Multicast pruning in .1ah Provider Backbone Bridged Network

May 2005

Muneyoshi Suzuki
Paul Bottorff
Michael Chen
Background

- Wide Area Ethernet was replacement of point-to-point leased line, ATM, and FR in early stage of service deployment
 - Thus, customers used Wide Area Ethernet as point-to-point links
- Since Wide Area Ethernet services can support point-to-multipoint communications, customers adopt multicast applications now
 - OSPF broadcast mode
 - Video distribution (Replacement of satellite communications)
 - Some VoIP control signals
- Multicast capability is a distinct feature of Wide Area Ethernet, however it is burden for networks
 - Pruning is indispensable to maintain communications quality such as frame delay and jitter
 - Especially, subscriber lines may not be broadband, so QoS is strongly affected by flooded traffic
An example of unnecessary flooding
Requirements for Pruning

- In terms of customers, a "service instance" in provider network is logically equivalent with a "long yellow cable"
- So, unnecessary flooding is propagated to all customer sites as well as subscriber lines
- Thus, pruning in provider network/provider backbone network should be aware of C-VLAN
- Therefore:
 - Pruning in .1ad provider network should be based on DA and S-VID as well as C-VID
 - Pruning in .1ah provider backbone network should be based on B-DA and B-VID as well as C-VID
- However, pruning in current stacked VLAN implementations is unaware of C-VID
Pruning in .1ad provider network

- **Option 1**
 - Develop S-VLAN Bridge that supports DA, S-VID, and C-VID based pruning
 - Perfect, but too unrealistic scenario

- **Option 2**
 - Use C-tagged service interface to map a C-VLAN transferring multicast traffic to an S-VLAN
 - Prune traffic based on DA and S-VID in frame
 - Practical solution for current Bridge implementations
 - However, it wastes S-VID space
Pruning in .1ah provider backbone network

- **Option 1**
 - Develop core Bridge that supports (B-DA, B-VID, and C-VID) or (B-DA, I-SID, and C-VID) based pruning
 - C-VID snooping from .1ad frame have to be expensive

- **Option 2:** Ingress Bridge maps a C-VLAN to a B-VLAN
 - Prune traffic based on B-DA and B-VID in frame
 - B-VID space may be too small to enable this scenario

- **Option 3:** Ingress Bridge maps a C-VLAN to an extended S-VLAN
 - Prune traffic based on B-DA and I-SID in frame
 - Approximately 2^{28} I-SID space is required for 1M instances
 - Current .1ad Bridges don't support I-SID based pruning

- **Option 4:** Ingress Bridge maps a C-VLAN transferring multicast traffic to a multicast B-DA
 - Prune traffic based on B-DA and B-VID in frame
 - \{S-VID, C-VID\} -> multicast B-DA table is required
 - Multicast address space is 2^{47}, so large number of pruned C-VLANs in backbone could be supported
A new table for Option 4
Discussions

- Option 4 may be feasible for C-VID based pruning in .1ah backbone
 - Options 2 and 3 may be alternatives
 - These options could support large number of C-VLANs
 - I-SID space should be large enough to work with all options
- To enable Option 4, a pre-configured \(\{S-VID, C-VID\} \rightarrow \text{multicast B-DA}\) translation table for multicast traffic to be pruned is required in Provider Backbone Bridges
- In this case, B-DA assignment scheme for ingress frame is:
 - If DA in .1ad frame is a learned unicast address, B-DA is assigned from FDB
 - Otherwise, search the translation table with \(\{S-VID, C-VID\}\) in .1ad frame,
 - If it succeed, B-DA is assigned from the entry
 - Otherwise
 - B-DA is a pre-configured default multicast address, or
 - If DA is a multicast address, B-DA is the same as DA
 - If DA is an unlearned unicast or broadcast address, B-DA is the broadcast address