Residential 802.1 Bridging

Definition and documentation

Mick Seaman
mick_seaman@ieee.org
Summary

• The purpose of PARs
• Some .1 style observations
• Objectives for this meeting
• Some .1 goals and developments
• .1 compatible technical architecture
• .1 compatible documentation architecture
The purpose of PARs

• A PAR authorizes a ‘project’, i.e. the writing or amendment of one document
 – Not required for exploratory work

• A PAR scopes a project, defending against
 – Delays due to scope creep
 – Endless argument about what was meant/agreed
 – Mindless horse-trading
Some .1 style observations

• Heavily consensus based and driven
 – Recourse to formal voting to decide issues is rare
 – Never in task groups
 – Years of avoiding short-term manipulation

• The production of the standard is the process
 – The test of consensus is draft balloting
 – The final test of consensus is WG draft ballot
 – Very rarely vote about anything else

• Strong preference for very tightly focused PARs
 – Fundamental project management
 – Avoids fears, public positioning, delays
 – What you see is what you’ll get
 – Continuous step by step development
Objectives for this meeting

• Develop a proposal for 802.1 consideration
 – To support ‘Residential Bridging’ applications
 – What existing 802.1 documents/parts of docs need to be modified
 – What new 802.1 standards are required
 – What additional supporting standards are required or assumed
Some .1 goals

- Broad applicability across applications
 - Clearly identify common base solutions
- Leave no undercutting economic alternative
- Don’t mortgage the future
 - Very wary of architectural oddities that constrain future developments
- Don’t destroy the present and its growth
 - Continuous compatible development
Some related .1 developments

- Rapid reconfiguration (in .1D/.1Q)
 - Minimize complex binding of resources to paths
- P802.1ad & 802.1Q-REV
 - Drop precedence and flow metering
- P802.1AQ Shortest Path Bridging
 - Remove single spanning tree requirement
 - Without complex management
 - May supplant GVRP/MVRP in some areas
- P802.1ag Connectivity Fault Management
 - Simple inband tools for checking connectivity
- P802.1ak Multiple Registration Protocol
- Other potential ‘class of service’ proposals
1 compatible technical architecture

- Strong emphasis on hard shell/soft core network
 - Very simple class-based forwarding functions
 - Admission control / rate control / policing at edge
 - No flow control state within network

- QoS as a set of successive improvements and approximations
 - 100% loading never achievable
 - But performance bounds can be realized
Technical architecture elements

• Bridge
 – Performance
 – Flow metering and drop precedence
 » Admission control and traffic profile enforcement
 – Class-based queuing
 – Queue service algorithms

• End station
 – Class based admission control
 – Frame class/priority marking
 – Admission control / traffic profile enforcement
 » Not heavy tailed or even Poisson
 – ‘Management’ / ‘user’ reporting
.1 compatible document architecture

- Maximize leverage of existing applicable items
 - Piece parts and placeholders already in .1Q

- Set out the whole application and assumptions
 - Possibly a Recommended Practice
 - Possibly a .1Q Informative Annex
 - Clarify the need for non-transport, non-802 elements
 - A possible record of Technical Architecture

- End-station behaviors
 - Possibly in .1Q, possibly separate standard
 - Opportunity to leverage recent .3 rate control work?
Document architecture elements

- Bridge performance
 - .1D 16.1, 16.2 (much to be done)

- Flow metering (and policing)
 - .1Q 8.6.5 and potential Annex addition
 - Include definition of what bandwidth = X means

- Use of classes and class-based queues
 - .1Q Annex G additions and ‘application profiling’

- Queue service (transmission selection) algorithms
 - .1Q 8.6.8 and potential Annex addition

- Residential real-time ‘domain’ identification
 - Document where?

- Admission control protocol
 - Large separable item once metering/policing units decided
Why focus on the documentation

• Until written down, what is to be done is not clear
• Until written and integrated, impacts are not clear
• Until clear, false fears and hopes dominate
• Most of every project that adds or modifies occurs after it is thought technically ‘complete’
• Opportunities for staged completion
• Begin with the end in mind!
Questions
Common currency admission control

- Summing different traffic profiles is difficult
- ‘Synchronous’ networks have it easy
 - One small common unit of bandwidth
 - Units in = units out in short time period
- Learn from this
 - Admit flows with bandwidth x/t, no more than x bytes in system wide common interval t
 - Police with meter at network edge
 - In interval t at any node, units in \sim units out
 - More bursty flows equivalent to higher bandwidth
 - Simple sums, bounded calculable delays
 - Choose $1/t \sim 8$ kHz (?)