
Lightweight Authentication and Key Exchange

John Viega
viega@securesoftware.com

• Drive discussion and understanding about
requirements

• The crypto world has produced good solutions
that lead to operational nightmares (SSL)

• Lots of off-the-shelf solutions
• Solutions tend not to map well to implicit

requirements

Goal

Authentication

• Entity authentication
– Who’s on the other side
– Connections themselves are assumed virtual
– All messages must be authenticated as coming from

a set of entities
– Non-repudiation usually isn’t a goal and is expensive

• A goal for both parties: message integrity
• Another goal: Temporal consistency

– Attackers shouldn’t replay messages
– Missing messages should be detectable

• Another goal: connection confidentiality
• All can be provided with layered services

What can go wrong?

• One entity can pretend to be another
– False login
– Connect to a fake server
– “Man-in-the-middle”: attacker as relay

• Single-entity authentication is rarely enough
– Only when no notion of access control

• Spectacular failures result
– Do you click the lock on your browser?
– Would my mom know what to look for if she did?
– This is true even in non-web applications

• Password authentication is notably suspect
– Particularly, dictionary attacks

Key Management

• Authentication requires secrets
• Efficient communication needs shared secrets

– Though not necessarily long-term
• Key management is...

– Necessary
– A source of tremendous risk

• Should server admins have user passwords?
• Should low-entropy passwords persist?
• Should we lock out possible attackers?

• If insecure channels are necessary, only for
account setup

Key Exchange

• With a shared secret, who needs it?
• There’s already a virtual “established

connection”

• Might not want to save state
– Managing sequential nonces is a pain

• Avoid exposing our “good” secrets
– Many messages encrypted under same key
– Good design: single key for single purpose

• Forward secrecy: damage control
– Compromise of some secrets won’t compromise all

Usability should be priority #1

• A hard balance to strike
• Defense-in-depth theoretically helps...
• Physical solutions are slow to adopt

– Cost
– Operational problems (newest I’ve heard: germs)

• Passwords are “usable”...
• ... but not when they’re secure!
• Best bet?

– A range of solutions to meet various needs
– Defaults should be a good compromise
– We’ll revisit later

Efficiency

• Public key crypto is expensive
• ECC may not help enough for small devices
• AKE takes significant time on a CryptoPhone
• More an issue on server side

• Terse protocols with minimal messages?

Security Assurance

• Traditional approach: lack of attacks
– Assurance requires extensive review

• Model checking: prove resistance to attacks
– Can only do this for known attacks
– Large state spaces can require approximations
– In practice, all checkers have limitations

• Provable security: prove secure
– In the sense of an attack implying an attack on a

vetted algorithm (e.g., AES, RSA, Diffie-Hellman)
– Requires concrete security models and some review
– E.g., Bellare-Rogaway: all network-only attacks

Interoperability

• 802.1X (EAP)
– Bad bindings abound
– Usually assumes trusted (physical) path

• Radius
– Central management
– Hard to do securely

• Kerberos
– Central management
– Widely supported, rarely deployed

• IKE: Internet Key Exchange
• Supporting existing infrastructure compelling
• Otherwise, why?

Other Requirements

• Multi-party problem
• Protection against bad random numbers
• Support for password resets / changes
• Server compromise forbids spoofing?

• In general, assume worst feasible threat
model

• Should $10/hr tech support be able to reset a
password?

• People should be leery of bringing a password
to someone else’s machine

• Look at classes of solutions
• Plus some commentary
• I might be wrong, based on assumptions
• Mostly, I’ve tried to leave it open
• Assumptions:

– Mutual authentication
– Usability is a priority
– Key exchange needs to happen
– Both parties should contribute random data

• Ignoring (for now):
– Multi-party problem
– Key servers

Possible Directions

Symmetric Protocols

• crypt, MD5-MCF, S/KEY, HTTP Digest Auth, ...
– None provide mutual authentication
– All require existing client-trusted (secure) channel

• Not much, but easy, given requirements
• Forward secrecy requires synchronization

– But, easy to do
• Password-based protocols are susceptible to

dictionary attacks
• Two messages possible using a nonce

– A -> GCMk(N, X, B) -> B -> GCMk(N+1, Y, A) -> A

– S = X ⊕ Y
• Otherwise, three messages

Public Key Protocols

• We’ll skip the math
• Forward secrecy easier (use ephemeral keys)
• Implementation more complex and slower
• Provably secure protocols, such as modified

“Station to Station” (StS).
• Relying on even ad-hoc PKI seems unrealistic
• Password-based possible
• Simple modification to modified StS
• Also, EKE family of protocols

Initial Thoughts

• Authentication alone shouldn’t be enough
– Secure channel needs to result
– Bindings for SecurID would need some work

• Shared secrets and passwords
• Allow devices to cache credentials

– Encourage more efficient transfers
– Discourage day-to-day passwords

• Support one-time setup for passwords
• Bindings for one-time passwords?
• Provide guidelines for deployment

– Password expiration recommendations
• Forward secrecy, etc.

Questions?

viega@securesoftware.com

