
# SecY Interfaces Version 4

Onn Haran – Passave

#### **Interface Partition**

- Two kinds of interfaces are examined:
  - ➤ LMI Layer Management Interface (802.1aa)
    - > Static parameters agreed upon secure channel establishment
    - Dynamic parameters exchanged during secure channel operation not tightly synchronized with data delivery
  - ➤ Lower ISS (MACsec)
    - > Dynamic parameters exchanged during secure channel operation tightly synchronized with data delivery
- Interfaces are designed for maximal flexibility and future proof

#### **Assumed SecY Content**



## **Encryption Algorithm Requirement**

- Encryption algorithm should be decided in negotiation stage
- Highest common denominator must be selected
- Algorithm type identifies algorithm in use (for example: NULL, RC4, DES, AES)
  - AES is the default algorithm
- Algorithm sub-type identifies version of algorithm in use (for example: AES-128, AES-192, AES-256)
- Block Cipher mode of operation identifies mode in use (for example: CTR, OCB)
- Should flexibility be limited to avoid too many options?

# **Integrity Check Value Requirement**

- Integrity check value algorithm should be decided in negotiation stage
- Highest common denominator should be selected
- Algorithm type identifies algorithm in use (for example: MD5, SHA1, checksum of block cipher mode of operation)
- ICV size identifies size reserved for ICV (for example: 8 bytes, 10 bytes)
  - Typically it is a function of algorithm type, but for future proof it might be a parameter

## Key Exchange Requirement

- Key is exchanged dynamically during connection
- Keys are stored in .1aa
  - Receiving an array of keys
  - At least current and new key
  - Preferably not more than current and new key
- SAID for transmission should be given
- Expected values of current and next SAID are given to filter non-matching frames
- Output of SecY
  - Received SAID: used to detect key exchange

### Initialization Vector Requirement

- Some cipher block modes of operation require an initialization vector (IV)
- IV (entirely or partly) is transmitted as part of SMPDU
- When only part of IV is transmitted, behavior of remaining bits is agreed upon channel establishment (for example: zero padded, fixed value, increased upon wrap-around)
- IV width is agreed upon channel establishment
- Transmitted IV could be exchanged (reset / reloaded) dynamically, preferably synchronized with key exchange
- Output of SecY
  - IV is running out: Need to initiate key exchange
    - Output might not be necessary if requirements from key exchange scheduler are stated correctly

#### Relationship to Ciphersuite

- This presentation doesn't contradict ciphersuite concept
- Without ciphersuite each parameter is negotiated independently
- With ciphersuite all parameters are negotiated together
- I believe that all parameters should be specified for clarity even if ciphersuite concept is used

### LMI Static Parameters Summary

#### **Inputs**

- Encryption Algorithm type
- Encryption Algorithm sub-type
- Block Cipher mode of operation type
- IV width
- IV remaining bits behavior
- ICV Algorithm type
- ICV size

## LMI Dynamic Parameters Summary

#### **Inputs**

- Key storage
- SAID to transmit
- Expected receive SAID
- Expected next receive SAID
- Initialization Vector exchange

#### **Outputs**

- Receive SAID
- IV is running out

### Lower ISS Parameters Summary

#### **Inputs**

- Ciphertext + ICV
- Receive IV
- Receive SAID

#### **Outputs**

- Ciphertext + ICV
- Transmit IV
- Transmit SAID