CTR Mode for Encryption

Onn Haran – Passave Olli-Pekka Hiironen – Nokia

Disclaimer

This presentation is informative

The described functionality should not be part of 802.3

How Cipher Block is Applied?

- When using a symmetric block code (like AES), the plaintext is divided into blocks (128-bit in AES case)
- The mathematical operations, in addition to encryption function, are called Block Cipher Mode of Operation
- Some modes of operation requires an Initialization Vector (IV), which is used in the initial step of encryption/decryption

Why Block Cipher Mode of Operation is Needed?

Advantages of adding Block Cipher Mode of Operation are:

- The same plaintext will be encrypted to a different ciphertext, at any invocation
 - Important when analyzing repeating patterns (DA, SA, Ethertype, IP headers, TCP headers, known packets like ICMP, ARP, etc...)
- Helps in handling last block problem
 - Last block can be smaller than code block size
- Impossible to perform packet replay
- Increases encryption level

Block Cipher Mode of Operation Recommendation

- National Institute of Standards and Technology (NIST) recommends 5 block cipher modes of operation (publication 800-38A)
- **Two features are required:**
 - Maintaining packet length Length of last block should be arbitrary
 - Enabling parallel encryption Encryption of a plaintext block shouldn't depend on result from previous block
- From these modes only Counter (CTR) mode supports both features
- Additional mode Offset Codebook (OCB) was proposed for 802.11, but it is protected by patents

Frame Format – CTR mode

Counter Initialization Vector (IV)

- Counter Initialization Vector must be used only once (nonce) per a specific key
- □ The counter is based on PON clock
- □ The counter IV will be a concatenation of:
 - cycle_counter [32 bits]
 - (PON clock+ 16)[32:5] PON clock rounded to the closest 512nSec boundaries
 - N [7 bits] Serial number of cipher block inside frame

Counter Initialization Vector (IV)

32-bit cycle_counter is incremented whenever PON clock wraps around

- LSB of cycle_counter is transmitted in preamble
- ONU resets cycle_counter when changing keys
- OLT monitors changes in key number. When detected:
 - Counter is reset if LSB is 0
 - Counter is set to 32'h0000_0001 if LSB is 1