

Rev 0.3 8/12/2004 5:53 PM

 Key exchange with packet loss, delay, and misordering

Mick Seaman

This note discusses the performance and operation of key exchange
protocols with reference to the functionality provided by KSP.

Basic protocol
Consider the protocol
 SA → A, RA (1)
 SB → B, RB, A, RA (2)

 SA: K = RA ⊕ RB (3)1
 SA → A, RA, B, RB (4)
 SB: K = RB ⊕ RA (5)
or one of its close relatives.
In this protocol, stations SA and SB exchange
random numbers RA and RB to establish a
common pair-wise key, K. If the messages are
protected with a master key, and the key has
only been entrusted to parties that can be
trusted to operate the protocol correctly, then
the protocol:
a) proves mutual possession of the master key
b) proves liveness, i.e. the stations possessing

the key are operational
c) results in a shared key.
These goals ((a) thru (c)) are met with
commendable economy2. The stations’
identifiers, A and B, are not even required,
unless they are used to identify frames as
protected by K, and can clearly be omitted when
a single key is to be used for a point-to-point
link3. The real identities of the stations in the
protocol are RA and RB — though the binding to
A and B can facilitate management, SA thinks of
SB as “the station that has chosen RB“. Replay of
protocol messages, with old RA,RB values
results in a little extra work but not the
generation of a competing key, since neither
station recognizes its old random value.

1 The symbol ⊕ denotes ‘exclusive-or’
2 The other side of the argument is that supporting a number of
distinct functions with fewer protocol elements is just being
‘clever’, an activity that leads to obscurantism and design failure
when there is the least extension of goals. However this is a
cheap shot since there is no unique functional decomposition of
any interesting problem.
3 And from step (1) of the protocol in any case.

Packet loss and delay
RA and RB are often referred to as ‘nonces’,
values that are only used once by the protocol,
though such a characterization causes careful
examination of the meaning of the word “used”.
If the key exchange protocol is supported by a
reliable delivery mechanism, then clearly each
protocol message could be transmitted a
number of times. This does not violate the
security of the protocol, which is just as well,
otherwise a simple replay attack could be
attempted.
Protection against packet loss is best provided
by replaying the messages, rather than by
picking new RA,RB values. If the latter is done
then all three messages have to be successfully
received. If the probability of single message
loss is p, then the probability succeeding without
any retransmission is (1 – p)3. For p = 0.3, that is
0.34.
Worse, if new RA,RB values are chosen and the
problem is excessive delay rather than loss,
then the protocol may never succeed. SA may
retransmit step (1) of the protocol just before
receiving from SB at step (3) with the original
values. SA will have discarded its first nonce,
RA1 say, in favor of RA2 so it knows to discard
SB‘s response, but it still has hope that the latter
attempt experiences no loss. Retransmission
using fresh nonces should therefore use a
backoff for retransmission intervals4, or
conservative delay estimates. A reasonable
measure of protocol performance is the
expected time for a 99.99% probability of
completing key exchange. Neither
retransmission strategy approaches the
performance achieved by more sophisticated
protocols if nonces are changed once every n
transmissions and pn >> 0.01%.

Misordering
The effect of misordering in the presence of
nonce changes is to both increase the time that
can be taken for the protocol to succeed – since
success can be undone by receipt of a
previously transmitted message – and, when
coupled with loss, to introduce the possibility
that one station believes the protocol to have

4 It is apparent that we are slipping toward an explicit transport
protocol here, and other issues will begin to detract from the
simplicity of picking transaction identifiers that also generate the
key.

Rev 0.3 8/12/2004 5:53 PM 2

been successfully completed but the other has a
key based on the previous nonce.
In fact SB may retain data for protocol execution
separately for each peer nonce, in our example
separately for RA1 and RA2, but if both these are
bound to identifier A then failure will have
occurred.
Obviously if one nonce is changed and the other
is not, an attacker can replay old messages to
induce a denial of service attack5.

Timeliness
The ability of either station to draw conclusions
about when the other replied to a message, and
thus to defend the key exchange and the use of
the subsequently derived key against an attack
that simply introduces a mischievous delay to
compromise the operation of configuration
protocols, is unfortunately lessened if the nonce
are not changed frequently. Thus the protocols
user’s desires in this regard run contrary to his
interests for timely success in the face of loss
and misordering.

Enhanced Protocol
The basic protocol can be simply enhanced with
a message number or counters. This is referred
to as an “age” in descriptions of KSP, but the
term count and the symbol C are used here to
avoid any possibly adverse connotations of time,
and to avoid overuse of “number” and “N” in
context where other semantics for nonces may
be appropriate.
The count allows messages to be sequenced,
protecting against misordering, and also allows
stations to measure timeliness without requiring
the nonce R to be changed. R can now be
chosen infrequently. The sense in which it is
“used once” is that a new value is randomly
chosen from a very large space whenever the
complete history of values derived from a
previous use is not known to the station
choosing R, or a new R has to be picked for any
other reason.
The protocol is6:
 SA → A, RA, CA (1)
 SB → B, RB, CB, A, RA, CA (2)

 SA: K = RA ⊕ RB (3)
 SA → A, RA, CA+, B, RB, CB (4)
 SB: K = RB ⊕ RA (5)
where CA and CB are set to zero (or one) on their
first use, and incremented for every subsequent
message, and CA+ is a value greater than or
equal to CA.

5 While no protocol can prevent denial of service by an attacker
who has full control over the transmission medium, that does not
mean to say that attacks that involve loss, replay, or misordering
of a few messages and that have an indeterminately persistent
effect should be admitted.
6 Note again that each message is protected using a master key

The count values, CA and CB, do not wrap but a
fresh R is chosen by the respective station when
necessary. For the modest message rates7 of a
key exchange protocol this will be very
infrequent, even for a modest sized field, so
does not much affect expected performance.
Since the values CA and CB are parroted back to
their sources (SA and SB) the latter can use them
to ensure timeliness. Their inclusion does not
affect the correctness of the basic protocol,
when it succeeds, since their use simply results
in the discard of aged and out of order
messages — and is thus equivalent to a source
of packet loss. Thus CA and CB do not have to be
incremented for literally every message, but only
as timeliness guarantees require — once every
half second for example. Alternately they can
reflect the value of a local timer, ticking perhaps
in milliseconds, just so long as the timer is only
reset when a new R is chosen.

Key Transport
As described above, the values R and their
exchange in messages encrypted under a
master key actually serve three purposes:
a) mutual authentication, or rather proof of the

result of a prior authentication process,
through proof of mutual possession of the
master key

b) proof of liveness, i.e. the stations
possessing the key are operational and
engaging in the exchange

c) establishment of shared key.
The addition of the count (C) values allows the
liveness guarantees provided in (b) above to be
enhanced without frequently changing R.
Since both parties contribute to the shared key
in (c), and do so using nonces, the accidental
repetition of a derived key K is protected
against. However the nonce value used for (c)
does not necessarily have to be the same as
that used for (a) and (b), and in that respect the
functionality of R is overloaded, even if the
overloading is convenient from the point of view
of proving security.
As a first step in separating functions without
invalidating prior proofs consider each nonce to
be composed of two separate parts, R and K,
generated and disposed of together. The R part
supports functions (a) and (b), and the K
supports (c).
To make the derivation and use of keys clear in
the following protocol descriptions, a key K
derived from combining values RA and RB is
written as KRARB, and the notation {...}KRARB is
used to denote encryption and integrity
protection of a message ... using that key with a
suitable cryptographic mode and a random initial
value/nonce.

7 A few messages per second.

Rev 0.3 8/12/2004 5:53 PM 3

The original basic protocol can be written as:
 SA → {A, RA}M (1)
 SB → {B, RB, A, RA}M (2)

 SA: KRARB = RA ⊕ RB (3)
 SA → {A, RA, B, RB}M (4)
 SB: KRARB = RB ⊕ RA (5)

Separating out the R and K parts, as described
above, we have:
 SA → {A, RA, KA }M (1)
 SB → {B, RB, KB, A, RA, KA }M (2)

 SA: KKAKB = KA ⊕ KB (3)
 SA → {A, RA, KA, B, RB, KB }M (4)
 SB: KKAKB = KB ⊕ KA (5)

Of course an equally valid way to achieve the
result shown by this separation of concerns
would be first to generate the key KRARB using
either the basic protocol or the enhanced
version (with CA and CB) described above, and
then use the resulting secure channel to
exchange KA and KB :
 SB → {B, KB, A, KA }KRARB (6)

 SA: KKAKB = KA ⊕ KB (7)
 SA → {A, KA, B, KB }KRARB (8)
 SB: KKAKB = KB ⊕ KA (9)
Which makes it apparent that although KA and
KB are nonces, just as RA and RB are, that the
Ks can be chosen independently of the Rs. It
also makes it clear that the messages
 { A, RA, KA, B, RB, KB}M (i)

and
 {A, KA, B, KB }KRARB (ii)
and indeed
 { RA, RAB, ... }M (iii)

and
 { ... }KRARB (iv)
are equivalent, up to the point that there is a risk
of key M having been used too many times, so
either form ((iii) or (iv)) can be used to transport
keying material for a data connection, with (iii)
having the advantage that it is no necessary to
calculate tables and setup the use of the
“intermediate” key KRARB. Moreover use of this
form allows a single set of C values to provide
ordering and timeliness protection for exchange
of both R and K values.

The final form of the protocol is thus:
 SA → {A, RA, CA, KA }M (1)
 SB → {B, RB, CB, KB, A, RA, KA }M (2)

 SA: KKAKB = KA ⊕ KB (3)
 SA → {A, RA, CA+, KA, B, RB, CB, KB }M (4)
 SB: KKAKB = KB ⊕ KA (5)
with discussion of alternative forms of keying
material (K values) and their use being
separable from the basic mechanism that
transports those values.

