

10/24/00 8:29 AM 1/12

Making Waves

Mick Seaman

This note describes how the Rapid Spanning Tree Protocol
transitions Designated Ports to Forwarding without having to wait
for a network round trip delay time, or Forward Delay.
Familiarity with P802.1w Rapid Reconfiguration (D6 and D7) is
assumed. The state machine variables used in this description
are based on D7, but retain some of the more useful terminology
of D6. They are suggested as ballot comment on D7. The
diagrammatic conventions are based on those described in
“Spanning Tree Visio Standards”.

Basic Process
A Bridge ‘A’ with a Designated Port that is not
Forwarding, and that is connected to a Bridge ‘B’
by a point-to-point link, sends a BPDU with the
‘Sync Request’ flag set to B. Such a BPDU will
be referred to as a ‘Proposal’ and distinguished
in diagrams with a double headed arrow:

If and when B is ‘Synchronized’ with this
‘Proposal’, B returns a BPDU with the ‘InSync’
flag set to A. Such a BPDU will be referred to as
an ‘Agreement’ and shown as a double headed
open arrow:

Once a Designated Port on A receives an
Agreement that matches its designated priority
vector, that port can transition to Forwarding
immediately.

Synchronization
A Bridge ‘B’ is ‘Synchronized’ with information
received on one of its ports, if:
1) The information has been received on a

point to point link from a Designated Port,
and the receiving port is selected as the
Root Port after the received information has
been processed, and

2) All other ports (other than the Root Port) on
Bridge B are ‘synchronized’.

An individual port (other than the Root Port) on
Bridge B is ‘synchronized’ if:

a) It is in the Discarding State, or
b) It is an operEdge, or
c) It is a Designated Port attached to a

point-to-point link, and has received
a matching Agreement since the
root path priority vector (including
the diminutive received port
component) last changed.

When a Proposal is received on a Root Port, the
Bridge transitions all other non-operEdge ports
that are not already synchronized with the root
path priority vector implied by the proposal (the
message priority plus the port path cost plus the
received port identifier) to the Discarding State.

A B

1) The Designated Port A-B is not Forwarding

A B

2) A sends a "Proposal" to B

A B

3) B "Synchronizes"

A B

4) B returns an "Agreement" to A

A B

5) A transitions A-B to Forwarding

 Making Waves

10/24/00 8:29 AM Mick Seaman 2/12

Connectivity Waves
When receipt of a Proposal on a Root Port
causes a Designated Port attached to a point-to-
point link to transition to Discarding, a further
Proposal is sent on that Designated Port. If the
Bridge, ‘C’ say, attached to the other end of that
link synchronizes and returns an Agreement in
its turn, the ‘cut’ in the active topology will move
further toward the edge of the network.

This progression of the active topology cut is the
‘wave’ referred in the title of this note.

The Network Edge
If there were no operEdge ports in the network,
the connectivity wave would come to halt at the
outermost LANs. The bridge ports attached to
those LANs, and more significantly the attached
end stations would still experience significant
delays in the restoration of network connectivity
following reconfiguration.
However if all the ports attached to Bridge ‘C’
above were to be operEdge ports (apart from the
Root Port of course), an Agreement can be
returned without propagating the cut further.
To allow such scenarios to be easily depicted, it
is useful to have a distinguished Visio
Format>Line>Begin symbol for an operEdge
port, code 38 in the following augmented table..

Using this, the last few steps in our preceding
example become:

Port Role Port State Visio Code
36Designated

(operEdge
FALSE)

Root Port

Alternate

Discarding
Learning
Forwarding

Discarding
Learning
Forwarding
Discarding
Learning
Forwarding

42
35

32

41
31

25

0
24

Disabled Disabled 23

Designated
(operEdge)

Discarding
Learning
Forwarding 38

n/a
n/a

A B

A B

A B

A B

A B

C

C

C

C

C

A B

A B

A B

C

C

C

 Making Waves

10/24/00 8:29 AM Mick Seaman 3/12

More Waves
In the following four example reconfigurations,
four bridges are connected in a ring, and one of
the connecting fiber pairs breaks. (the
configuration evolves from left to right and top to
bottom).
Of course if the break happens to be where the
spanning tree has already cut the active
topology, no reconfiguration takes place.

And loss of the other fiber at the bridge that is
cutting the active topology is dealt with by that
bridge failing over to its alternate root port,
without the need for any BPDU transmissions.

A break in a fiber connection to the Root Bridge,
does require the exchange of Proposal and
Agreement BPDUs to complete the rapid
reconfiguration. In one case ….

And in the other ….

In none of our ‘ring of four’ reconfiguration
examples, does a ‘cut’ have to be moved from
one side of a bridge to another. A more
interesting scenario can be created with a ring of
six bridges, with the fiber cut occurring at the
Root Bridge.

If the link A-F is restored, the network evolves as
follows.

A
A,0

B
A,1

D
A,1

C
A,2

A
A,0

X

B
A,1

D
A,1

C
A,2

A
A,0

X

B
A,1

D
D,0

C
A,2

A
A,0

X

B
A,1

D
D,0

C
A,2

A
A,0

X

B
A,1

D
A,3

C
A,2

A
A,0

X

B
A,1

D
A,3

C
A,2

X X

X X X

A
A,0

B
A,1

D
A,1

C
A,2

A
A,0

B
A,1

D
A,1

C
A,2

A
A,0

B
B,0

D
A,1

C
A,2

A
A,0

B
B,0

D
A,1

C
A,2

A
A,0

B
A,3

D
A,1

C
A,2

A
A,0

B
A,3

D
A,1

C
A,2

A
A,0

B
A,1

F
A,1

E
A,2

C
A,2

D
A,3

A
A,0

B
A,1

F
F,0

E
A,2

C
A,2

D
A,3

X

A
A,0

B
A,1

F
F,0

E
E,0

C
A,2

D
A,3

X

A
A,0

B
A,1

F
E,1

E
E,0

C
A,2

D
A,3

X

A
A,0

B
A,1

F
E,1

E
E,0

C
A,2

D
A,3

X

A
A,0

B
A,1

F
E,1

E
A,4

C
A,2

D
A,3

X

A
A,0

B
A,1

F
A,5

E
A,4

C
A,2

D
A,3

X

A
A,0

B
A,1

F
A,5

E
A,4

C
A,2

D
A,3

X

A
A,0

B
A,1

D
A,1

C
A,2

A
A,0

X

B
A,1

D
A,1

C
A,2

A
A,0

B
A,1

D
A,1

C
A,2

A
A,0

X

B
A,1

D
A,1

C
A,2

A
A,0

B
A,1

F
A,5

E
A,4

C
A,2

D
A,3

A
A,0

B
A,1

F
A,5

E
A,4

C
A,2

D
A,3

X

A
A,0

B
A,1

F
A,1

E
A,4

C
A,2

D
A,3

A
A,0

B
A,1

F
A,1

E
A,2

C
A,2

D
A,3

A
A,0

B
A,1

F
A,1

E
A,2

C
A,2

D
A,3

A
A,0

B
A,1

F
A,1

E
A,2

C
A,2

D
A,3

... and after 2 x FwdDelay E-D
becomes Forwarding

 Making Waves

10/24/00 8:29 AM Mick Seaman 4/12

A Race
In these network scenarios there are actually two
competing processes that allow a Bridge to
achieve synchronization and return an
Agreement to a previous proposal. The
Agreement may be returned after Designated
Ports have transitioned to Discarding, or after
Agreements have been received on those ports.
There is no requirement for a Designated Port to
be complete the transition to Discarding before a
Proposal is sent. So it is possible, though
unlikely that the prior ‘ring of six” restoration
scenario proceed as follows.

The proposed standard deliberately does not
contain any mechanism to increase the
likelihood of the reconfiguration proceeding in
this way.

A
A,0

B
A,1

F
A,5

E
A,4

C
A,2

D
A,3

A
A,0

B
A,1

F
A,5

E
A,4

C
A,2

D
A,3

X

A
A,0

B
A,1

F
A,1

E
A,4

C
A,2

D
A,3

A
A,0

B
A,1

F
A,1

E
A,2

C
A,2

D
A,3

A
A,0

B
A,1

F
A,1

E
A,2

C
A,2

D
A,3

A
A,0

B
A,1

F
A,1

E
A,2

C
A,2

D
A,3

... and after 2 x FwdDelay E-D
becomes Forwarding

 Making Waves

10/24/00 8:29 AM Mick Seaman 5/12

Synchronization Process
The synchronization process within each Bridge
proceeds as follows1.
1. If the current spanning tree priority vector for

a port is updated, the synced2, agreed3, and
proposing4 flags for the port are reset5.

2. On receipt of a Proposal carried in a better
or repeated6 BPDU the proposed7 flag is
set8. If the received BPDU is not a Proposal,
the proposed flag is reset, and it is also
reset if the spanning tree priority vector is
generated by this Bridge rather than being
received from another.

3. If the proposed flag is set, the receiving port
is the Root Port, and the Bridge is not
already synchronized with the received
spanning tree priority vector9, the sync10 flag
is set11 for all ports and the proposed flag is
reset12.

4. If the sync flag is set for a Designated Port
and the synced flag is not set, the port is
transitioned to Discarding13.

5. If a Designated Port is not or will not soon be
Forwarding (as is obviously the case if it has
just been set to transition to Discarding) and
the proposing flag is not set for the port, it
is set14, and the newInfo flag is also set15
which will cause a Proposal to be sent
through this Port.

6. If or once a Port has transitioned to
Discarding, its sync flag is reset and its
synced flag is set16.

7. Once the synced flag is set for all ports
other than the Root Port, synced will be

1 Each variable change is annotated with <state machine>:<state name>.
The following acronyms are used for the state machines. PI : Port
Information, PR: Port Role Transitions. All the footnotes as to what
happens in each state machine below refers to what the state machines
should contain, as suggested below, not to D7.
2 synced is called agree in D7. I suggest the change so that these
variables consistently follow the pattern where the command ‘act’
connotes a request to which the response is ‘acted’.
3 agreed in D7.
4 proposing is called propose in D7. I suggest the name change
because the variable is actually used not to record the fact that a proposal
is about to be made, but that one has been made – is in progress so to
speak – so that newInfo is not asserted repeatedly.
5 synced, agreed and proposing are reset in PI:BETTER and
PI:UPDATE.
6 As defined by the result of the rcvdBpdu() procedure, rcvdMsg ==
BetterDesignatedMsg or rcvdMsg == RepeatedDesignatedMsg
respectively.
7 proposed is called proposed in D7 and syncReq in D6.
8 proposed becomes recordProposed() in PI:BETTER and PI:REPEAT,
and is reset in PI:UPDATE.
9 In which case synced will be set for the Root Port.
10 sync is called agreePort in D7.
11 PR:AGREE_BRIDGE setAgreeBridge() in D7. I suggest renaming the
state and the procedure to PR:ROOT_PROPOSED and syncBridge().
12 If the bridge is already synchronized, proposed is reset and an
Agreement is sent through the Root Port as in step 7.
13 PR:DESIGNATED_LISTEN.
14 PR:REQUEST_AGREEMENT in D7. I suggest renaming this state to
PR:DESIGNATED_PROPOSE.
15 To cause a BPDU to be sent.
16 Both in PR:BLOCKED_PORT and in PR:DESIGNATED_AGREED (D7
name). I suggest renaming the latter of these to
PR:DESIGNATED_SYNCED

set17 for the Root Port and an Agreement will
be sent through that Port.

8. On receipt of an Agreement, the agreed18
flag is set and the proposing flag is reset.

9. If or once a Designated Port has the agreed
flag set, its sync flag is reset and its synced
flag is set19, and it is transitioned to
Forwarding20.

17 PR:ROOT_AGREED
18 PI:CONFIRM.
19 PR:DESIGNATED_SYNCED.
20 PR:DESIGNATED_LEARN followed by PR:DESIGNATED_FORWARD
as necessary.

 Making Waves

10/24/00 8:29 AM Mick Seaman 6/12

Synchronization States
A principal purpose of this note is to improve
upon and correct some of the changes that have
been made to the P802.1w state machines from
D5 through D7 in this area. The original set of
variables names were hard to grasp21, and this
has led to incorrect changes being made in the
face of both real and apparent bugs.
Here I propose to describe the purpose of each
state in the machines that relates to the bridge to
bridge synchronization process, as partitioned
into its proposal, internal synchronization, and
agreement components. The D7 conditions that
lead to entry into the state and the actions in the
state are presented using further revised
variable names22, and a set of corrections are
suggested using those names.
All transitions in the Port Role Transition,
Topology Change, and Port Transmit state
machines should be qualified by:
&& selected && !updtInfo23

otherwise there is a risk that inconsistent data is
sent. In the transmit state machine, for example,
a Designated Port that has received a ‘better’
PDU should not transmit until the role has been
updated and, if the role becomes Alternate Port,
should not transmit at all. Equally a port that has
become a Designated Port should not transmit
until the information associated with the port has
been updated by PI:UPDATE.

PI:DISABLED
This state initializes some of the variables
related to the synchronization process. Its
currently defined actions are in line with
comments below that suggest that the
responsibility of clearing agreed and proposed
should be done by the Port Information state
machine rather than by the Port Role Transition
state machine. No modifications appear to be
required to PI:DISABLED D7, which currently
reads:
rcvdBpdu = rcvdRSTP = rcvdSTP = FALSE;
portInfo = myPtInfo();
updtInfo = FALSE;
agreed = proposed = FALSE;
infoAge = 0; infoIs = Disabled;
reselect = TRUE; selected = FALSE;

21 For which the present author accepts full responsibility.
22 As introduced in footnotes above.
23 And not by “&& !selected” as shown in D7.

PI:AGED
This state is unrelated to the synchronization
mechanisms. Its actions should remain as in D7.
However the transition into this state from
PI:CURRENT should be qualified by selected24,
and should become:
selected && (infoIs == Received) &&
(infoAge == 0) && !updtInfo &&
!rcvdBpdu

and the transition from PI:AGED should also be
qualified by selected rather than !reselect25 and
become:
selected && updtInfo

24 Indicating that port role selection has completed and produced a result
since the information last changed on this port and is not the result of a
long delayed response by this machine to something that happened a
while ago.
25 !reselect simply means that the port role selection process does not
need to be restarted from the beginning, not that it has completed

 Making Waves

10/24/00 8:29 AM Mick Seaman 7/12

PI:BETTER
This state processes a received BPDU with a
different priority vector than the current priority
vector for the port. The received priority vector
will replace the current priority vector for the port,
either because it has a higher priority, or
because the BPDU has been transmitted by the
designated port for the attached LAN.
Once the received priority vector becomes the
current priority vector, any prior agreement
between the port role, port state, and the
spanning tree information for the receiving
bridge and its neighbour is suspect. Both the
synced26 and the agreed flags need to be reset.
Moreover any proposal the port has recently
made to its neighbour will have carried out of
date priority vector information, so the
proposing flag also needs to be reset.
PI:BETTER D7 reads:
portInfo = recordStpInfo();
updtInfoAge();
agreed = synced = FALSE;
proposed = recordProposed();
infoIs = Received; reselect = TRUE;
selected = FALSE;

PI:BETTER should read:
portInfo = recordStpInfo();
updtInfoAge();
agreed = proposing = synced = FALSE;
proposed = recordProposed();
infoIs = Received; reselect = TRUE;
selected = FALSE;

The transition to PI:CURRENT should become
unconditional since qualification of transitions
from PI:CURRENT to PI:AGED and PI:UPDATE
suggested elsewhere in this note ensure that
information is up to date before those occur:
UCT

The prior qualification of the transition by
!reselect27 does not ensure consistent up to
date information in the PI:CURRENT state.
Replacing it with selected doesn’t help because
that would mean each received BPDU would
have to be processed right through role
selection, whereas if two BPDUs are received
with the latter being ‘better than’ the former the
first of the two can be discarded without a bridge
wide recomputation. This helps if, for some
reason, a bridge with a very large number of
ports comes under heavy protocol processing
load.

26 If the synced flag should be set because the port is Discarding, the Port
Roles Transition machine should see to that.
27 Because !reselect simply means that the port role selection process
does not need to be restarted from the beginning, not that it has
completed. This by the way is entirely my fault, since I proposed an
inadequate change to D6.

PI:UPDATE
This state updates BPDU the current priority
vector for the port,28 following role selection by
selectRoles(). The designated priority vector
calculated from the root path priority vector for
the bridge will replace the current priority vector
for the port.
Once the received priority vector becomes the
current priority vector, any prior agreement
between the port role, port state, and the
spanning tree information for the receiving
bridge and its neighbour is suspect. Both the
synced29 and the agreed flags need to be reset.
Any proposal the port has recently made to its
neighbour will have carried out of date priority
vector information, as will any proposal a
neighbour has made to this port, so both the
proposing and proposed flags need to be
reset.
PI:UPDATE D7 reads:
portInfo = myPtInfo();
updtInfo = FALSE;
agreed = proposed = FALSE;
infoIs = Mine; newInfo = TRUE;

PI:UPDATE should read:
portInfo = myPtInfo();
updtInfo = FALSE;
agreed = synced = FALSE;
proposed = proposing = FALSE;
infoIs = Mine; newInfo = TRUE;

The transition from PI:CURRENT should be
qualified by selected:
selected && updtInfo

PI:REPEAT
This state records any new proposal attached to
existing spanning tree information. It is likely to
be executed as part of the propagation of the
wave of connectivity. I believe it reads correctly
in D7:
proposed = recordProposed();
updtInfoAge();

PI:CONFIRM
This state records the receipt of an Agreement
from a Root Port. Its name should be changed to
PI:AGREEMENT in line with the general
terminology of D7, and of this note. I believe the
state’s actions read correctly in D7:
agreed = TRUE; proposing = FALSE;

28 This will only occur if the port has been selected as a Designated Port,
but that fact is not known to the state machine.
29 If the synced flag should be set because the port is Discarding, the Port
Roles Transition machine should see to that.

 Making Waves

10/24/00 8:29 AM Mick Seaman 8/12

PR:INIT_PORT
This state initializes some of the variables
related to the synchronization process.
PR:INIT_PORT D7 currently reads:
role = DisabledPort;
synced = TRUE; sync = FALSE;
reRoot = FALSE;
rrWhile = 0; rbWhile = 0;

Its currently defined actions are in line with
comments below that suggest that the
responsibility of clearing agreed and proposed
should be done by the Port Information state
machine30 rather than by the Port Role
Transition state machine.
A pessimist, guarding against loops being
created by ports being Disabled by management
action and being immediately enabled again,
could equally well maintain that the synced,
sync, and reRoot variables should be set to
ensure that the Port become Discarding initially
to clear these conditions. In addition fdWhile
should be initialized in this state since
BLOCK_PORT may not be entered once
selectedRole is calculate to be DesignatedPort.
With these changes PR:INIT_PORT D7 should
read:
role = DisabledPort;
synced = FALSE; sync = TRUE;
reRoot = TRUE;
rrWhile = FwdDelay; rbWhile = 0;
fdWhile = FwdDelay

30 With the exception of clearing proposed on the Root Port when the
bridge has been synchronization and an Agreement has been returned
(or is about to be returned).

PR:BLOCK_PORT
This state removes a port that was previously a
Root Port or a Designated Port from the active
topology.
In D7, this state resets both agreed and
proposed. While it is true that these cannot be
true when a port is blocked, clearing these
variables here can never be a complete solution,
as they are tied to spanning tree priority vectors
that may change even though a port’s role does
not change. I suggest that clearing synced,
agreed, and proposed be left to the Port
Information state machine (PI), and removed
from the Port Role Transition state machine.
This approach does mean that changing the root
path priority vector (the spanning tree priority
information for the bridge derived from the root
port) does require synced, agreed, proposing,
and proposed to be cleared for all ports,
however this is accomplished by PI:UPDATE for
ports that become Designated and by
PI:BETTER for Alternate, Backup, and Root
Ports. There is a possibility that proposed
remains set for an Alternate Port, but that is no
bad thing, since that will record the last BPDU
sent by the Designated Bridge for the attached
LAN, and if the port transitions to a Root Port,
the bridge will immediately act on the recent
proposal.
PR:BLOCK_PORT D7 reads:
role = selectedRole;
agreed = proposing = FALSE;
fdWhile = FwdDelay;31

learn = forward = FALSE;

PR:BLOCK_PORT should read:
role = selectedRole;
learn = forward = FALSE;

31 This is superfluous since fdWhile = FwdDelay is the first action in the
BLOCKED_PORT state.

 Making Waves

10/24/00 8:29 AM Mick Seaman 9/12

PR:BLOCKED_PORT
This state maintains an Alternate, Backup, or
Root Port in the Discarding state once it has
transitioned to Discarding. The synced flag is
set – the port necessarily being synced with the
spanning priority vector once it is Discarding,
and the sync command is cleared. The port is
neither proposing to its neighbour that it should
become Forwarding, nor has it’s neighbour
agreed. However, as in the discussion of
PR:BLOCK_PORT above, clearing these
variables is better left to PI:BETTER and
PI:UPDATE (here they are redundant).
PR:BLOCKED_PORT D7 reads:
fdWhile = FwdDelay;
synced = TRUE; rrWhile = 0;
sync = proposed = agreed = reRoot =
FALSE;

PR:BLOCKED_PORT should read:
fdWhile = FwdDelay;
synced = TRUE; rrWhile = 0;
sync = reRoot = FALSE;

The transition that causes PR:BLOCKED port to
be re-entered in D7 reads:
(fdWhile != FwdDelay) ||
proposed || sync ||
agreed || reRoot || !synced

should read:
(fdWhile != FwdDelay) ||
sync || reRoot || !synced

i.e. proposed and agreed are not required.
PR:BACKUP_PORT
This state is unrelated to the synchronization
mechanisms. Its transitions and actions should
remain as in D7.

PR:ROOT_PORT
This state maintains a Root Port in its steady
state, all other Root Port states dealing with
transition conditions or processing. Although
proposing and agreed should never be set in this
state, that can be accomplished, as suggested
above and as partially implemented in D7, by the
Port Information state machine.
PR:ROOT_PORT D7 reads:
role = RootPort;
proposing = agreed = FALSE;
rrWhile = FwdDelay;
synced = allSynced32;

PR:ROOT_PORT should read:
role = RootPort;
rrWhile = FwdDelay;

with the synced = allSynced assignment being
moved to PR: ROOT_AGREED.
The transition condition from PR:ROOT_PORT
to itself reads (in D7):
(agreed || proposing || (rrWhile !=
FwdDelay)) && !proposed

This condition should read:
(rrWhile != FwdDelay)

The inclusion of !proposed in the original looks
strange. This was intended (I believe) purely to
disambiguate which event should fire amongst
competing possibilities. In D7 it is neither
necessary or sufficient and the completed state
diagram needs checking again to fully
disambiguate competing transitions.

32 agree = allAgreed in the original, which is confusing because in the
original allAgreed means that agree is TRUE for all ports, not that agreed
is TRUE for all ports.

 Making Waves

10/24/00 8:29 AM Mick Seaman 10/12

PR:AGREE_BRIDGE (PR:ROOT_PROPOSED)
This state processes a received Proposal and
initiates the synchronization process for the
bridge. Setting the sync command variable for
this port, the Root Port, records the lack of
synchronization of the Bridge. It will not be reset
until synced is TRUE for all the other bridge
ports. Since the sync variable is also set for
these ports they will have received the
instruction to get synced.
This state does not reset the synced variable
either for the Root Port or for the other ports. If
the spanning tree priority vector for any of these
ports has changed since synced was last set,
the port information machine will reset these
variables (in PI:BETTER or PI:UPDATE).
A better name for PR:AGREE_BRIDGE would
be PR:ROOT_PROPOSED, and the procedure
setAgreeBridge33 should be called
setSyncBridge. With these changes
PR:ROOT_PROPOSED in D7 reads:
setSyncBridge();

It requires the addition of:
proposed = FALSE;

as explained below.
The transition condition into
PR:ROOT_PROPOSED in D7 is:
proposed && !sync && !synced

This condition is intended to have the effect that:
a) if synchronization is already underway, it will

not be restarted
b) if a prior Proposal carrying the same

spanning tree priority vector has already
resulted in synchronization, the full
procedure including transitioning ports to
Discarding will not be repeated.

The logic for b) is fine, and indeed if sync is
reasserted for ports for which synced is already
TRUE, there having been no change in the
spanning tree priority vector for the port, there
will be no need for any further Discarding or
transmission of Proposals by that port. This is
fortunate since the logic for a) is flawed, since
sync could still be TRUE at the Root Port while it
has been cleared at another port, but that other
port cleared it while syncing on a prior spanning
tree vector. In that case synced would have been
set FALSE but the suppression of the further
sync to the port would not have given it a chance
to become synced, and the bridge as a whole
would not synchronize and return an Agreement.
The transition condition into
PR:ROOT_PROPOSED should read:
proposed && !synced

while clearing proposed at an early stage (see
above) suppresses repeated entry to the state.

33 In D7 setAgreeBridge sets agreePort not agree for all ports, while
setSyncBridge will set sync for all ports.

PR:ROOT_AGREED
This state returns one, and only one34,
Agreement to each Proposal once the bridge is
synchronized. It will also transmit an unsolicited
Agreement if the bridge synchronizes before a
Proposal is received. It clears the proposed and
sync variables, and sets newInfo to request the
transmission of a BPDU.
PR:ROOT_AGREED in D7 reads:
proposed = sync = FALSE;
newInfo = TRUE;

but should read:
proposed = sync = FALSE;
synced = allSynced;
newInfo = TRUE;

with the synced = allSynced assignment having
been moved here from PR:ROOT_PORT (see
above). This is necessary so that synced is set
correctly before the transmit machine can read
newInfo.
 The transition condition into
PR:ROOT_AGREED in D7 is:
(proposed || !synced) &&
(allSynced || synced)

which is possibly more easily understood as its
logical equivalent:
(proposed && allSynced) ||
(proposed && synced) ||
(!synced && allSynced)

It could be claimed that the second of these is
redundant since synced should never be TRUE
for a ROOT_PORT unless allSynced is TRUE.
With this revision the transition condition into
PR:ROOT_AGREED should read:
(proposed && allSynced)||
(!synced && allSynced)

PR:REROOT, PR:REROOTED,
PR:ROOT_LEARN, PR:ROOT_FORWARD
These states are unrelated to the
synchronization mechanisms. Their transitions
and actions should remain as in D7, with the
exception of the inclusion of !proposed in some
of the transitions. This was intended (I believe)
purely to disambiguate which event should fire
amongst competing possibilities. In D7 it is
neither necessary or sufficient and the
completed state diagram needs checking again
to fully disambiguate competing transitions.

34 If regular HelloTime BPDUs were sent on the Root Port as well as
Designated Ports, which I think is a very good idea on point-to-point links,
then this statement should be read as limiting the number of Agreements
generated asynchronously to that repeated transmission process.

 Making Waves

10/24/00 8:29 AM Mick Seaman 11/12

PR:DESIGNATED_PORT
This state maintains a Designated Port in its
current role, all other Designated Port states
deal with transition conditions and their
processing. Although proposed should never be
set in this state, that can be accomplished, as
suggested above, by the Port Information state
machine.
PR:DESIGNATED_PORT D7 reads:
role = DesignatedPort;
proposed = FALSE;

PR:DESIGNATED_PORT should read:
role = DesignatedPort;

PR:REQUEST_AGREEMENT
(PR:DESIGNATED_PROPOSE)
This state sends a Proposal to a neighbouring
bridge if the Designated Port is not Forwarding,
has not yet made a Proposal, and has not
already received an Agreement. In D7 it is called
REQUEST_AGREEMENT; a better name would
be DESIGNATED_PROPOSE. It reads:
proposing = TRUE;
newInfo = TRUE;

and should remain unchanged.
The transition condition into PR:
DESIGNATED_PROPOSE in D7 is:
(!forward) && (!synced && !proposing)

This is incorrect and probably the result of some
variable name confusion (in D7 the variable
referred to in this note as synced is called
‘agree’). Unfortunately synced can become
TRUE just because the port is Discarding, which
will leave some Designated Ports transitioning to
Forwarding only by way of Forward Delay timer
expiry. A further correction is required to stop an
operEdge port sending a Proposal as it
transitions from Disabled.
The transition condition into PR:
DESIGNATED_PROPOSE should be:
(!forward) &&
(!agreed && !proposing && !operEdge)

PR:DESIGNATED_AGREED
(PR:DESIGNATED_ SYNCED)
This state is inaccurately named
PR:DESIGNATED_AGREED in D7, since it can
be entered when ‘agreed’ is not true and no
Agreement has been received. It should
PR:DESIGNATED_SYNCED. This reflects its
purpose which is to set synced TRUE and sync
FALSE, to indicate the its neighbour and/or the
port has been synchronized with the spanning
tree priority vector. This has happened if the port
state has transitioned to Discarding, if an
Agreement has been received, if the port is an
operEdge, or if the port has already been
synced but sync has been reasserted. In D7 the
state actions read:
synced = TRUE; rrWhile = 0;
sync = proposing = FALSE;

They should read:
rrWhile = 0;
synced = TRUE;
sync = FALSE;

since setting proposing FALSE is a mistake,
possibly related to the confusion between
synced and agreed in the transition into
PR:DESIGNATED_PROPOSE (see above). The
Port Information machine will reset proposing
before any further Proposal needs to be sent, as
mentioned several times previously in this note.
The transition condition into PR:
DESIGNATED_SYNCED in D7 is:
(!learning && !forwarding && !synced) ||
(agreed && !synced) ||
(operEdge && !synced) ||
(proposing && synced) ||
(sync && synced)

all of which are correct apart from the, fourth
line. This condition should read:
(!learning && !forwarding && !synced) ||
(agreed && !synced) ||
(operEdge && !synced) ||
(sync && synced)

PR:RETIRED_ROOT
(PR:DESIGNATED_RETIRED)
This state resets the reRoot command to the
port once rrWhile has reached zero, either
through time expiry or because the port has
been synced (see PR:DESIGNATED_SYNCED).
In D7 the state actions are:
reRoot = FALSE;

and should remain unchanged.
The transition condition into PR:
DESIGNATED_LISTEN in D7 is:
(rrWhile == 0) && reRoot

and should remain unchanged.

 Making Waves

10/24/00 8:29 AM Mick Seaman 12/12

PR:DESIGNATED_LISTEN
This state transitions a Designated Port to the
Discarding state if the port is not an operEdge
and either a sync command has been received
and the port is not already synced or the port is a
recent root and the bridge is being re-rooted. In
D7 the state actions are:
learn = forward = FALSE;
fdWhile = FwdDelay;

and should remain unchanged.
The transition condition into PR:
DESIGNATED_LISTEN in D7 is:
(((sync && !synced)||
(reRoot && (rrWhile !=0)
) && !operEdge

) && (learn || forward)

This logic should remain unchanged, but could
be more simply written:
((sync && !synced)
|| (reRoot && (rrWhile !=0))

)
&& !operEdge
&& (learn || forward)

PR:DESIGNATED_LEARN
This state transitions a Designated Port to the
Learning state if the port is Discarding and:

a) the port is an operEdge; or
b) the port is either not a recent root, or the

bridge is not being re-rooted; and either:
the fdWhile timer has expired; or
an Agreement has been received.

In D7 the state actions are:
learn = TRUE;
fdWhile = FwdDelay;

and should remain unchanged.
The transition condition into PR:
DESIGNATED_LEARN in D7 is:
((((rrWhile == 0) || !reRoot) &&
((fdWhile == 0) ||(agreed &&
forceVersion >= 2))) &&
!sync) || operEdge) && !learn

This is unnecessarily complicated by the
inclusion of (forceVersion >= 2). This check
would be better done when processing the
BPDU to see if agreed should be set at all.
Removing this, and supplying a missing bracket,
D7 says:
((((rrWhile == 0) || !reRoot)

&& ((fdWhile == 0) || agreed))
&& !sync

)
|| operEdge

)
&& !learn

I think this should be rather more simply put:
((fdWhile == 0) || agreed || operEdge)

&&((rrWhile == 0) || !reRoot)
&& !sync
&& !learn

PR:DESIGNATED_FORWARD
This state transitions a Designated Port to the
Forwarding state if the port is Learning and the
other conditions are as for
PR:DESIGNATED_LEARN.

c) the port is an operEdge; or
d) the port is either not a recent root, or the

bridge is not being re-rooted; and either:
the fdWhile timer has expired; or
an Agreement has been received.

In D7 the state actions are:
forward = TRUE;
fdWhile = FwdDelay;

and should remain unchanged.
Similar comments as those on PR:
DESIGNATED_LEARN apply to the transition
conditions. These should read:

((fdWhile == 0) || agreed || operEdge)
&&((rrWhile == 0) || !reRoot)
&& !sync
&& (learn && !forward)

