LinkSec CipherSuites Revisited

David Johnston

david.johnston@ieee.org

dj.johnston@intel.com

What will LinkSec Offer?

- Data Privacy
- Data Source Integrity
- Replay Protection
- It will NOT offer
 - Non Repudiation
- It probably cannot offer
 - Protection of non-data packets
 - They differ between MACs
 - They don't work encrypted

The need for Cryptographic Suites

- The need to choose a set of cryptographic methods in LinkSec has been discussed
- Can choose between many things
 - Parameters (PN length, ICV Length etc)
 - Privacy modes (CTR, CBC etc)
 - Integrity modes (HMAC-SHA1, MD5, OMAC, PMAC etc)
 - Block Functions (AES-128, DES, 3DES-EDE etc)
 - Combo Modes (CCM, OCB)

Cipher Suites are Best

- Many of the options on the previous slide interact (E.G. linking privacy with auth)
- Conservatism leads us to try and stick with modes used in their 'default' configuration.
 - Twisting modes around has in the past led to misuse and hence poor security
 - Variation of parameters can lead to poor security (e.g. variable tag sizes in CCM)
- Hardware implementation issues lead us to defining a minimal and useful default set of features
- So a cipher suite approach is an approach that allows us to work within these constraints
 - Each entry can be verified for security as a static configuration
 - The interaction between modes would be well defined for each cipher suite entry. Each mixing would have its own entry.

Basic Primitives

- Null, RC4, DES, 3DES, AES, HMAC-SHA1 etc
- Impacts:
 - HW Implementations
 - Crypto strength
 - Exportability
 - Interoperability
- AES is crypto du jour
- NULL is probably necessary
- RC4-40 has been used for exportability before but is not a good choice for engineering reasons

- it has a heavily serial algorithm

Privacy

- FIPS standards specifies crypto modes using DES, 3DES and AES-128
 - Not a bad place to take guidance
 - Simpler FIPS related approvability for devices
 - DES deprecated for new equipment
 - Unencumbered, parallelizable modes available
 (E.G. CTR)
 - Good for speed

Integrity

- Auth mode based on block crypto function is a nice approach for implementers. FIPS is less useful here
 - Authentication modes still a matter of debate in NIST
 - OMAC is looking like the most likely candidate for FIPS approval
 - Not parallelizable
- Other parallelizable options are encumbered
 - E.G. PMAC
- Could use an auth specific algorithm
 - HMAC-SHA1
 - Works
 - Requires independent hardware

Combo Modes?

- There are combined confidentiality modes that use a single block cipher
 - CCM
 - Not parallelizable
 - Non encumbered
 - Used in 802.11i
 - OCB
 - Parallelizable
 - Addresses the needs of really high speed equipment
 - Encumbered
 - Must be optional if it is specified at all
 - Bigger
 - Needs AES decrypt => more gates
- These are the engineers choices
 - One cipher block implementation
 - AES a known quantity

Basic Goals for Ciphersuite Entries

- Likely to lead to FIPS 140 approvability
- Meets implementation constraints

 Speed, cost, size etc
- Allows interoperability
- Is not trying to be 'creative' with the crypto

Frame Format Requirements

- Crypto has an impact on the frame format
 - Insertion of IVs
 - Appending MACs
- What should this stuff be bound to?
 - It seems a ciphersuite would be appropriate
- Might some of this be parametizable?
 - IV length? Key Length? MIC length?
 - May then have to dynamically inform a frame formatter how to behave, redefine MTU etc.
- Alternative is to only permit defined ciphersuites
 - My preferred option, parameters sound like too much complexity

The need for ciphersuites

- Privacy and Integrity methods interact
- Different mixes impact the frame format differently
- A Ciphersuites list gives a list of permitted combinations or instances of combo modes
 - Frame format effects tied to the ciphersuite entry
 - Easier to negotiate cipher suites than combinations of privacy and integrity algorithms

E.G.

- Null
- Auth only OMAC
- Non secure (40 bit) mode
 - Why bother? NULL is insecure, an illusion of security is worse than none at all.
- AES-128 in CCM mode
 - Keylength = 128 bit
 - Frame expansion = ??
 - Great for wireless devices
- AES-128 in OCB mode
 - Keylength = 128
 - Frame expansion = ??
 - Great for very high speed devices
 - But is encumbered Pay your \$\$

The provider bridge problem

- Provider bridges result in end to end connections (and SAs) between dissimilar technologies (e.g. 802.11 vs. 802.3)
- Likely to be variations in crypto needs
 PN length, parallelizable modes etc.
- Need a global default, present on both devices to address this case.
 - Must address speed, cost needs of lower end device

Vendor Proprietary & Playpens

- Vendor Proprietary areas and playpen areas are needed for all the usual reasons
 - So include an OUI in the table
 - Include a playpen area in the 00-00-00 OUI

A Suggested Ciphersuite

OUI	Cipher #	Туре	M/O	Defined in
00-00-00	0	NULL	Mandatory	X.y.Z
00-00-00	1	AES-128 in CCM Mode	Mandatory	X.Y.Z
00-00-00	2	AES-128 in OCB Mode	Optional	X.Y.Z
00-00-00	3	OMAC	Mandatory	x,y,z
00-00-00	4	РМАС	Options	x.y.z
00-00-00	4-32767	Reserved		
00-00-00	32768-65535	Playpen		x,y,z
ab.cd.ef	0-65535	Vendor Proprietary		x,y,z

There are other ciphersuites

- That was the data confidentiality ciphersuite
- Also will need others
 - Port authentication ciphersuite
 - Key exchange ciphersuite
- These are the domain of another PAR
 - But the combination of these may lead to the need for higher level cipher suites (crypto||key exchange||device auth entries)

Mandatory/Optional Issues

- Presence of unencumbered modes with low overhead address needs of low end devices
- Presence of default modes addresses provider bridge case
- Optional modes might be mandatory for some devices for technical reasons (e.g. parallelizability)
 - Need to make sure the dividing line is clear
 - So define the dividing line. E.G. OCB mandatory above 1.1 gbps.

Negotiable Elements

- There is good reason to make some elements negotiable
 - Primarily PN length. Different priorities exist for different MAC/PHYs
 - Can do this by increasing the number of cipher suite entries
 - Eliminates the need for secondary negotiation mechanisms
 - Is one way of keeping the parameter constant during the life of an SA

Backup info – AES Modes Speed

- Fast AES block => 11 clocks per AES
 - For CCM mode \Rightarrow 2 AES per 128 bits
 - $1Mhz \Rightarrow (128*(10^{6}))/2*11 \text{ bps} \Rightarrow 5.8 \text{ Mbps}$
 - 50MHz easy in 1.3u
 - AES-CCM good for 250Mbps serial data. Can be stretched > 2gbps
- OCB allows parallelization and has fewer AES invocations
 - 1MHz => 11.64 Mbps
 - Multi gigabit devices can be addressed
 - Less feed forward => Pipelining easier => 200Mhz+ straightforward
 - No upper limit on speed