.17 (RPR)

Metro Access Networks: New Opportunities!

RPR: High-Speed, Multi-Services Network

The Background

"Media" always ... tightly coupled to "Services":

- Cable-TV, Satellite-TV, Broadcast-TV ...
- Gov't regulations as well as tariff structures ... are strongly linked!

The "New and Emerging" Services:

Delivering next-generation broadband services:

- Voice (TDM, VoIP)
- Data (Ethernet, IP)
- Video (CATV like)

RPR is a "Disruptive" Technology

RPR: Driving Next-Generation Multi-Services

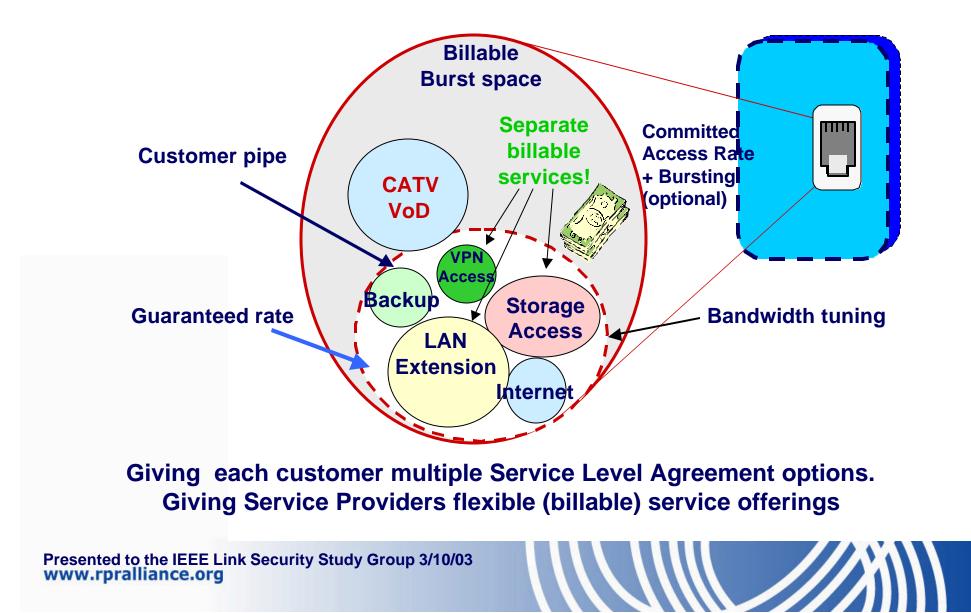
RPR → A true multimedia network:

• RPR delivers highly optimized and efficient carrier-class network solution for voice, data, and video today

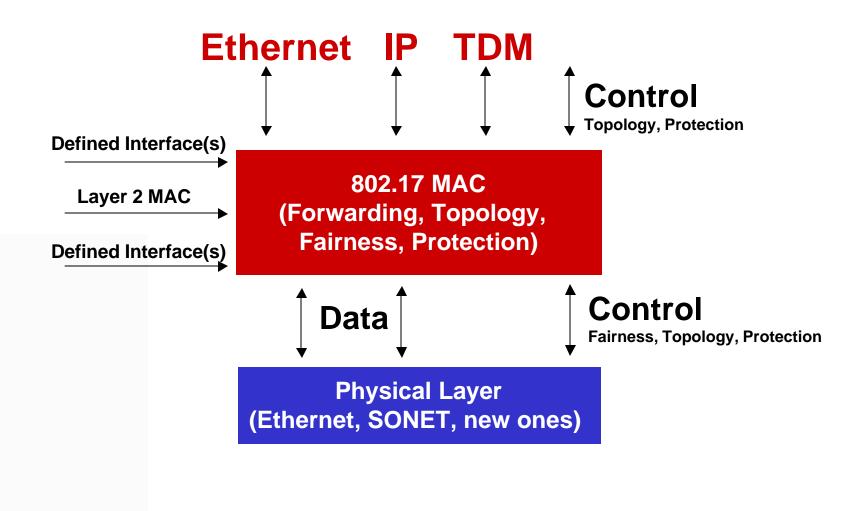
- Completing, not competing, technology
- RPR: the best "use" of Ethernet/SONET/CATV

RPR Business Value

Incremental revenues:


- Liquid Bandwidth
- Fairness
- CapEx and OpEx savings
- Service velocity

RPR Resiliency and Power


Carrier-Class Reliability:

- Fast (<50ms) link protection mechanism
- Support for scalable ring topology
- Support for multicast/broadcast

New RPR Enabled Services: Bandwidth!

RPR MAC: A Layer-2 Protocol

What's Does a MAC Do?

- Functions:
 - Frame formatting
 - Channel/media arbitration
- Service independent Unaware of the higher layer client
- Physical layer agnostic
 - 802.17 will reference PHYs
 - Sonet & Ethernet PHYs have been mentioned

802.17 MAC Characteristics

- Targeted at MAN rings
- Carrier/service provider environments
 - Deterministic services (SLA)
 - Optimal BW utilization
 - Resilience:

High availability, service restoration and protection support

- 90+% of applications will be in the metro (at least initially)

802.17 MAC Characteristics (Cont)

■ Fair (proportional, not equal) access shared ring medium

Incoming traffic and transit traffic contend for capacity of the egress link of the MAC

- Congestion control mechanism
- Transit path is an extension of the medium
 - Minimizes jitter and latency for transit traffic
 - Not loosing packets in transit
- Destination removal
 - Spatial reuse >> optimal (re)use of link bandwidths
- Efficient multicast and broadcast

Metro Networks: RPR the Optimal Solution

RPR: Enhanced Solution

- Physical media independent
- Highly efficient use of bandwidth
- Pro-active self-healing
- Easily provisioned plug & play
- Scaleable and manageable
- Provides QoS

SONET

Dominant today

- Expensive
- Inefficient for data
- Coarse & difficult provisioning

10GE

Cheap bandwidth

- No Resiliency
- No consistent QoS
- No Support for TDM Services

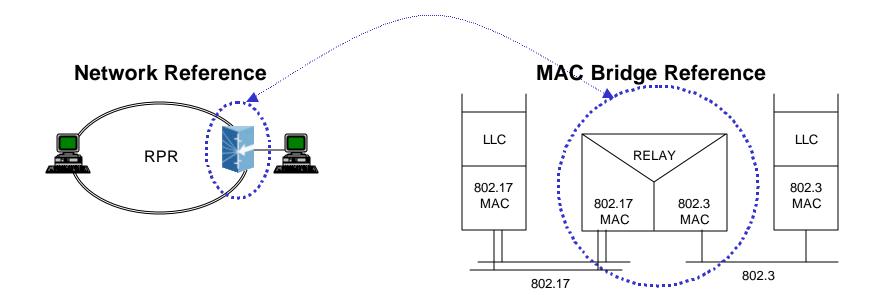
For More Information on RPR

- General information: <u>www.RPRAlliance.org</u>
- RPR Alliance resource center: http://www.rpralliance.com/articles/RPRResourceCenter.pdf
- White papers: <u>http://www.rpralliance.com/index.cfm?action=technology_white</u>
- FAQ: <u>http://www.rpralliance.com/index.cfm?action=technology_faq</u>
- Articles: <u>http://www.rpralliance.com/index.cfm?action=news_articles</u>
- Press releases: <u>http://www.rpralliance.com/index.cfm?action=news_pr</u>
- Newsletter: <u>http://www.rpralliance.com/articles/NewsletterJan03.pdf</u>

RPR Bridging Operations Overview

March 2003

Rpr_bridge_01.pdf



Terminology

- Remote address
 - An address that is <u>not</u> found on the ring
- Local address
 - An address that can be found on the ring
 - A local address of the ring
- Flood
 - A transmission mechanism that ensures all RPR stations see a transmitted frame once

RPR Frame Transmission Rules

- LLC Clients
 - Frames with remote destination addresses are flooded
 - Frames with destination group address bit set are broadcast
 - Frames with local destination addresses are unicast
- Bridge Relay Clients
 - All frames are flooded

RPR Frame Reception Rules

- LLC Clients receive:
 - Frames with group address bit set in the destination address (depending on filtering)
 - Frames where destination address matches station
- Bridge relay client receive:
 - Flooded frames only

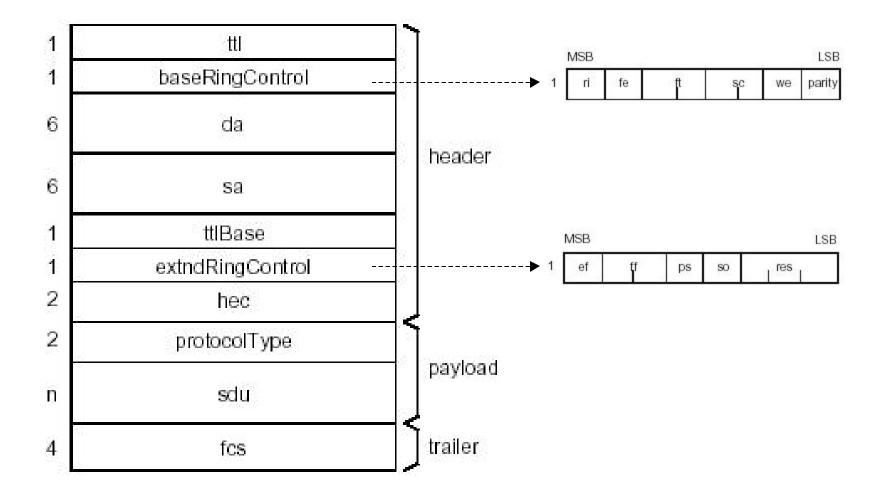
• RPR MAC support a frame transmission type where:

Duplication of user data frames is not permitted Reordering of frames with a given destination address, source address, and user priority associated with the VLAN is not permitted

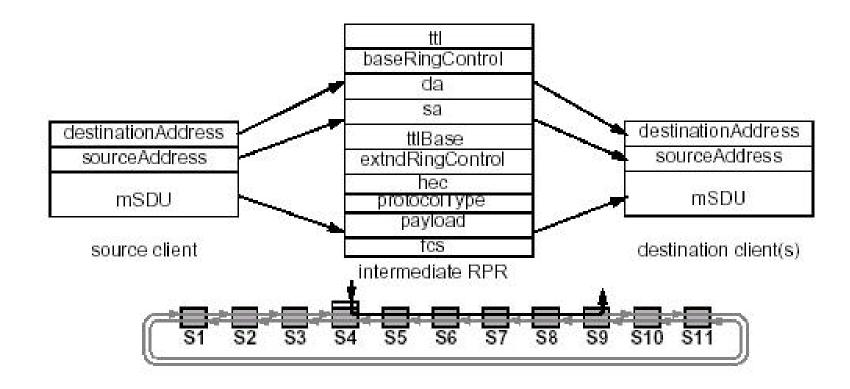
 Aforementioned requirements supported by: Checking (and verifying) transit frame distance to transmitting source station Invocation of frame purging technique whenever the ring image has changed

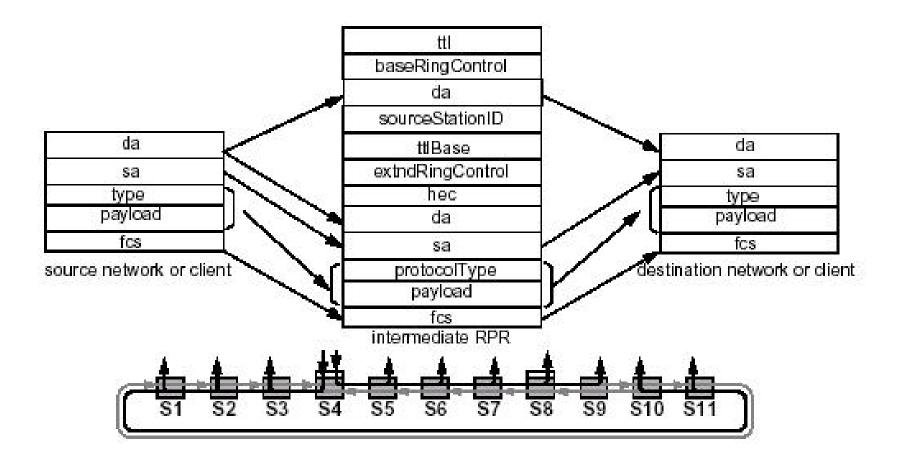
Basic/Enhanced (802.1D/Q) Bridge Functionality

	Basic Transparent Bridging	Enhanced Transparent Bridging
802.1D/Q compliance	\checkmark	
Local ring traffic spatial reuse	\checkmark	\checkmark
Transparent bridging traffic spatial reuse	×	\checkmark
Other traffic spatial reuse (e.g., multicast handling)	×	



Backup


RPR Data Frame Format


Station Unicast Frame Transmission

Bridged Frame Transmission

