19.3 Connectivity Fault Management Protocol overview

Connectivity Fault Management can be sub-divided into the following categories:

- Fault Detection
- Fault Verification
- Fault Isolation
- Fault Notification
- Fault Recovery

Fault Detection deals with mechanisms that can detect both hard failures or link and node failures, and soft failures such as software failure, memory corruption, mis-configuration, etc. Typically a lightweight protocol is desirable to detect the fault, and thus detection. It would be prudent to verify the fault via Fault Verification fault isolation mechanism before taking additional steps in isolating the fault. After verifying that a fault has occurred along the data path, it is important to be able to isolate the fault to a given node or link (e.g., diagnose the fault). Therefore, a Fault Isolation mechanism is needed in Fault Management. Fault Notification mechanism can be used in conjunction with Fault Detection fault detection mechanism to notify the upstream and downstream nodes of a fault. Fault Isolation can be achieved by switching to an alternate available node or link (e.g., node redundancy or link redundancy).

The scope of this clause is limited to the first three aspects of the Connectivity Fault Management, i.e., Fault Detection, Fault Verification, fault verification and Fault Isolation, fault isolation, in the context of Provider Bridged networks.

19.3.1 Fault Detection

Continuity Check (CC) provides a means to detect both hard failures and soft failures such as software failure, memory corruption, or mis-configuration. The failure Fault detection is achieved by each Maintenance End Point (MEP) transmitting a heartbeat message periodically for each customer service instance CC Message (e.g., SVLAN/CCM) periodically. Therefore, as a result, each edge Provider Bridge receives a set of heartbeat messages. MEP(s) also receive CCMs periodically from other edge Provider Bridges of that service instance peer MEPs. Once the PB on a local bridge stops receiving the periodic heartbeat CCMs from the peer MEP on a remote bridge, it assumes that either the remote PB has failed or an unrecoverable failure occurred. The PB bridge can subsequently notify the operator of network management application about the failure, using mechanisms that are out of scope of this clause, and initiate the fault detection and recovery mechanisms deal with recovering from the detected failure.

If a PB bridge is put out of commission, then in order to avoid triggering false failure detection, the out-of-commission PB shall this bridge may indicate its soon to be out-of-state commission status to other member PBs and peer bridges for each service instance that it participates through a flag Virtual Bridge LAN Service supported across this bridge to avoid triggering false fault detections. This may be done via indications in the CC message CCMs. The other member PBs of the service instance other peer bridges, upon receiving this indication, would deactivate the corresponding timer for the heartbeat of that PBCCMs. Once PB devices have received and processed the CC messages CCMs, each PB-MEP will have a view of all active PBs and other peer MEPs for a given customer service instance Virtual Bridge LAN Service.

Upon receiving CC messages, at the receiving a CCM from a remote MEP, a CC validity timer is started at the receiving MEP which is used to determine the loss of CC messages CCMs. A CC-CCM loss is assumed when the next CC-message CCMP from a remote MEP is not received within the timeout of this validity timer. If n consecutive CC messages CCMs are lost, a fault for continuity to that remote MEP is assumed to have failed and a fault is detected. Subsequent fault verification and fault isolation procedures can be exercised.

The fault may correspond to a hard failure or a soft failure within the network. Also a hard failure may possibly result in network isolation which leads to loss of CC messages CCMs for many customer service instances Virtual Bridge LAN services. If the hard failure can be detected and reported notified to the Management entity, additional notifications by each MEP may not be needed (e.g., it is desirable to have an alarm suppression mechanism for notifications that get generated as the result of CC CCM timeouts. Since this message is sent periodically, in order to facilitate the processing and filtering of this message, both the message type and domain level is embedded in the multicast MAC address.

A CC message CCM does not require a response and a multicast CCM requires only o(n) message transmission transmissions within its member group, where N is the number of members within the member group. In other words, if a service instance Virtual Bridge LAN Service has N member PBs, only N CC messages CCMs need to be
transmitted periodically as one from each PB MEP. However, if this was to be done by point-to-point Ping messages, ping messages were used, then \(\Omega(N^{2}) \) messages would have been required.

The Maintenance End Points MEPs shall allow the filtering of CC messages CCMs from either entering or exiting its OAM maintenance domain.

19.3.2 Fault Verification
A unicast Loopback message LBM is used for fault verification. To verify the connectivity between Maintenance End Points MEPs and Intermediate points its peer MEP or a MIP, the Loopback request message LBM is initiated by a MEP with a DA MAC address set to the MAC address of either a MIP or the peer MEP. The receiving MIP or MEP shall respond to the Loopback Request LBM with a Loopback response upon verification of the message Reply LBR. The MEPs shall allow the filtering of fault verification messages from either entering or exiting its OAM domain.

19.3.3 Fault Isolation
The Linktrace function LT mechanism is used to isolate faults visible at the Ethernet MAC layer. Linktrace can be used to isolate a fault associated with a given customer service instance Virtual Bridge LAN Service. It should be noted that fault isolation in a connectionless (multi-point) environment is more challenging than a connection-oriented (point-to-point) environment. In case of Ethernet, fault isolation can be even more challenging since the MAC address of a target node can age out in several minutes (e.g. typically in order of 5 minutes) when a fault results in isolating isolates the target node MAC address. As a result of this age out, the occurrence of a network-isolating fault results in erasure of information leading to the location of the needed for locating the fault!

The A Linktrace Message LTM uses a well-defined multicast MAC address. The Linktrace Message LTM gets initiated by a source MEP and traverses hop-by-hop and each MIP along the path intercepts the Linktrace Message this LTM and forwards it onto the next hop only after processing it until it reaches the destination MEP. The processing includes looking at the target destination MEPs MAC address contained in the Linktrace Message LTM. The originating MEP expects a response to its Linktrace Message. It should be noted that the source MEP sends a single request message LTM to the next hop along the trace path; however, it can receive many responses LTRs (Link Trace Response) from different MIPs along the trace path and the destination MEP as the result of the message-LTM traversing hop by hop.

Given that an end-to-end Linktrace-LTM is different from that of a user data flow (Linktrace Message goes through the control plane of LMs undergo processing in bridge brain at each hop whereas user data flow does not get processed in bridge brain), there can exist a rare situation in which the fault cannot be detected by the Linktrace-LT mechanism. Given that the Linktrace flow can identify all the point MEPs and destination MEP along the traced path (based on responses LTRs received at the source maintenance point) one can run MEP, multiple Loopback messages LBM between the source maintenance point-MEP and different intermediate points (MIPs and the peer maintenance point) destination MEP to further isolate the data-plane fault corruption faults in such rare situations.

As mentioned previously, the age-out of MAC address entries addresses can lead to erasure of information at intermediate nodes MIPs, which where this information is used for the Linktrace mechanism. Possible ways to address this behavior include:

- Launching Carrying out Linktrace mechanism-following fault detection detection and isolation or verification such that it gets exercised within the window of age-out.
- Maintaining information about the destination maintenance point MEPs at the intermediate points MIPs along the path (Note: this can be facilitated by the CC messages CCMs)
- Maintaining visibility of path at the source maintenance points MEPs through periodic Linktrace Messages (Note: this periodicity should be larger than the CC periodicity)