Problem space for Ethernet congestion management

On behalf of Congestion Management Study Group
Agenda

- Topology and components
- Layering
- Congestion management
- Notification
- Conclusions and proposals
Data center topology

Blade server

Gateway to corporate LAN or WAN

Data center switch or mesh network

More blade servers or nodes

Processor/memory blades

Network

Server switch fabric

Blades
Data center components

Network interface subsystems (in server blades and other nodes):
 Includes Ethernet encapsulation
 May include network & transport layer acceleration

Blade server switch fabric:
 Typically <20 blades supported
 Dedicated uplink ports

Data center switch or mesh network:
 Single fabric, up to 100’s ports or multiple fabrics
 May include multi-path switching (aggregated links etc.)

Gateway to corporate LAN or WAN:
 Connects to legacy networks
 Could be layer 3 or above
Data center component options

Network interface subsystems (in server blades and other nodes):
 Tagging, rate shaping, flow control
 Maybe transport window adjustment, per flow/session state information

Blade server switch fabric:
 Priority queuing, buffer size optimization, congestion tagging, policing
 Maybe rate limiting methods

Data center switch or mesh network:
 Similar to blade server switch fabric
 Assumed to be more “feature rich”

Gateway to corporate LAN or WAN:
 Must accommodate wider application parameters
Agenda

• Topology and components
• Layering
• Congestion management
• Notification
• Conclusions and proposals
ISO layering in data center components

Typical configuration

End station or node
- Transport client
 - IP client
 - DTE client
 - MAC
- Defined by 802.1

Transport layer
- Network layer
 - Link layer
 - Bridge
 - MAC
 - MAC
 - Network switch
 - MAC
 - MAC
 - MAC

Gateway
- Router
- DTE client
- MAC
- MAC
- MAC

Defined by IETF
- Defined by 802.3
Congestion happens!

Transport layer creates network load

Congestion happens in the bridge,
Causing a reaction in the transport layer

Transport layer reacts
In arbitrary network topology connectivity cannot be assumed
Only by adjusting effected transport can congestion be remedied…
… without perturbing innocent conversations
Problems with transport adjustment mechanisms

Transport adjustment often relies on packet loss
 Retries are expensive – timeouts are disastrous!
 Not only a problem with TCP

Transport adjustment mechanisms are generally optimized for internet-like topologies
 Transport windows are very large, requiring large network buffers
 Reaction times are slow

Traffic is bursty in time & space
 Typically clients send bursts to various destinations
 Causes congestion points to move
 Needs fast reaction times in transport to avoid “misadjustment”
What is needed for congestion management?

Lossless transport adjustment
 Notification to transport clients without causing retries or timeouts
 For TCP & non-TCP transport

Fast reaction times for adjustment
 Low network latency, plus change to optimization mechanisms
 Removes need to “pre-tune” network

Method for notifying transport clients of congestion
 Transport client (at layer 4) must be made aware of congestion happening in (layer 2) bridge
 Ideally should not rely on layer 4 implementations for network switches
 Should also be as compatible as possible with legacy devices
Agenda

• Topology and components
• Layering
• Congestion management
• Notification
• Conclusions and proposals
Congestion management example

Example solution – Layer 2 ECN (like)

“Explicit Congestion Notification”
Marks a layer 2 packet in case of congestion

Set bridge buffer thresholds lower than discard level
Indication says packet would have been discarded…
… if my buffer was smaller

Following example uses arbitrary solution for ECN

NOT intended as a detailed proposal, but as an example
Uses TCP plus ECN in data center (type) network
Demonstrates effectiveness of transport client adjustment in a tightly bounded environment
L2– Congestion Indication

Issue:
- Congestion due to oversubscription
- “Reactive” rate control in TCP

Method:
- “Rate Control” is done at end-points based on congestion information provided by L2 network
 - Provide Congestion Information from the network devices to the edges
 - Standard notification allows end-station drivers to benefit
- Various mechanisms possible for Congestion Indication
 - Marking, control packet, forward/backward/both
- TCP applications can benefit
 - ECN can be triggered even by L2 congestion
 - “Proactive” action by TCP, avoids packet drop
- Non-TCP applications can leverage
 - New mechanism to respond to congestion
Model Implementation: L2 Congestion Indication

AQM: Active Queue Management

CI: Congestion indication triggered by AQM

CI Marking = frames get marked while forwarding if AQM thresholds exceeded. If between early detection thresholds, use RED algorithm to select frames to mark. If between early drop thresholds, mark more frames but drop some frames. If high drop threshold exceeded, drop frames.
Simple Topology

All Links are 10 Gbs

Shared Memory 150KB

App = Database Entry over full TCP/IP stack

Workload distribution = Exponential (8000)

ULP Packet Sizes = 1 Bytes to ~85KB

Client 1 sending to both servers

Clients 2 & 3 sending to Server 1

TCP Delay = DB Entry request to completion

HOL Blocking at Client1 for Client1-Server2 traffic

Extract from wadekar_2_0904.pdf
L2-CI with ECN improves TCP Performance

~2.29 GB/s

~1.53 GB/s

218 us

145 us

Extract from wadekar_2_0904.pdf
Shared Memory Utilization and Packet Drop at the Switch

Some initial drops with ECN when it is stabilizing its average Q size

L2-Ci can significantly reduce packet drops & reduce buffer requirements
Multi-stage system w/ mixed link speeds

All Links except one are 10 Gbs

Peak Throughput = 2.434 Gigabytes / Sec

App = Database Entry over the full TCP/IP stack

Workload distribution = Exponential (8000)

ULP Packet Sizes = 1 Byte to ~85KB

TCP Window size = 64KB

All clients sending database entries to all servers
L2-CI/ECN shows excellent characteristic for short range TCP.
L2-CI/ECN maintains performance even with small switch buffers
Summary

- Examples presented show “technical feasibility” of Congestion Management in Ethernet
- Can allow MAC Clients to take proactive actions based on congestion information via 802.3
- Facilitate & take advantage of higher layer CM mechanisms
- Simulations show significant comparative improvements
Agenda

- Topology and components
- Layering
- Congestion management
- Notification
- Conclusions and proposals
Notification

Requires that layer 2 devices (bridges) notify congestion

Must be orthogonal to transport protocol

Notification at layer 2, independent of transport

Should be transparent for legacy bridges or end stations

Some network elements may not notify or react to notification

Hippocratic oath, “First do no harm.”

Transfer of information from L2 to higher layer

Must be the domain of higher layer devices:

Either multilayer switches or end stations

Requires new definitions for transport mechanisms to use notification
Ethertype stacking & frame extension

Example solution – NOT a proposal…

… just a illustration

Use the new definitions for generic encapsulation (stacked Ethertypes)

 Request Ethertype for CN information

 Will be ignored by non-cognizant devices

Other options can be explored

 Markdown

 Extra header bits
Basic MAC frame

- **No prefix**
- **No suffix**
- **64-1518 octets**

6 OCTETS	DA
6 OCTETS	SA
2 OCTETS	L/T
46-1500 OCTETS	MAC CLIENT DATA
4 OCTETS	FCS

Illustrative example
802.1Q Tagged frame

- **Prefix=4**
- **Suffix=0**
- **68-1522 octets**

Illustrative example
802.1ad Tagged frame

- **Prefix=8**
- **Suffix=0**
- **72-1526 octets**

Illustrative example
802.1Q Tagged CMSG frame

- **Prefix=8**
- **Suffix=0**
- **72-1526 octets**

Illustrative example
802.1ad Tagged CMSG frame

<table>
<thead>
<tr>
<th>6 OCTETS</th>
<th>DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 OCTETS</td>
<td>SA</td>
</tr>
<tr>
<td>2 OCTETS</td>
<td>S-tag EType</td>
</tr>
<tr>
<td>2 OCTETS</td>
<td>S-tag TCI</td>
</tr>
<tr>
<td>2 OCTETS</td>
<td>C-tag EType</td>
</tr>
<tr>
<td>2 OCTETS</td>
<td>C-tag TCI</td>
</tr>
<tr>
<td>2 OCTETS</td>
<td>CN Etype</td>
</tr>
<tr>
<td>2 OCTETS</td>
<td>CN Tag</td>
</tr>
<tr>
<td>2 OCTETS</td>
<td>L/T</td>
</tr>
</tbody>
</table>

Illustrative example

- **Prefix=12**
- **Suffix=0**
- **76-1530 octets**

<table>
<thead>
<tr>
<th>46-1500 OCTETS</th>
<th>MAC CLIENT DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 OCTETS</td>
<td>FCS</td>
</tr>
</tbody>
</table>
(probably) not needed in the definition

Buffer management algorithms
- Early tail drop, RED or variations
- Relationship to priority queuing
- Define congestion notification NOT detection

Transport layer definitions
- Leave to IETF
- Possibly make recommendations from 802 TF

Gateway (layer 3 or higher) device behavior
- Gateway may choose to ignore, pass or react to notification
- Beware that wider system is not tightly bound
Agenda

• Topology and components
• Layering
• Congestion management
• Notification
• Conclusions and proposals
Work required for 802.1

Define congestion notification mechanism
Will be ignored by non-cognizant devices
Non conformant devices or non reactive flows
Investigate behavior in mixed environment

Also need to consider backward indication
To work with any transport protocol
Especially for unidirectional transport protocols
Significantly more complex, requires research
Possible 802.1 PAR (Purpose)

To improve the performance of 802.1 bridged networks in the presence of congestion.

In bounded environments, higher layer protocols may significantly improve their behavior in the presence of congestion if they are notified of the congestion occurring at convergence points in the bridged network.

This project will define a mechanism for notifying higher layers that congestion has been detected in the path that a packet has followed through the network.
Question

Is there support for a new project and Task Force?

Mechanism to enable congestion management in bridged networks – 802.1~~

Share work between 802.1 & 802.3 members

Including joint balloting