

Rev 0.1 9/28/2004 12:19 AM

 KSP Update

Mick Seaman

This note includes: an annotated description of the proposed KSPDU
format, describing the life and purpose of all PDU fields; object diagrams
of the classes that represent the entities, state machines, and data
maintained by a KSP entity; the more significant KSP state machines;
and the most important procedures. All these reflect revision of KSP to
use a contributory key agreement mechanism to determine each SAK,
although the transport and basic communication mechanisms remain
unchanged from the first proposal.
With the possible exception of the annotated KSPDU format, it is unlikely
that the information contained in this note will prove illuminating or
satisfactory to anyone who wasn’t at the last meeting. It is being
distributed in advance of the upcoming meeting because the essential
diagrams and code contain too much information to be satisfactorily
presented on an LCD projector, or perused on a laptop while in a
meeting. Bring your own printed copies.

Further notes

Rev 0.1 9/28/2004 12:19 AM

Member Identifier (MI)

Field
Size
(bits)

48Destination Address

Source Address 48

KSP EtherType
16

16

64

Octet
posn.

0

Message Number (MN)

64

CKI

IV 96

32

128Key Contribution (KC)

Live Peer List/List Length

SCI

Member Identifier

Message Number

Member Identifier

Message Number
Potential Peer List/List Length

Live List Length (octets)

96

Member Identifier

Message Number

Member Identifier

Message Number

0000 0000 0000 0000

16

16

Potential List Length (octets)

32

96

96

32

128

32

2

4

102 +
 16*Live Peers

100

48

44

32

24

12

122 +
 16*Live Peers +

 16*Potential Peers

ICV

G
M

AC
 Integrity Protection

Latest Key Identifier (LKI)

Old Key Identifier (OKI) 128

128 64

80

LAN tx zis OAN rxtxisVersion

Latest Key - Lowest Acceptable PN (LLPN)

Old Key - Lowest Acceptable PN (OLPN)

16

16

82

98

102

96 104 +

104 +
 16*Live Peers +

 16*Potential Peers

106 +

KSPDU format and fields
KSP uses a single packet type and format (illustrated below). KSPDUs are transmit periodically and as needed subject
to a leaky bucket rate limiter. The transmitter of the PDU is referred to as the ‘actor’, and other protocol participants as
its ‘peers’.

Multicast address, confined by bridges to a single LAN.

Use (or not) of Latest and Old Key fields below, if used the
MACSec association number (AN) bound by the actor to each
key, and whether receiving/transmitting using the key.

Identifies the CAK (secure Connectivity Association Key), i.e. the
master key used to GMAC protect this KSPDU. MAC address
based (EUI-48) so can be allocated by system managing master
keys. Persists across power cycles/reboots/system resets, while all
other recorded info apart from MAC Address/ SCI assumed lost.

Random IV, independently generated for each KSPDU
transmitted, used by GMAC together with the CAK .

Destination address integrity protected. Makes it hard to
launch an attack from a distance as address will not pass
through bridges, but cannot be changed on captured frames.

MAC address (EUI-48) based Secure Channel Identifier used
when transmitting MACsec data frames. Receivers bind SCI,AN
to selected SAKs (Secure Association Keys) for MACsec.

Integrity protected frame in clear allows debug/
attack investigation by field operations personnel
without need to disclose/ provide disclosure of CAK
(integrity protecting master key).

Random nonce, generated at reboot/system initialization. Also
reselected if collision detected (station with other SCI using
same nonce), or Message Number space exhausted.

Nonce, incrementing from 1 when new MI generated. Actor
records values at intervals to support timeliness verification
(see below). Good for 13+ years before new MI reqd.

Random nonce, generated at reboot. Reselected whenever
MACsec data PN (packet number/nonce) space for selected
data key (SAK) near exhaustion. Input to pseudo-random
function using CAK to generate SAK.
XOR of all KCs currently input to SA. Probably uniquely identifies
selected SAK but provides no info to attacker .Protocol converges
even if collisions, may be data packet loss. SAK selected and
receiving initiated when at least one LIve Peer, and no Potential
Peers , or all Live Peers agree LKI. Transmit initiated when all
Live Peers report receiving.
Old SAK used to transmit while latest being selected, retained
after transmitting on new SAK to collect frames of differing
priority and allow others to move to new SAK. Explicitly
identified to ensure no problems if participant loses messages
when LKI becomes OKI, and new LKI calculated soon after,
and to clarify result of group merge while two LKIs in selection.

Reflecting received identifiers proves liveness to others.
Reflecting last received message number proves timeliness to
others, defeats ‘delay frames’ attack. If no timely messages
(max delay 2 - 10 secs) from participant, will be removed from
Live Peer List and SAK calculation and reception stopped.

Separately identifying “Live Peers’ i.e. participants that have
proved liveness and timeliness to actor, from “Potential Peers”
to which actor will respond to prove own liveness, allows
participants quicker retransmit when apparent lost messages
have defeated their proving liveness. Also allows Potential
Peer List to be seeded from others Live Peer List (speeds
convergence) without keeping old participants/Member
Identifiers in circulation for ever.

Terminates PDU while allowing TLV extension for future revision.

Integrity Check Value calculated using CAK (master key) and IV
allows each participant to prove possession of the master key,
and prevents message modification by attackers.

Bounds data transit delay, particularly where priorities/drop
precedence mean no PN based data replay protection.

v0.2 9/16/2004 8:04 PM PST

rxic

Rev 0.1 9/28/2004 12:19 AM 3

mn

Ksp : // Ksp instance

Lsap : public Sap
Uncontrolled_port : public Service Lsap : public Sap

Kay : public Service_user
SCI sci; AN next_an;

Ksp_frame : public Pdu Gcm

Ksp // KSP instance
const cak
const cki

ki()
key()
all_active_agreed(pkn)
all_active_receiving(pkn)
rxpdu(Pdu *pdu)

Peer:
sci

SecY
Actor
life(mn);

Peer
live_peer_while
potential_peer_while
include_kc
kc
sci

Kspy // KSP Entity

Participant_key
const ki
an
receiving
transmitting

Participant
const mi
mn

Actor_key
const kc
installed
next_PN
finish

Kspdu : public Pdu

Actor_contribution
const kc

*latest_key

*old_key

Kc_key
ki
next_PN
in_use

Contributed_key
ki
next_PN
in_use

*latest_key

*old_key

old_next_PN
old_next_PN

old_next_PN

delay_bounds

Peer_key

mn

life_bounds

KSP Objects <<KSPO 0.1>>

Rev 0.1 9/28/2004 12:19 AM 4

Peer
live_peer_while
potential_peer_while
include_kc
kc
sci

Participant_key
const ki
an
receiving
transmitting

Participant
const mi
mn

Kspdu : public Pdu
cak
sci

valid

*latest_key

*old_key

old_next_PN

Peer_key

live_peers

potential_peers

KSPDU Objects <<KSPO 0.1>>

Aaa

LEGEND

An instance of the class Aaa

Aaa
aardvark
wombat

.. with members aardvark and wombat

Aaa
Aaa A list, queue, map or other container of instances of Aaa

Aaa
aardvark

Bbb
alexander

An instance of the class Bbb and an instance of Aaa, Bbb
is derived from Aaa

Aaa
aardvark

Bbb
alexander

An instance of Aaa.
Each instance of Aaa includes an
instance of Bbb. Ccc

const rocky
A definition but not an instance of the class Ccc

Rev 0.1 9/28/2004 12:19 AM 5

BEGIN

WAITING

NEXT_KEY FRESH_KC
old_key = latest_key;

latest_key = new Actor_key(this, ki(), actor->kc.kc);

(active_partners()) &&
(old_key == 0) &&
(!finish) &&
(!key_in_use(ki())) &&
(!actor->kc.ki_exhausted(ki()))

Ksp keys state machine <<KKM 0.1>>

actor->fresh_kc();

UCT UCT

(active_partners()) &&
(old_key == 0) &&
(!finish) &&
(actor->kc.ki_exhausted(ki()))

Ksp::Ksp(Kspy *p, const CAK ca_key, const CKI ca_key_id) : kspy(p), cak(ca_key), cki(ca_key_id)
{ actor = new Actor();
};

BEGIN

ACTING

NEW_ACTOR

Ksp actor state machine <<AM 0.1>>

delete actor;
actor = new Actor();

UCT

actor->exhausted()

Rev 0.1 9/28/2004 12:19 AM 6

\

BEGIN

PENDING_AGREEMENT

ksp->all_active_agreed(ki) &&
secy->macsec_can_install()

NOT_USING_KEY

an = kay->use_next_an();
secy->macsec_install_key(this, ksp->key(), kspy->sci, an, next_PN);

START_RECEIVING
ksp->add_rxsas(installed, ki); receiving = true;

ksp->all_active_receiving(ki)

secy->macsec_transmit(installed); transmitting = true;

ksp->no_active_transmitting(ki) || finish
STOP_RECEIVING

receiving = false; an = 0;

if (this == ksp->latest_key) latest_key = old_key;
old_key = 0; delete this;

START_TRANSMITTING

INSTALL_KEY

 (installed = macsec_installed_key()) != 0

UCT

secy->macsec_transmit_key() != installed;

transmitting = false;
STOPPED_TRANSMITTING

(ki != ksp->ki())

UNINSTALL_KEY
next_PN = secy->macsec_uninstall_key(installed); installed = 0;
kay->rlse_an(an);

delay_bounds.empty()

KaY * const kay = ksp->kspy->kay;
SecY* const secy = kay->secy;

Actor key state machine <<AKM 0.2>>

(ki != ksp->ki())

Actor_key::Actor_key(Ksp *p, KI key_id, KC key_contribution) : Participant(key_id), ksp(p), kc(key_contribution),
{

receiving = transmitting = finish = false; installed = 0; an = 0;
 next_PN = ksp->next_pn_for(key_contribution, key_id);

 for (int i = 0; i < ticks_to_record; i++) delay_bounds.push(next_PN);

 akm = PENDING_AGREEMENT;
 dbm = DELAY_BOUND;
};

Rev 0.1 9/28/2004 12:19 AM 7

!transmitting && tick &&
!delay_bounds.empty();

TRANSMITTING
delay_bounds.push(next_PN =
 secy->macsec_next_pn_for(installed));
delay_bounds.pop(); tick = false;

transmitting && tick

Delay bound state machine <<DBM 0.1>>

DELAY_BOUND

NOT_TRANSMITTING
delay_bounds.pop(); tick = false;

BEGIN

UCT UCT

Rev 0.1 9/28/2004 12:19 AM 8

void Ksp::rxpdu(Pdu *received_pdu)
{
 Kspdu rcvd(received_pdu);

 if (!rcvd.valid) { rcv_event(Invalid_pdu) return; };
 if (rcvd.sci == sci) { rcv_event(Loopback_pdu) return; };
 if (rcvd.mi == actor.mi)
 {
 this.change_mi(); rcv_event(Duplicate_mi) return; };
 }; // broken psrng?

 Peer *peer = find_peer(rcvd->mi);

 if (peer != 0)
 {
 if (rcvd.mn < peer->mn) { rcv_event(Misordered_pdu) return; };
 if (rcvd.mn == peer->mn) { rcv_event(Duplicate_pdu) return; };

 if (rcvd.sci != peer->sci){ rcv_event(Peer_sci_changed);
 delete peer; peer = 0; };
 }
 if (peer == 0)
 {
 peers.push_back(Peer(this, rcvd.mi, rcvd.sci));
 peer = &(*peers.last());
 };

 peer->potential_peer_while = potential_peer_life;

 peer->mn = rcvd->mn;

 Ticks life = actor->life(rcvd->find_me(actor->mi));
 if (life > peer->live_peer_while) peer->live_peer_while = life;

 if (peer->live_peer_while != 0)
 {
 if ((peer->include_kc != rcvd->include_kc) || (peer->kc != rcvd->kc))
 bool recalculate_key = true;

 peer->include_kc = rcvd->include_kc;
 peer->kc = rcvd->kc;

 peer->rx_keys(&rcvd);

 add_potential_peers(*(rcvd->peers)); // from live peer's live list

 if (recalculate_key)
 {
 if (old_key != 0) old_key->execute_akm();
 if (latest_key != 0) latest_key->execute_akm();
 execute_kkm();
 };
}; };

