LinkSec Frame Formats?

David Johnston

david.johnston@ieee.org

dj.johnston@intel.com

What is needed?

- A sequence counter - PN/IV
- An integrity check - MIC/MAC/ICV
- Ciphertext
 - ICV may be part of ciphertext
- SAID
 - If there is no other context (e.g. CID)
 - Must assume its presence for a general crypto protocol

In What Order (ICV)

- ICV is computed over transmitted packet
 - Easier at end, since ICV can then be computed on the fly
- ICV is computed on received packet and compared with received ICV
 - Easier at end, since the received ICV doesn't need to be stored during ICV computation
 - Inserting between PN and ciphertext can provide time for header and AD computation for CCM and OCB type algorithms
- On balance, ICV goes at end. No surprise..

In what Order (PN)

Generally a nonce needs to be constructed before any crypto operations can happen
– PN goes as early as possible in the frame

In what Order (SAID)

• Needed as early as possible to allow early retrieval of keys

In What Order (ciphertext)

- Ciphertext goes pretty much where the plain text goes.
 - Good for cipherstream and in-place (OCB like) modes.
 - Minimizes intermediate storage in datapath

In What Order (Header Data)

• Header data consists of authenticated and non authenticated parts

– E.G. HCS might be non authenticated

- A gap in time between nonce construction and data encryption is useful in both CCM and OCB
 - Time to get that initial block encryption and AD processing complete before decryption

The Ideal Security Packet Format

SAID	PN	Authenticated	Non Authenticated		ICV	CRC
		Header Data	Header Data	Ciphertext		

- Doesn't map to the 802 encapsulation style
 - Need a compromise
 - SAID, PN and ICV go in data field
 - Header data is as defined in the MAC/PHY spec

Header as in base spec	SAID	PN	Ciphertext	ICV	CRC	
------------------------	------	----	------------	-----	-----	--

• Again, no surprises

ICV Size

- Birthday attack susceptible modes
 - Strength proportional to $sqrt(2^n)$ where n is the number of bits
- Non birthday attack susceptible modes
 - Strength proportional to 2ⁿ
- Does not interact with data rate, rekeying rate etc
- If we avoid birthday attack susceptible modes, then can have half the ICV length for the same strength
 - 64 bits seems ok
 - You might notice 2^63 ICV guessing attempts before one succeeds
- 8 octet ICV

PN Size

- PN Strength is measured in time to rekey
 - Longer is good
- Inversely proportional to packet rate
 - 802 has variable packet rates due to variable packet size and asynchronous MAC service
- Minimum rate ≈ 10 kbps (.15.4)
- Max rate \approx 100Gbps (Arbitrary optical thing)
- 10^7 difference ≈ 23.5 bits
 - No good PN size for all cases
 - Slowest will want 24 fewer bits than fastest for optimal operation
 - Gap can only widen in the future

PN Size Options

- Pick suitable case for highest packet rate interface
 - Slower devices suffer the consequences
 - Poor adoption. We waste our time
- Tie PN size to PHY type
 - Those pesky provider bridges mess things up again
- Flexible PN length
 - PN representation size grows with PN magnitude
 - Bad frame formatting implementation ramification
 - Most time spent with large PN bit width anyway
- Code PN size in header
 - Bad security implications
 - Can spoof packet with weak crypto and crack it
- Negotiable PN size
 - Need to be careful about security implications
 - Potential for attacker to force negotiation of weaker mode
 - Could be negotiated at time of SA formation and remain constant for lifetime of the SA

• Only reasonable option appears to be to negotiate a PN size

PN Negotiation

- For a given technology, the PN size should have some default based on max packet rate
 - So in non provider bridge case, any negotiation should be very short both sides will agree the same value
- In provider bridge case is it OK to default to smaller PN choice of the two ends?
 - Slower device limits the max packet rate
 - Probably should make sure that crypto in the negotiation leads to assurance that we in fact DO have nothing smaller than the minimum acceptable to the slower device
 - Maybe higher speed spoofing can be performed on the high speed side of the bridge, attacking the shorter PN
 - Needs rate limit detection. Starts getting messy

PN Negotiation

- At what level do we negotiate?
 - PN size as applied to a particular algorithm?
 - Between algorithms that offer a variety of PN sizes?
- PN size negotiation might lead to improper use of a crypto function. Security proof might assume PN size is constant
 - Not true for proposed ciphersuite, but maybe it applies somwhere in the general case
- Choosing between cipher suite entries would work since we are limited to known good cases
 - Exposes existence of provider bridge to ends performing security negotiation. The end would otherwise have no basis to enter into a negotiation

PN Negotiation Proposal

- When operating across provider bridges
 - The slower device should yield to the faster device PN length and suffer the throughput drop
 - Minimized security risk on the fast side
 - Makes impersonating a provider bridge pointless
- When on a vanilla link
 - Negotiation leads to default for that MAC/PHY

The Alternative

- When operating across provider bridges
 - The faster device should yield to the slower device PN length and suffer the potential increase in rekeying rate
 - Prevents imposing undue overhead on a slow link
- When on a non provider bridge link
 - Negotiation leads to default for that MAC/PHY or a shared enhance mode

PN Negotiation Proposal

- E.G. CCM Mode cipher suite entry becomes 3...
 - 1:AES-CCM-128, 64 bit ICV, 32 bit PN
 - 2:AES-CCM-128, 64 bit ICV, 48 bit PN
 - 3:AES-CCM-128, 64 bit ICV, 64 bit PN
- 802.15.4 gets (1) as default
- 10G ethernet gets (3) as default
- Negotiation over provider bridge picks highest of 2 defaults within a cipher class (ccm, ocb etc)
- Devices implementing CCM must support all three
 - not a hard implementation issue in this case

SAID Format

- Does it include the cipher type?
 - No, unnecessary, will be set at SA creation
 - Why waste the bandwidth
- How many SAs to support?
 - 16 bits sounds like a lot of SAs
 - Need separate SAs for broadcast/multicast groups
 - Can we trim it to 8 bits?
 - 802.16 supports > 256 SSs.
 - So no need 16 bits.

Proposed Security Packet Format

- 16 bit SAID
- Variable PN based on ciphersuite negotiation, generally 24 64 bits
- 64 bit ICV

	16	24/32/48/64		64	
Header as in base spec	SAID	PN	Ciphertext	ICV	CRC as in Base spec

Frame Expansion

- Additional 144 bits would exceed HW limitations in certain 802.3 implementations
- Could do MTU limitation
 - Wireless doesn't care. MTU limitation is normal. Frames never expand.
 - Some wired standards care. No means to signal MTU variation upwards
- Could fragment into 2 packets when MTU adjustment not supported, as per 802.10

Frame Expansion Proposals

- Copy what was done in 802.10
 - Contract MTU where standard or implementation supports it
 - Otherwise cause fragmentation into two (sf)MPDUs at security sub layer
- Alternative
 - Fix the MAC service to always make MTU information available at the MAC service, for all MACs supporting linksec.
 - Should have been in there from the start. 802 is more than just Ethernet

AAD

- AAD for different MACs and PHYs can vary
- Some modes need special treatment to support varying AAD
 - E.G. OCB is chained with PMAC in order to support greater AAD than the nonce.
 - CCM does it by default
- How do we deal with AAD? It differs over a provider bridge.

Summary of Proposal

- Adopt normal frame format
 - Header||SAID||PN||CT||ICV||CRC
- 16 bit SAID, 64 bit ICV
- Expose presence of provider bridge crossing to cipher suite negotiators
- Add multiple PN length cipher suite options
- Fix PN length (i.e. the cipher type) for SA lifetime
- Choose whether to
 - Use 802.10 style MTU/Fragment mechanism
 - Force MTU variation (and maybe fix MAC service)