
Paul Congdon – IEEE 802.1 Page 1 5/21/2002 – Edinburgh Interim

Link Layer Discovery

Protocol and MIB
v1.0

Paul Congdon

5/20/02

<<Version Change Notes:
v1.0

1. Updated overview text to include discussion about architectural
positioning and protocol objectives

2. Added note to on message number in PDU for discussion
3. Added new TLVs per email discussion
4. Left in vendor specific TLV, but put restrictions on usage
5. Added simple tx and rx state machines
6. No changes to MIB yet

>>

Acknowledgements

This document is heavily leveraged from an Internet-Draft developed for the IETF
PTOPO working group. The original draft, titled draft-ietf-ptopomib-pdp-03.txt,
and authored by Andy Bierman and Keith McCloghrie has expired and has not been
renewed nor forwarded on for RFC status by the IETF working group. The original
PTOPO Discovery Protocol is a product of the IETF PTOPOMIB Working
Group.

The intention of this document is bring forward relevant text and concepts from
the original draft as input into a proposed work item to develop a standard
discovery protocol within the IEEE 802.1 working group.

Abstract

This document defines a protocol, and a set of management objects for use with
IEEE 802 devices. In particular, it describes a physical topology discovery
protocol and managed objects used for managing the protocol. The protocol is
not restricted from running on non-802 media, however, a specification of this
operation is beyond the scope of this document.

Overview

There is a need for a standardized way of representing the physical network
connections pertaining to a given management domain. A standardized discovery
mechanism is also required to increase the likelihood of multi-vendor
interoperability of such physical topology management information. It is also
desirable to discover certain configuration inconsistencies or assumptions that
may result in impaired communication or network malfunction at higher layers.

Paul Congdon – IEEE 802.1 Page 2 5/21/2002 – Edinburgh Interim

This document specifies a discovery protocol, suitable for use with the Physical
Topology MIB [RFC2922].

Terms

Some terms are used throughout this document:

SNMP Agent

This term refers to an SNMP agent co-located with a particular LLDP Agent.
Specifically, it refers to the SNMP Agent providing LLDP MIB, Entity MIB,
Interfaces MIB, and possibly PTOPO MIB support for a particular chassis.

LLDP Agent

This term refers to a software entity which implements the Link Layer
Discovery Protocol for a particular chassis.

NMS
This term refers to a Network Management System capable of utilizing the
information gathered by LLDP and the PTOPO MIB.

Link Layer Discovery Protocol

This section defines a discovery protocol, suitable for supporting the data
requirements of the PTOPO MIB [RFC2922] and capable of advertising device
information to peer devices on the same physical LAN.

The Link Layer Discovery Protocol (LLDP) is a media independent protocol
intended to be run on all IEEE 802 devices, allowing a LLDP agent to learn
higher layer management reachability and connection endpoint information from
adjacent devices.

LLDP runs on all 802 media. Additionally the protocol runs over the data-link
layer only, allowing two systems running different network layer protocols to
learn about each other.

Architecturally, LLDP runs on top of the uncontrolled port of an 802 MAC client.
LLDP may be run over an aggregated MAC client as specified by Std. 802.3, 2000
Edition Clause 43, but must run over the physical MAC client. It may be
desirable for stations to prohibit the transmission of LLDP PDUs over the
uncontrolled port until the controlled port has been authorized, but this is not
a requirement. The spanning tree state of a port does not effect the
transmission of LLDP PDUs.

The LLDP protocol is essentially a one-way protocol. Each device configured
with an active LLDP Agent sends periodic messages to the Slow Protocols
multicast MAC address as specified by Std 802.3, 2000 Edition Annex 43B. The
device sends the periodic messages on all physical interfaces enabled for LLDP
transmission, and listens for LLDP messages on the same set on interfaces. Each
LLDP message contains information identifying the source port as a connection
endpoint identifier. It also contains at least one network address which can be
used by an NMS to reach a management agent on the device (via the indicated
source port). Each LLDP message contains a configurable time-to-live value,
which tells the recipient LLDP agent when to discard each element of learned

Paul Congdon – IEEE 802.1 Page 3 5/21/2002 – Edinburgh Interim

topology information. Additional optional information may be contained in LLDP
PDUs to assist in the detection of configuration inconsistencies.

The LLDP protocol is designed to advertise information useful for discovering
pertinent information about a remote peer and to populate topology management
information databases such as RFC2922. It is not intended to act as a
configuration protocol for remote devices, nor as a mechanism to signal control
information between peers. During the operation of LLDP it may be possible to
discover configuration inconsistencies between devices on the same physical LAN.
This protocol does not provide a mechanism to resolve those inconsistencies,
rather a means to report discovered information to higher layer management
entities. Acting upon discovered information typically requires careful
consideration and is clearly out of the scope of this document.

Frame Encapsulation

An LLDP PDU is encapsulated within an 802 frame that corresponds to frame
formatted to meet the requirements of an 802 Slow Protocol as defined by Std
802.3, 2000 Edition, Annex 43B. The format is shown in the following figure:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Slow Protocols Multicast DA |
+-+
| Multicast DA (cont) | Station SA |
+-+
| Station SA (cont) |
+-+
| Slow Protocols Type | Subtype | reserved |
+-+
| LLDP PDU Message |
+-+

[figure 1 – Slow Protocols LLDP Message Format]

The Slow Protocol encapsulation has the following fields:

Slow Protocols Multicast DA
The Slow Protocols Multicast destination address is 01-80-C2-00-00-02.
This address is within the range reserved by ISO/IEC 15802-3 (MAC Bridges)
for link-constrained protocols and will not be forwarded by conformant MAC
bridges.

Station SA
The source MAC address of the sending station

Slow Protocols Type
The Slow Protocols Type field encoding of the Length/Type field is 88-09

Subtype
The Slow Protocols Subtype field is TBD

All reserved fields shall be set to zero.

Paul Congdon – IEEE 802.1 Page 4 5/21/2002 – Edinburgh Interim

LLDP Message Format

The basic LLDP protocol data unit consists of a header, followed by a variable
number of Type-Length-Value (TLV) attributes. A single LLDP PDU is transmitted
in a single 802 media frame.

LLDP Header Format

The LLDP header is a 4 byte header, in network byte order, containing 3 fields,
as shown in figure 2:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Version | Flags | Time To Live |
+-+

[figure 2 -- LLDP Message Format]

The LLDP header contains the following fields:

Version
The LLDP protocol version number, set to 0x01 for this version of the
protocol.

Flags
The LLDP flags field provide for future header extensions and keep the
header word-aligned for easier processing. No flag definition bits are
defined at this time. This field must be set to zero in all version 1 LLDP
messages.

Time to Live
The number of seconds the information in this LLDP message should be
regarded as valid by the recipient. Agents of the PTOPO MIB must not
return MIB information based on expired LLDP messages. The valid range is
0 to 65535 for this field.

<<Message Number>>
<<I have a note to add a message number to the frame to assist in
detecting anomalies. I’m not exactly sure how this would work and what
the anomaly detection scheme would be. My assumption is that we would
simply increment the message number on each transmission, and ignore
message that appeared to be old – taking care for the sequence number
wrapping case. I guess the message number would be reset every time the
protocol was restarted. – comments?>>

TLV Format

Following the LLDP header are a variable number of TLVs, depending on
implementation and maximum message size. See figure 3 for TLV field
layout.

A 2 byte type field identifies the specific TLV, and a 2 byte length, in octets,
indicates the length of the value field contained in the TLV. A TLV shall

Paul Congdon – IEEE 802.1 Page 5 5/21/2002 – Edinburgh Interim

always start on a 4 octet boundary. Pad octets are placed at the end of the
previous TLV in order to align the next TLV. These pad octets are not counted
in the length field of the TLV.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type | Length |
+-+

0
0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+
| Value byte 0 | ... repeated through value byte[Length-1]
+-+-+-+-+-+-+-+-+

[Figure 3 - TLV Format]

The header fields are defined as follows:

Type
The integer value identifying the type of information contained in
the value field.

Length
The length, in octets, of the value field to follow.

Value
A variable-length octet-string containing the instance-specific
information for this TLV.

Standard TLV Definitions

The mandatory LLDP TLVs allow for a LLDP agent to support the PTOPO MIB
for connections terminating on the local chassis. Optional TLVs allow for
vendor specific extensions.

The following table summarizes the TLVs defined in this document.

+------+-----------------+--------------------------------------+
| Type | TLV Name | Example Usage |
+------+-----------------+--------------------------------------+
| 1 | Chassis ID | { chasIdIfAlias(2), |
| | | "acme.rg1-sw.0000c07cf297" } |
+------+-----------------+--------------------------------------+
| 2 | Port ID | { portIdIfAlias(1), "eth0/0/0" } |
+------+-----------------+--------------------------------------+
| 3 | Mgmt Address | { ipV4(1), 4, '0x01020304' } |
+------+-----------------+--------------------------------------+
| 4 | PVID | { ‘2030’) |
+------+-----------------+--------------------------------------+
| 5 | Other PVIDs | { ‘0’) |
+------+-----------------+--------------------------------------+

Paul Congdon – IEEE 802.1 Page 6 5/21/2002 – Edinburgh Interim

| 6 | Link Duplex | { ‘1’) |
+------+-----------------+--------------------------------------+
| 7 | Capabilities | { ‘0x00001100’) |
+------+-----------------+--------------------------------------+
| 8 | Version | { “F.04.09”) |
+------+-----------------+--------------------------------------+
| 9 | Vendor Specific | { VendorID, 'vendor specific’) |
+------+-----------------+--------------------------------------+

[Figure 4 - TLV Summary]

Chassis ID
The Chassis ID is a mandatory TLV which identifies the chassis component
of the endpoint identifier associated with the transmitting LLDP agent.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 0x1 | Length |
+-+
| Chassis ID Type | Chassis ID String . . .
+-+

[Figure 5 – Chassis ID TLV Format]

The Chassis ID fields are defined as follows:

Chassis ID Type
This field identifies the format and source of the chassis
identifier string. It is an enumerator defined by the
PtopoChassisIdType object from RFC2922

Chassis ID String
The binary string containing the actual chassis identifier for this
device. The source of this field is defined by PtopoChassisId from
RFC2922.

Port ID
The Port ID is a mandatory TLV which identifies the port component of the
endpoint identifier associated with the transmitting LLDP agent. If the
specified port is an IEEE 802.3 Repeater port, then this TLV is optional.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 0x2 | Length |
+-+
| Port ID Type | Port ID String . . .
+-+

[Figure 6 – Port ID TLV Format]

The Port ID fields are defined as follows:

Port ID Type

Paul Congdon – IEEE 802.1 Page 7 5/21/2002 – Edinburgh Interim

This field identifies the format and source of the port identifier
string. It is an enumerator defined by the PtopoPortIdType object
from RFC2922

Port ID String
The binary string containing the actual port identifier for the port
which this LLDP PDU was transmitted. The source and format of this
field is defined by PtopoPortId from RFC2922.

Management Address
The Management Address is a mandatory TLV which identifies a network
address associated with the local LLDP agent, which can be used to reach
the agent on the port identified in the Port ID TLV. The value field of
this TLV has the following record format:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 0x3 | Length |
+-+
| IANA AddressFamily | Address Length |
+-+

0
0 1 2 3 4 5 6 7 8 9

+-+-+-+-+-+-+-+-+-+-+-+ ... -+-+-+-+-+-+-+-+-+-+
| Addr byte 1 | ... | Addr byte N |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

[Figure 7 -- Management Address TLV Format]

The Management Address fields are defined as follows:

IANA Address Family
The enumerated value for the network address type identified in this
TLV. This enumeration is defined in the “Assigned Numbers” RFC
[RFC3232] and the ianaAddressFamilyNumbers object.

Address Length
The number of octets contained in the address string to follow.

Address
The binary string containing the network management address for this
TLV.

PVID
The PVID TLV (Port VLAN Identifier) is an optional TLV which identifies
the VLAN identifier associated with untagged or priority tagged frames
received on the port as specified in IEEE 802.1Q-1998. In some cases the
sending device may not know or support the PVID as defined in IEEE 802.1Q-
1998.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 0x4 | Length = 0x4 |
+-+

Paul Congdon – IEEE 802.1 Page 8 5/21/2002 – Edinburgh Interim

| | PVID | reserved |
+-+

[Figure 8 – PVID TLV Format]

The PVID TLV fields are defined as follows:

PVID
The Port VLAN Identifier for the port. It defined by the dot1qPvid
object from RFC2674. A value of 0 shall be used if the device
either does not know the PVID or does not support port based VLANs
per the operation of IEEE 802.1Q-1998.

Other PVIDs
The Other PVIDs TLV is an optional TLV which identifies if the port has
additional PVIDs defined for the port. Additional PVIDs may only be used
when classification methods other the Port Based VLAN classification are
used on the port (e.g. Port and Protocol VLAN classification as defined by
802.1v).

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 0x5 | Length = 0x4 |
+-+
| OtherPVIDs | reserved |
+-+

[Figure 9 – Other PVIDs TLV Format]

The Other PVIDs TLV fields are defined as follows:

OtherPVIDs
A Boolean value indicating that additional PVIDs have been
configured for the port. A value of 0 indicates FALSE

Link Duplex
The Link Duplex TLV is an optional TLV which identifies the duplex setting
of the MAC connected to the physical medium. In some 802 networks, it is
possible for MAC entities to be connected to the same physical link, but
with different duplex settings, resulting in impaired communication.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 0x6 | Length = 0x4 |
+-+
| Duplex | reserved |
+-+

[Figure 10 – Link Duplex TLV Format]

The Link Duplex TLV fields are defined as follows:

Duplex
The current duplex status of the MAC. For 802.3 MACs this field is
defined by the dot3StatsDuplexStatus object from RFC2665. Other

Paul Congdon – IEEE 802.1 Page 9 5/21/2002 – Edinburgh Interim

MACs shall confirm to the 802.3 list of choices which include:
1=unknown, 2=halfDuplex, 3=fullDuplex.

Capabilities
The Capabilities TLV is an optional TLV which identifies the capabilities
of the device and its primary function. It is intended to improve the
discovery of managed services on the device

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 0x7 | Length = 0x4 |
+-+
| Capabilities | reserved |
+-+

[Figure 11 – Capabilities TLV Format]

The Capabilities TLV fields are defined as follows:

Capabilities
A bit map of capabilities defining the primary function of the
device. The capabilities are defined by the sysServices object in
RFC 1213.

<< NOTE: This is not really sufficient as it has a single bit for
each layer of the OSI model and the bits tend to have less meaning
the further up the stack. It doesn’t really provide many hints on
where to start managing the device. Something more useful would
narrow the scope to something at and below L3 – Consider bits for:
port is in an aggregation, Spanning Tree is supported, VLANs are
supported, L3 routing is supported, etc… I suggest the following
alternative for discussion:

• PortAccessControlEnabled
• PortInAggregation
• PVIDEnabled
• PortAndProtocolPVIDsEnabled
• TaggedVLANsEnabled
• L2Forwarding
• SourceRouteBridging
• SpanningTreeEnabled
• IGMPSnoopingEnabled
• L3Forwarding
• L3MulticastForwarding
• HigherLayerForwarding
• NonForwardingStation
>>

Version
The Version TLV is an optional TLV which uses a display string to identify
product version information about the device.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Paul Congdon – IEEE 802.1 Page 10 5/21/2002 – Edinburgh Interim

+-+
| Type = 0x8 | Length |
+-+
| Version String . . . |
+-+

[Figure 12 – Version TLV Format]

The Version TLV fields are defined as follows:

Version
A string that identifies product version information for the device.
The string shall be less than 256 octets.

Vendor-Specific

This TLV is available to allow vendors to support their own extended
attributes not suitable for general usage. The information conveyed in
the TLV MUST not affect the operation of the LLDP protocol and MUST comply
with the following restrictions:

• Information transmitted in the TLV is intended to be a one-way
advertisement. It must not solicit a response and must not
provide an acknowledgement.

• Information transmitted in the TLV must be independent from
information received in a TLV from a peer.

LLDP agents not equipped to interpret the vendor-specific information sent
by other LLDP agents MUST ignore it (although it may be reported). LLPD
agents which do not receive desired vendor-specific information SHOULD
make an attempt to operate without it, although they may do so (and report
they are doing so) in a degraded mode.

A summary of the Vendor-Specific TLV format is shown below. The fields are
transmitted from left to right.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
| Type = 0x9 | Length |
+-+
| Vendor-Id |
+-+
| String...
+-

Vendor-Id
The high-order octet is 0 and the low-order 3 octets are the SMI Network
Management Private Enterprise Code of the Vendor in network byte order, as
defined in the "Assigned Numbers" RFC [RFC3232].

String
The String field is one or more octets. The actual format of the
information is site or application specific, and a robust implementation
SHOULD support the field as undistinguished octets. Multiple
subattributes MAY be encoded within a single Vendor-Specific TLV, although
they do not have to be.

Paul Congdon – IEEE 802.1 Page 11 5/21/2002 – Edinburgh Interim

Protocol Operation

An active LLDP Agent must perform the following tasks:

• transmit LLDP messages
• process received LLDP messages
• maintain an instance of the LLDP MIB
• maintain an instance of the PTOPO MIB
• maintain appropriate ifEntry and/or entPhysicalEntry instances
• implement ifAlias and/or entPhysicalAlias MIB objects

Protocol Initialization

Upon system reinitialization, the following tasks are performed by the LLDP
agent:

Non-volatile configuration for the LLDP MIB is retrieved if applicable,
otherwise appropriate default values are assigned to all LLDP
configuration variables.

If LLDPAdminStatus is equal to 'disabled(2)', then LLDP initialization is
terminated (until such time that the LLDPAdminStatus object is set to
'enabled(1)'), otherwise continue.

Internal (implementation-specific) data structures are initialized such
that appropriate local physical topology information and LLDP transmission
parameters are set.

Message Encoding

This section does not assume a particular buffering strategy, and such details
are omitted.

Header Fields

The version field is set to one (0x01).

The flags field is set to zero (0x00).

The time-to-live field is set to the value obtained by the following
formula:

TTL = min(65535, (LLDPMessageTxInterval * LLDPMessageTxHoldMultiplier))

TLVs

Each message must contain one instance of each of the mandatory LLDP TLV
elements. Additional TLV data elements may be added as maximum frame size
permits.

Paul Congdon – IEEE 802.1 Page 12 5/21/2002 – Edinburgh Interim

The mandatory TLVs include: Chassis ID, Port ID (optional for repeaters)
and Management Address.

TLVs are always to be aligned on a 4 octet boundary.

Message Transmission

LLDP agents must follow the rules for Slow Protocols transmission as defined by
Std 802.3, 2000 Edition, Annex 43B. In addition to these rules, an active LLDP
agent must transmit a LLDP message out each appropriate port, once each message
interval, as determined by the LLDPMessageTxInterval MIB object, subject to the
restriction of transmission rules for Slow Protocols. Messages transmitted on
repeater devices may be sent for each repeater backplane, once per message
interval. Actual transmission intervals should be jittered to prevent
synchronization effects.

Note that the agent must suppress the transmission of multiple LLDP messages
during a single message interval, in the event message transmission cannot be
restricted to a single port, but rather a group of ports (e.g., a repeater
device).

In this case, a single port in the port group should be selected (in an
implementation-specific manner) to represent the port group. Note that an agent
is encouraged to represent port groups as 'backplanes', in the entPhysicalTable
of the Entity MIB, rather than individual ports in either the Entity MIB or
Interfaces MIB.

Regarding the transmission of a single LLDP message, for the indicated physical
interface contained in the local system:

The LLDP agent checks for the existence of a LLDPSuppressEntry for the
port. If an entry exists then this port is skipped, otherwise continue.

The LLDP message is encapsulated as appropriate for the port.

The MAC header is filled in with appropriate SA and DA and EtherType
fields as defined above.

The frame is transmitted or passed to a lower layer for transmission.

The LLDPStatsOutPkts counter is incremented for the indicated local port.

Message Forwarding

As indicated by the operation of Slow Protocols, LLDP agents should not forward
LLDP messages received on any port. However, some devices, such as repeaters,
cannot examine each frame received on an interface or port. Such a device will
allow LLDP messages to be retransmitted on one or more local ports, and will
transmit its own LLDP messages on those ports as well. These agents are termed
'forwarding' LLDP agents.

LLDP agents located on devices which examine each frame before retransmitting it
(e.g., routers and bridges), are expected to process received LLDP messages and
not retransmit them on any local port. These agents are termed 'non-forwarding'
LLDP agents.

Paul Congdon – IEEE 802.1 Page 13 5/21/2002 – Edinburgh Interim

An NMS may find physical topology information about the same physical port,
represented by several LLDP agents. This may occur for one of several reasons,
including a mixture of forwarding and non-forwarding LLDP agents within a
network.

Received Message Processing

An active LLDP agent must process LLDP messages received on each appropriate
port, as such messages arrive. Before LLDP specific receive rules are executed,
the frame is subject to the receive processing rules of Slow Protocols defined
in Std 802.3, 2000 Edition, Annex 43B.

The following sections refer to the reception of a single LLDP message, for the
indicated physical interface contained in the local system:

Header Fields

The LLDP message and the chassis/port indices associated with the receiving port
are retrieved.

The LLDP version and flags field are checked. The version should equal one
(0x01) and the flags should equal zero (0x00). If not, the LLDPStatsInErrors
counter for the receiving port is incremented and processing is terminated;
otherwise continue.

TLVs

The TLV portion of the message is decoded. If this portion of the LLDP message
is not properly encoded, as defined above, then the LLDPStatsInErrors counter
for the receiving port is incremented, and processing is terminated; otherwise
continue.

The list of TLV elements is examined. The agent must skip and ignore PDU data
elements unknown to the agent. If any of the mandatory data elements are
missing, then the LLDPStatsInErrors counter for the receiving port is
incremented, and processing is terminated; otherwise continue.

The LLDPStatsInGoodPkts counter is incremented for the receiving port.

State Machines

The operation of the LLDP protocol can be represented with three simple state
machine; a timer state machine, a transmit state machine and a receive state
machine.

The timer state machine is trivial and simply decrements a txWhen variable once
a second until zero. An example of such a machine is the Port Timers machine in
IEEE 802.1X.

The transmit state machine is responsible for sending the periodic LLDP messages
as well as the shutdown message. The following figure represents the transmit
state machine.

Paul Congdon – IEEE 802.1 Page 14 5/21/2002 – Edinburgh Interim

INIT
txTTL = msgTxInterval *

msgTxHold

TX_CURRENT

msgTx()
txWhen = msgTxInterval

TX_SHUTDOWN

txTTL = 0
msgTx()

adminStatus == enable

BEGIN

adminStatus == disabletxWhen == 0

UTC

Transmit State Machine

The receive state machine is assumed to interface with a module that processes
the received information. The following figure represents the receive state
machine.

Paul Congdon – IEEE 802.1 Page 15 5/21/2002 – Edinburgh Interim

IDLE

INIT

RX_SHUTDOWN
deleteInfo()

RX_CURRENT
updateInfo()

adminStatus == enable

rcvLLDP & (rxTTL == 0) rcvLLDP & (rxTTL != 0)

UTCUTC

BEGIN

Receive State Machine

The functions updateInfo() and deleteInfo() are responsible for processing
received information. These functions are responsible for updating the PTOPO
MIB and other management objects.

PTOPO MIB Update

If the time-to-live field in the LLDP message header is zero then execute this
interface shutdown procedure, described below. Processing of the LLDP message
is now complete.

If the time-to-live field is non-zero, then the appropriate ptopoConnEntry is
found or created, based on the data elements included in the LLDP message. If
the indicated entry is dynamic (i.e., ptopoConnIsStatic is true), then the
current sysUpTime value is stored in the ptopoConnLastVerifyTime field for the
entry.

If a ptopoConnEntry was added then the ptopoConnTabInserts counter is
incremented.

If any ptopoConnEntry was added or deleted, or if information other than the
ptopoConnLastVerifyTime changed for any entry due to the processing of this LLDP
message, then the ptopoLastChangeTime object is set with the current sysUpTime,
and a ptopoConfigChange trap event is generated. (See the PTOPO MIB for
information on ptopoConfigChange trap generation.)

Paul Congdon – IEEE 802.1 Page 16 5/21/2002 – Edinburgh Interim

Interface Shutdown Procedure

A special procedure exists for the case in which a LLDP agent knows a particular
port is about to become non-operational.

Note that the LLDPSuppressTable has precedence over these procedures, and they
are only executed if the indicated interface is not specified in the
LLDPSuppressTable.

If any entries are deleted as a result of these procedures, the
ptopoConnTabDeletes counter is incremented for each deleted entry.

LLDP Shutdown Transmission

In the event an interface, currently configured with LLDP message transmission
enabled, either becomes disabled for LLDP activity, or the interface is
administratively disabled, a final LLDP message is transmitted with a time to
live value of zero (before the interface is disabled).

In the event the LLDPOperStatus is transitioning to the disabled state, then
this shutdown procedure should be executed for all local interfaces.

LLDP Shutdown Reception

After reception of a valid LLDP message with a time-to-live value equal to zero,
the LLDP Agent must remove all information in the PTOPO MIB learned from the
particular LLDP agent, which is associated with the indicated remote connection
endpoint.

Link Level Discovery Protocol MIB

This section defines the MIB used to configure LLDP agent behavior.

LLDP-MIB DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY, OBJECT-TYPE, Integer32, Counter32

FROM SNMPv2-SMI
RowStatus

FROM SNMPv2-TC
MODULE-COMPLIANCE, OBJECT-GROUP

FROM SNMPv2-CONF
PhysicalIndex

FROM ENTITY-MIB;

LLDPMIB MODULE-IDENTITY
LAST-UPDATED "9707300000Z"
ORGANIZATION "IETF PTOPOMIB Working Group"
CONTACT-INFO

"PTOPOMIB WG Discussion:

Paul Congdon – IEEE 802.1 Page 17 5/21/2002 – Edinburgh Interim

ptopo@3com.com
Subscription:
majordomo@3com.com

msg body: [un]subscribe ptopomib

Andy Bierman
Cisco Systems Inc.
170 West Tasman Drive
San Jose, CA 95134
408-527-3711
abierman@cisco.com

Keith McCloghrie
Cisco Systems Inc.
170 West Tasman Drive
San Jose, CA 95134
408-526-5260
kzm@cisco.com"

DESCRIPTION
"The MIB module for managing the Physical Topology Discovery
Protocol."

::= { experimental xx }

LLDPMIBObjects OBJECT IDENTIFIER ::= { LLDPMIB 1 }

-- MIB groups
LLDPConfig OBJECT IDENTIFIER ::= { LLDPMIBObjects 1 }
LLDPStats OBJECT IDENTIFIER ::= { LLDPMIBObjects 2 }

LLDPPortIdType ::= TEXTUAL-CONVENTION
STATUS current
DESCRIPTION

"The type of index value used to represent a port component.

If an object of this type has a value of 'ifIndexType(1)',
then the associated 'port ID' value represents an ifEntry,
with the same ifIndex value.

If an object of this type has a value of
'entPhysicalIndexType(2)', then the associated 'port ID'
value represents an entPhysicalEntry, with the same
entPhysicalIndex value."

SYNTAX INTEGER {
ifIndexType(1),
entPhysicalIndexType(2)

}

--
-- ***
--
-- L L D P C O N F I G
--
-- ***
--
-- The Physical Topology Discovery Protocol Configuration Group

Paul Congdon – IEEE 802.1 Page 18 5/21/2002 – Edinburgh Interim

LLDPAdminStatus OBJECT-TYPE
SYNTAX INTEGER {

enabled(1),
disabled(2)

}
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"The administratively desired status of the the local LLDP
agent.

If the agent is capable of storing non-volatile
configuration, then the value of this object must be
restored after a re-initialization of the management
system."

::= { LLDPConfig 1 }

LLDPOperStatus OBJECT-TYPE
SYNTAX INTEGER {

enabled(1),
disabled(2)

}
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The current operational status of the local LLDP agent."
::= { LLDPConfig 2 }

LLDPMessageTxInterval OBJECT-TYPE
SYNTAX Integer32 (5..32768)
UNITS "seconds"
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"The interval at which LLDP messages are transmitted on
behalf of this LLDP agent.

If the agent is capable of storing non-volatile
configuration, then the value of this object must be
restored after a re-initialization of the management
system."

DEFVAL { 60 }
::= { LLDPConfig 3 }

LLDPMessageTxHoldMultiplier OBJECT-TYPE
SYNTAX Integer32 (2..10)
MAX-ACCESS read-write
STATUS current
DESCRIPTION

"The time-to-live value expressed as a multiple of the
LLDPMessageTxInterval object. The actual time-to-live value
used in LLDP messages, transmitted on behalf of this LLDP
agent, can be expressed by the following formula:
TTL = min(65535, (LLDPMessageTxInterval *

LLDPMessageTxHoldMultiplier))

For example, if the value of LLDPMessageTxInterval is '60',

Paul Congdon – IEEE 802.1 Page 19 5/21/2002 – Edinburgh Interim

and the value of LLDPMessageTxHoldMultiplier is '3', then the
value '180' is encoded in the TTL field in the LLDP header.

If the agent is capable of storing non-volatile
configuration, then the value of this object must be
restored after a re-initialization of the management
system."

DEFVAL { 3 }
::= { LLDPConfig 4 }

--
-- LLDPSuppressTable:
-- Disable LLDP activity on individual local ports

LLDPSuppressTable OBJECT-TYPE
SYNTAX SEQUENCE OF LLDPSuppressEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"A table controlling LLDP message transmission on individual
interfaces, ports, or backplanes."

::= { LLDPConfig 6 }

LLDPSuppressEntry OBJECT-TYPE
SYNTAX LLDPSuppressEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"LLDP message configuration information for a particular
port. The port must be contained in the same chassis as the
LLDP agent. LLDP messages will not be transmitted or received
on the indicated port, even if the port is enabled.

If the agent is capable of storing non-volatile
configuration, then each active LLDPSuppressEntry must be
re-created after a re-initialization of the management
system. An agent should store enough information about the
associated entPhysicalEntry (e.g., entPhysicalAlias) or
ifEntry (e.g. ifAlias), to properly re-create the entry,
even if the LLDPSuppressChassisId and/or LLDPSuppressPortId
values change across a system re-initialization."

INDEX {
LLDPSuppressChassisId,
LLDPSuppressPortIdType,
LLDPSuppressPortId

}
::= { LLDPSuppressTable 1 }

LLDPSuppressEntry ::= SEQUENCE {
LLDPSuppressChassisId PhysicalIndex,
LLDPSuppressPortIdType LLDPPortIdType,
LLDPSuppressPortId Integer32,
LLDPSuppressRowStatus RowStatus

}

LLDPSuppressChassisId OBJECT-TYPE
SYNTAX PhysicalIndex

Paul Congdon – IEEE 802.1 Page 20 5/21/2002 – Edinburgh Interim

MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The entPhysicalIndex value used to identify the chassis
component associated with this entry. The associated
entPhysicalEntry must be active, and the associated
entPhysicalClass object must be equal to 'chassis(3)'."

::= { LLDPSuppressEntry 1 }

LLDPSuppressPortIdType OBJECT-TYPE
SYNTAX LLDPPortIdType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The type of index value contained in the associated
LLDPSuppressPortId object."

::= { LLDPSuppressEntry 2 }

LLDPSuppressPortId OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The index value used to identify the port component of this
entry. The type of index value depends on the
LLDPSuppressPortIdType value for this entry.

If the associated LLDPSuppressPortIdType is equal to
'ifIndexType(1)', then this LLDPSuppressPortId represents an
ifEntry with the same ifIndex value. The associated ifEntry
must be active, and represent a physical interface on the
local chassis.

If the associated LLDPSuppressPortIdType is equal to
'entPhysicalIndexType(2)', then this LLDPSuppressPortId
represents an entPhysicalEntry with the same
entPhysicalIndex value. The associated entPhysicalEntry
must be active, and the associated entPhysicalClass object
must be equal to 'port(10)' or 'backplane(4)'.

Note that some devices, such as repeaters, cannot restrict
frame transmission to a single port, but rather to a group
of ports. In such an event, an agent will disable LLDP
activity on all ports in the port group, if any of the
individual ports in the group are specified in this table."

::= { LLDPSuppressEntry 3 }

LLDPSuppressRowStatus OBJECT-TYPE
SYNTAX RowStatus
MAX-ACCESS read-create
STATUS current
DESCRIPTION

"The status of this entry."
::= { LLDPSuppressEntry 4 }

--
-- ***

Paul Congdon – IEEE 802.1 Page 21 5/21/2002 – Edinburgh Interim

--
-- L L D P S T A T S
--
-- ***
--
-- LLDP Stats Group

LLDPStatsTable OBJECT-TYPE
SYNTAX SEQUENCE OF LLDPStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"A table containing LLDP statistics for individual ports.

Entries are not required to exist in this table while the
LLDPAdminStatus or LLDPOperStatus objects are equal to
'disabled(2)'.
Entries are not required to exist in this table if a
corresponding entry (with identical index values) exists in
the LLDPSuppressTable."

::= { LLDPStats 1 }

LLDPStatsEntry OBJECT-TYPE
SYNTAX LLDPStatsEntry
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"LLDP message statistics for a particular port. The port
must be contained in the same chassis as the LLDP agent."

INDEX {
LLDPStatsChassisId,
LLDPStatsPortIdType,
LLDPStatsPortId

}
::= { LLDPStatsTable 1 }

LLDPStatsEntry ::= SEQUENCE {
LLDPStatsChassisId PhysicalIndex,
LLDPStatsPortIdType LLDPPortIdType,
LLDPStatsPortId Integer32,
LLDPStatsInGoodPkts Counter32,
LLDPStatsInErrors Counter32,
LLDPStatsOutPkts Counter32

}

LLDPStatsChassisId OBJECT-TYPE
SYNTAX PhysicalIndex
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The entPhysicalIndex value used to identify the chassis
component associated with this entry. The associated
entPhysicalEntry must be active, and the associated
entPhysicalClass object must be equal to 'chassis(3)'."

::= { LLDPStatsEntry 1 }

LLDPStatsPortIdType OBJECT-TYPE

Paul Congdon – IEEE 802.1 Page 22 5/21/2002 – Edinburgh Interim

SYNTAX LLDPPortIdType
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The type of index value contained in the associated
LLDPStatsPortId object."

::= { LLDPStatsEntry 2 }

LLDPStatsPortId OBJECT-TYPE
SYNTAX Integer32 (1..2147483647)
MAX-ACCESS not-accessible
STATUS current
DESCRIPTION

"The index value used to identify the port component of this
entry. The type of index value depends on the
LLDPStatsPortType value for this entry.

If the associated LLDPStatsPortIdType is equal to
'ifIndexType(1)', then this LLDPStatsPortId represents an
ifEntry with the same ifIndex value. The associated ifEntry
must be active, and represent a physical interface on the
local chassis.

If the associated LLDPStatsPortIdType is equal to
'entPhysicalIndexType(2)', then this LLDPStatsPortId
represents an entPhysicalEntry with the same
entPhysicalIndex value. The associated entPhysicalEntry
must be active, and the associated entPhysicalClass object
must be equal to 'port(10)' or 'backplane(4)'."

::= { LLDPStatsEntry 3 }

LLDPStatsInGoodPkts OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of valid LLDP messages received by this LLDP agent
on the indicated port, while this LLDP agent is enabled."

::= { LLDPStatsEntry 4 }

LLDPStatsInErrors OBJECT-TYPE
SYNTAX Counter32
MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of invalid LLDP messages received by this LLDP
agent on the indicated port, while this LLDP agent is
enabled. A LLDP message may be invalid for several reasons,
including:

- invalid MAC header; length or DA fields
- invalid LLDP header; version or flags fields
- invalid LLDP VarBindList ASN.1/BER encoding
- invalid or missing LLDP VarBindList data elements"

::= { LLDPStatsEntry 5 }

LLDPStatsOutPkts OBJECT-TYPE
SYNTAX Counter32

Paul Congdon – IEEE 802.1 Page 23 5/21/2002 – Edinburgh Interim

MAX-ACCESS read-only
STATUS current
DESCRIPTION

"The number of LLDP messages transmitted by this LLDP agent on
the indicated port."

::= { LLDPStatsEntry 6 }

-- conformance information
LLDPConformance OBJECT IDENTIFIER ::= { LLDPMIB 2 }

LLDPCompliances OBJECT IDENTIFIER ::= { LLDPConformance 1 }
LLDPGroups OBJECT IDENTIFIER ::= { LLDPConformance 2 }

-- compliance statements

LLDPCompliance MODULE-COMPLIANCE
STATUS current
DESCRIPTION

"The compliance statement for SNMP entities which implement
the LLDP MIB."

MODULE -- this module
MANDATORY-GROUPS { LLDPConfigGroup, LLDPStatsGroup }

::= { LLDPCompliances 1 }

-- MIB groupings

LLDPConfigGroup OBJECT-GROUP
OBJECTS {

LLDPAdminStatus,
LLDPOperStatus,
LLDPMessageTxInterval,
LLDPMessageTxHoldMultiplier,
LLDPSuppressRowStatus

}
STATUS current
DESCRIPTION

"The collection of objects which are used to configure the
Link Layer Discovery Protocol implementation behavior.

This group is mandatory for agents which implement the Link Layer
Discovery Protocol."

::= { LLDPGroups 1 }

LLDPStatsGroup OBJECT-GROUP
OBJECTS {

LLDPStatsInGoodPkts,
LLDPStatsInErrors,
LLDPStatsOutPkts

}
STATUS current
DESCRIPTION

"The collection of objects which are used to represent Link Layer
Discovery Protocol statistics.

This group is mandatory for agents which implement the Link Layer

Paul Congdon – IEEE 802.1 Page 24 5/21/2002 – Edinburgh Interim

Discovery Protocol."
::= { LLDPGroups 2 }

END

Persistent Identifiers

The PTOPO MIB [RFC2922] utilizes non-volatile identifiers to distinguish
individual chassis and port components. These identifiers are associated with
external objects in order to relate topology information to the existing managed
objects.

In particular, an object from the Entity MIB or Interfaces MIB can be used as
the 'reference-point' for a connection component identifier.

Relationship to the Physical Topology MIB

The Physical Topology MIB [RFC2922] allows a LLDP Agent to expose learned
physical topology information, using a standard MIB. LLDP is intended to fully
support the PTOPO MIB.

Relationship to Entity MIB

The Entity MIB [RFC2037] allows the physical component inventory and hierarchy
to be identified. The chassis identifier strings passed in LLDP messages
identify entPhysicalTable entries, and implementation of the entPhysicalTable as
specified in the Version 1 of the Entity MIB [RFC2037], and implementation of
the entPhysicalAlias object from Version 2 of the Entity MIB [ENTITY-MIB], are
required for SNMP agents which also implement the LLDP MIB.

Relationship to Interfaces MIB

The Interfaces MIB provides a standard mechanism for managing network
interfaces. The port identifier strings passed in LLDP messages identify ifTable
(or entPhysicalTable) entries, and implementation of the ifTable and ifXTable
[RFC2233] are required for SNMP agents which also implement the LLDP MIB, for
the ports which are represented in the Interfaces MIB.

Security Considerations

This protocol and associated MIB can expose the existence of physical
components, MAC layer addresses, and network layer addresses, pertaining to
devices within a given network. A network administrator may wish to restrict
access to this management information, using SNMP access control mechanisms, and
restrict LLDP message processing to a particular set of ports, by configuring
entries in the LLDPSuppressTable.

Paul Congdon – IEEE 802.1 Page 25 5/21/2002 – Edinburgh Interim

References

[RFC2737]
McCloghrie, K., and A. Bierman, "Entity MIB (Version 2)", RFC 2737, Cisco
Systems, December 1999.

[RFC2922]
Bierman, A., and K. Jones, "Physical Topology MIB", RFC 2922, Cisco
Systems, Bay Networks, November 1998.

[RFC2037]
McCloghrie, K., and A. Bierman, "Entity MIB using SMIv2", RFC 2037, Cisco
Systems, October 1996.

[RFC2233]
McCloghrie, K., and F. Kastenholtz, "The Interfaces Group MIB using
SMIv2", RFC 2233, Cisco Systems, FTP Software, November 1997.

[RFC3232]
Reynolds, J. “Assigned Numbers: RFC 1700 is Replaced by an On-line
Database”, RFC 3232, RFC Editor, January 2002

