Media Independent MAC Enhancements for RF Management of Wireless 802 Networks

An Introduction
Overview

• Into to 802 Wireless Networks
• What is “RF Management”
• Why a standard is needed
• Why a common interface is needed
• What would such an interface look like in the IEEE 802 architecture
Brief Intro to IEEE 802 Wireless Networks

• Various MACs exist or are under development
 – E.g. 802.11, 802.15, 802.16, 802.20, 802.22

• I will talk about 802.11 as an example

• Infrastructure vs. Ad Hoc
 – I will talk about Infrastructure as an example
APs and STAs

○ = Access Point

× = Station (STA)

An “Association”

“Distribution Service” (DS) – often a wired LAN
Overview (continued)

• APs can operate on one of several channels
 – E.g. 802.11 b/g supports 3 non-overlapping channels
 – E.g. 802.11 a supports 8 or more non-overlapping channels
 – Channel selection is not part of the standard
 – The vast majority of products come pre-configured to a channel (mostly the same one)

• STAs make associations with APs
 – How a STA chooses an AP is not part of the standard

• Transmit power of APs and STAs
 – Usually set at factory to a regulatory max (or less).
 – Sometimes manually adjustable
 – How a radio selects a transmit power level is not part of the standard.
What is RF Management?

- Sometimes it’s useful to:
 - cause the APs to select different channels
 - To avoid “co-channel interference”
 - To distribute energy across the spectrum within a given geographical area
 - adjust the transmit power
 - See above
 - Enhanced privacy
 - direct STAs to associate to certain APs
 - For load balancing purposes
 - To manage interference issues
 - For other considerations of QoS
 - To enforce other sorts of policies
 - enquire of APs and STAs their sense of the RF environment
 - E.g. what other STAs and APs can you hear and at what signal strength?
 - Detection of “Rogue APs”
 - Detection of attempted intrusions
 - To gather locality information about APs or STAs
 - stuff we may not yet have considered
Why Standardization

• Different chip sets report signal strength in different ways
 – Sometimes just a relative signal strength (RSSI) in dB
 – Sometimes an absolute power measurement in dBm

• There is no standard interface to set transmit power
 – Management applications must muck about in the chip driver
 – Management applications must be ported individually to every bit of hardware
 – Optional OIDs for NDIS exist but doesn’t address non-Windows devices

• There is no interoperability between different management applications
 – MIBs are not up to date

• Even if more attention were paid to MIBs, each is crafted individually by the different “dots”
 – Would be like having spanning tree for 802.3 and Source Routing for 802.5!
 – Boxes will be built that will interconnect different wireless technologies e.g. 802.16 to connect to the ISP, and 802.11 to connect to the home LAN.

• The lack of a standard RF management interface for different implementations of a given MAC as well as different wireless MACs discourages multi vendor, interoperable Wireless Network management
Why interoperability is so important for Wireless Networks

• All the usual reasons plus:
 – Radio waves do not respect administrative boundaries
 • Neighbors cannot cooperate on channel selection even if they wanted to
 • Increasingly dense deployments, and all the APs don’t belong to the same owner!
 • You can control access but you can’t control the laws of physics
Why 802.1

• This issue spans all wireless MACs
 – Requires input from all Wireless MACs
• This is architecture
 – 802.1 has the most protocol expertise
 – 802.1 has the most management expertise
• 802.1 is the logical place to develop standards which may make use of the interface
Examples of what the interface might look like

\textit{MA-UNITDATA.indication}

Example modifications to the semantics of the 802.11 \textit{MA-UNITDATA.indication} service primitive are underlined.

\texttt{MA-UNITDATA.indication (}
\begin{itemize}
 \item source address,
 \item destination address,
 \item routing information,
 \item data,
 \item reception status,
 \item priority,
 \item service class,
 \item received power
\end{itemize}
\texttt{)}

The received power parameter specifies the signal strength, expressed in dBm, at which the MSDU was received.
MLME Example

MLME-SCAN.request (Channel List
Scan Time
Quiet Channel
CTS Duration)
MLME Example

MLME-SCAN.indication (Channel List BSS List)
Contact

Floyd Backes
Propagate Networks, Inc.
125 Nagog Park Drive
Acton, MA 01720
+1.978.264.4884
fbackes@propagatenet.com