
5/15/06 Page 1

 Security considerations and proposal for MACsec key establishment

Brian Weis
5/15/06

This document describes security considerations for MACsec automated key
establishment protocols. It also takes makes claims regarding the effective
security that is possible for MACsec automated key establishment given the
exclusive use of secret key cryptographic algorithms. Finally, it proposes one
possible method of key establishment that takes into account the security
considerations, as well as the cost of mechanisms that can provide the possible
effective security.

1. Introduction
The IEEE P802.1AE working group has created
MACsec [5], a link level security standard for 802
LANs an MANs. MACsec does not directly address
how keys are obtained for encryption, although it
does include a management interface for requesting
and obtaining keys from key establishment protocols
for Connectivity Associations (CAs).

The IEEE P802.1af working group was formed to
address the needs of device authentication and data
encryption key generation. Current plans of the
working group require a device to obtain a
Connectivity Association Key (CAK), which is a
long-term master secret key. Proof of possession of
the CAK is suitable for proof that it has been
authenticated using an IEEE 802.1X framework, and
is authorized to participate on a particular LAN.

A key establishment protocol is required to generate
one or more Secure Association Keys (SAKs), which
are the secret keys that IEEE 802.1AE uses to
encrypt data packets on the LAN. Some 802.1 LANs
are shared media LANs with multiple stations, so
SAKs are assumed to be group keys shared between
two or more stations on the LAN. Therefore, the
IEEE P802.1af key establishment protocol must be a
group key management protocol.

This document investigates the security ramifications
of the IEEE P802.1af system design, and in particular
the possible resulting security properties of a group
key establishment protocol fitting into this system
design. It also proposes one possible group key
establishment protocol that meets the requirements of
the P802.1af system design.

2. Overview
The IEEE P802.1 working group defines standards
for 802 LAN and MAN bridges. The types of
network topologies that deploy 802 networks are
varied, and include at least the following topologies.

• One or more end stations (i.e., PC’s,
network attached printers, IP telephones)
connected to bridges

• Interconnected bridge ports
• Provider bridged network

IEEE 801.1AE group standardizes an encryption
method for encrypting packets within each of these
scenarios.

2.1. Terminology
Advanced Encryption Standard (AES) – a FIPS-

approved symmetric block cipher cryptographic
algorithm that can be used to protect electronic
data. [7]

Association Number (AN) – A number that is
concatenated with the Secure Channel Identifier
to identify a Secure Association. [5]

Connectivity Association (CA) – A security
relationship, established and maintained by key
agreement protocols, that comprises a fully
connected subset of the service access points in
stations attached to a single LAN to be supported
by MACsec. [5]

Connectivity Association key (CAK) – The long
term key associated with a Connectivity
Association. [14]

Connectivity Association Key Identifier (CKI) –
An identifier for a particular CAK. [14]

Key establishment – A function in the lifecycle of
keying material; the process by which
cryptographic keys are securely established

5/15/06 Page 2

among cryptographic modules using manual
transport methods (e.g., key loaders), automated
methods (e.g., key transport and/or key agreement
protocols), or a combination of automated and
manual methods (consists of key transport plus
key agreement). [1]

Key wrapping – A method of encrypting keys (along
with associated integrity information) that
provides both confidentiality and integrity
protection using a symmetric key. [1]

Random Number Generator (RNG) – An
algorithm or method used for cryptographic
applications that typically produces a sequence of
zero and one bits that may be combined into sub-
sequences or blocks of random numbers. [9]

Secure Association Keys (SAK) – The secret key
used by an SA. [5]

Secure Channel (SC) – A security relationship used
to provide security guarantees for frames transmitted
from one member of a CA to the others. An SC is
supported by a sequence of SAs thus allowing the
periodic use of fresh keys without terminating the
relationship.[5]

Secure Association Key Identifier (SKI) – An
identifier for a particular SAK.

2.2. Acronyms
AES – Advanced Encryption Standard

AN – Association Number

CA – Connectivity Association

CAK - Connectivity Association Key

CKI – Connectivity Association Key Identifier

RNG – Random Number Generator

SAK – Secure Association Key

SC – Secure Channel

SKI – Secure Association Key Identifier

2.3. Operational Considerations

2.3.1. Constraints
There are many operational constraints on protocols
and software operating on a NIC card or Ethernet
bridge. These constraints may not be familiar to
cryptographic protocol designers who typically deal
with devices with more capabilities.

1. The CPU should not be expected to be
powerful enough to perform extended

mathematical operations, including public
key cryptography. Thus, a key establishment
protocol should use only secret key
technology for device authentication, packet
authentication, and packet encryption.1

2. There is typically little or no possibility of
user configuration of Ethernet security. E.g.,
timer durations are not likely to be
configurable.

3. Devices are assumed to have little or no
persistent storage at the NIC or bridge port
level. Long-term keys derived from an IEEE
802.1X exchange and other persistent
configuration values are the responsibility of
higher levels of the system (e.g., perhaps
derived as part of the IEEE 802.1X
exchange).

2.3.2. Resources
We assume that a key establishment protocol has a
timer service available to it. These timers
interrupt the software at a specified future time,
identified by a time interval.

3. MACsec Key Establishment
Security Review

3.1. Overview of Security Properties
This section described the security properties
common to key management protocols, including
commentary on whether those security properties can
be achieved in this environment given the operational
constraints.

3.1.1. Confidentiality
Ensuring confidentiality of key establishment packets
using a key derived from the CAK is possible, but
may not be required if no keying material is carried
in the packet. If the key establishment packets are
passing SAKs or other sensitive information, at least
that portion of the packet must be encrypted for
confidentiality.

1 Other parts of the system may use public key
cryptography (e.g., for device authentication to an
authenticator). But the key establishment protocol
between stations on a LAN should not expect to have
the resources necessary to use public key
cryptography.

5/15/06 Page 3

3.1.2. Data Integrity
Ensuring that an unauthorized station has not
modified packets is possible using a key derived from
the CAK.

3.1.3. Source Origin Authentication
Ensuring that the origin of the packet is the true
origin of the packet is called source origin
authentication. Source origin authentication requiring
public key cryptography (e.g., digital signatures) is
best, but not possible for the present application due
to CPU constraints. Other forms of source origin
authentication using only secret keys are available in
the literature [12],[11] but they require both loose
time synchronization between stations and a delayed
exposure of keys. Neither of these methods are
acceptable to the present application. Therefore, no
source origin authentication may be possible.

3.1.4. Anti-replay Protection
Ensuring that a key establishment packet previously
sent on the LAN is not accepted a second time is an
important property. An attacker replaying old packets
could cause an older key to be re-used, for example.

3.1.5. Liveness
Ensuring that a key establishment packet has been
recently sent (i.e., is a live packet) is an important
property. An attacker delaying the propagation of a
packet could cause it to be accepted much later and
confuse the state of a key establishment system.

3.1.6. Denial of Service Protection
An attacker can always flood the LAN with replayed
or invalid packets. A key establishment protocol must
be able to quickly identify these packets and drop
them without undue processing. If an attacker
succeeds in flooding the LAN such that all
communication is disrupted, the key establishment
protocol must recover in a timely fashion at the
conclusion of the attack and allow encrypted data
traffic to begin immediately.

3.1.7. Forward and Backward Secrecy
Backward secrecy ensures that when a new station
member joins the LAN that it cannot learn about the
previous group keys. Similarly, forward secrecy
ensures that when a station leaves a LAN that it
cannot compute future group keys. These properties
cannot be maintained by an IEEE 802.1AE key
establishment protocol, because keys must be either
derived from or protected by the CAK. The CAK is a

long-term key that does not change when stations
join or leave the LAN.

3.1.8. Byzantine Attack Protection
A “Byzantine Attack” occurs when an authorized
member of the LAN intentionally or accidentally
disrupts the communications of the group. When all
trust is based on holding a long term secret key (i.e.,
the CAK), and when source origin authentication is
not maintained, it is not possible to protect against
these attacks. It will be possible for any station
holding the CAK to disrupt the key establishment
protocol at any time and for any duration. Therefore,
protection against Byzantine Attacks is not possible.

3.2. NIST Key Management
Guidelines
The United States National Institute of Standards and
Technologies (NIST) develops computer security
standards and guidelines [10]. These standards and
guidelines are considered relevant internationally.

NIST has produced the FIPS 140-2 cryptographic
standard to which many organizations requisitioning
cryptographic systems require adherence. Thus,
IEEE 802.1AE and associated key establishment
protocols should be designed to comply with FIPS
140-2.

NIST has also published recommendations for
cryptographic key management [1], [2]. These
recommendations are in part intended to aid
cryptographic protocol designers develop new
cryptographic protocols. As such, any new
cryptographic method of establishing or selecting
keys will be measured against these
recommendations during a FIPS 140-2 evaluation.

Given the previously described severe constraints, it
may not be possible for those recommendations to be
followed completely. In that case, rationale for
deviation must be maintained. However, those
recommendations should be followed whenever
possible.

4. LAN-based Key Server Protocol
The LAN-based Key Server (LKS) protocol is a
proposed method of providing keys to IEEE 802.1AE
stations. This method uses a traditional group key
management paradigm where one station on the LAN
acts as a key server that derives and distributes the
current SAK to other members of the same
Connectivity Association.

5/15/06 Page 4

Pre-determining a single LAN-based key server is not
reliable. Rather, the stations on the LAN first elect
one of themselves to be the key server. Typically, a
re-election does not occur until either the elected key
server becomes non-responsive, or any of the stations
becomes uncertain as to the identity of the elected
key server. The latter case can happen if two different
stations each forward a message defining different
SAKs.

Although a single station is responsible for deriving
SAKs, any station may request that a new SAK be
generated. This may be because a station believes
that the key lifetime is about to expired, or may be
because its AES-GCM IV space is about to be fully
used. In addition, the elected key server may choose
to replace the current SAK based on other events. For
example, if the elected key server observes a new
identity on the LAN it must create a new key to guard
against a rebooted station re-using the same AES-
GCM IVs with the same key.

The LAN-based key server chooses SAKs randomly.
Assuming keys are generated uniformly over the
number space, the “Birthday Paradox” tells us that on
average a 128-bit AES key will not be repeated until
a set of 264 keys have been generated. As such, there
is no need to keep track of previously generated
SAKs.

LKS incorporates a number of design elements from
the Key Selection Protocol [14], another proposed
key establishment protocol for IEEE 802.1AE. In
particular, some KSP terminology is maintained for
ease of comparison. The KSP anti-replay and
“liveness” protection mechanisms appear to be the
most efficient mechanisms for this application, and
this has been incorporated as well.

4.1. Goals
The following statements describe goals of this
protocol.

1. Reliability is of the utmost concern. An 802
LAN should not be left without a current
SAK except under exceptional
circumstances (e.g., a persistent DoS attack).

2. Provide secure connectivity within the first
second of the underlying LAN service
becoming available.

3. Adapt quickly to the addition of new
stations on the LAN without disrupting
connectivity between existing stations on the
LAN.

4. 802 LANs can be either point-to-point (e.g.,
between bridge ports) or a shared media
LAN with multiple stations (e.g., using a
repeater). A single key establishment
protocol for a LAN should support both
configurations, without pre-selection of one
or the other.

5. Operate without requiring pair-wise
communication between all stations.

4.2. Design Considerations
In addition to the previously described operational
constraints, the following design considerations were
maintained for the development of LKS,

• SAKs are transferred between stations using
guidance from Section 4.2.5 of [1].

4.3. Cryptographic Operations
Stations supporting this protocol must have the
following capabilities:

• AES protocol supporting 128 bit keys, and
the following modes of operation: Electronic
Code Book (ECB), and Cipher-based
Message Authentication Code (CMAC) [4].

• Strong random number generator (RNG). If
a non-deterministic RNG (e.g., hardware
RNG) is not available, then sufficient
entropy must be available to create a good
quality seed for a deterministic RNG.2

This section summarizes the cryptographic operations
of this protocol.

4.3.1. SAK Generation
SAKs are generated using a strong RNG, preferably
one approved by FIPS 140-2, listed in its Annex C
[8].

The SKI identifying a SAK is also generated
randomly. Although not cryptographically necessary,
use of a cryptographically strong RNG is
recommended,

4.3.2. Deriving Keys from the CAK
As previously described, the only long-term shared
secret available between stations is the CAK. This
secret must be used for two purposes: to encrypt
SAKs as they are distributed between stations, and
provide an integrity check on the LKS messages. In

2 A deterministic RNG can often be implemented in
software. Several are identified in the FIPS 140-2 Annex C
[8].

5/15/06 Page 5

order to use the CAK for these two purposes, a key
hierarchy rooted to the CAK is defined.

4.3.2.1. SAK Distribution
SAKs are distributed from a station generating the
key to other stations on the LAN. The keys must be
encrypted during transit so that only authorized
stations (i.e., those holding the CAK) are able to
recover the key.

Keys are encrypted using a Key Encrypting Key
(KEK), which is a sub-key derived from the CAK as
follows:

KEK = AES-ECB(CAK, 0x0)

CAK is a 128-bit AES key, and the encrypted data is
a single 128-bit block with the value ‘0x0’.
The KEK is given as input to a key wrapping
algorithm to protect the SAK between stations. The
default algorithm for protecting the SAK is the AES
Key Wrap [13].3 The AES Key Wrap default IV
(defined in [13]) MUST be used.

4.3.2.2. Message Authentication
Message authentication is achieved by including an
Integrity Check Value (ICV) in each message. The
ICV is computed as a cryptographic operation over
the bytes of the message with a secret key. All bytes
following the IEEE 802.1 header in the message are
included in the ICV generation, excepting the ICV
field itself.

The key used in the ICV generation is called the
ICV_KEY. The ICV_KEY is a derived from the
CAK as follows:

ICV_KEY = AES-ECB(CAK, 0x1)

where CAK is the AES key, and the encrypted data is
a single 128-bit block with the value ‘0x1’.

The default algorithm generating the ICV is CMAC
[4] using an AES-128 key. The output of the ICV is
a 128 bit value, computed as follows:

ICV = AES-CMAC(ICV_KEY,M,128)

and M is defined as the protocol message bytes to be
authenticated.

3 This specification has also been adopted by IEEE
P802.16e/D9 for purposes of distributing session keys.

4.4. Anti-replay, Liveness, and Denial
of Service Protections
It is critical that a key establishment protocol be able
to differentiate between packets that have never been
seen before and older “replayed” packets. The
protocol should never accept the same packet twice
as an original packet. A means of anti-replay
protection is required in order to make this
determination.

Similarly, a key establishment protocol should be
able to tell the difference between a packet that was
recently sent, and one that was not recently sent. A
receiver should be able to make this delineation even
if the receiver has never previously seen the delayed
packet (i.e., the packet is not a replayed packet). A
means for checking “liveness” of the packet is
required.

A common anti-replay protection method is for a
sender to maintain a counter, which is incremented
for each packet sent. When each packet sent has a
unique monotonically increasing counter value, it is
called a sequence number. Each station must
maintain its own sequence value, and each receiver
must keep track of the most recent sequence number
seen from other stations.4 This mechanism partially
satisfies the anti-replay protection need of this
protocol. To be consistent with sequence number
terminology in KSP, a sequence number is called a
Message Number (MN) in this paper.

Some properties with sequence numbers are:

• When used over time sequence numbers will
eventually reach the largest possible value
and wrap back to zero. Since a wrapped
sequence number appears to be a replayed
packet to receivers, receivers need to be
notified before this event occurs.

• Receivers typically join a group at different
times. When they begin to participate they
will not know a priori what sequence
numbers for sending stations are valid. Care
must be taken they are not fooled into
accepting replayed packets, especially in the
face of an attacker replaying packets with
high values of sequence numbers such that
valid packets from the sender appear to be
very old replayed packets.

4 It is common for security systems to maintain a “window”
of previously received sequence numbers in addition to the
most recently received sequence number. This would be of
little use to LKS because any message other than the most
recent message sent from a peer is considered stale.

5/15/06 Page 6

To mitigate these issues, each station randomly
chooses an identity that is associated with a particular
set of sequence numbers. When the number space is
about to expire, they choose a new identity before
beginning the sequence number space at its lowest
value. To be consistent with sequence number
terminology in KSP, a station identity is called a
Member Identifier (MI).5

Although it is an unlikely event, two stations could
choose the same MI value. If a station detects that
another station is using its MI value, it must
immediately change its MI value.

Denial of service attacks that replicate packets will be
stopped by the anti-replay measures described above.
Attacks that flood a link with packets cannot be
stopped, but once the flooding terminates the anti-
replay measures will quickly take affect again and the
protocol will protect itself from replayed and invalid
packets.

4.4.1. Determining Anti-replay and
Liveness
In order to determine anti-replay and liveness, each
station maintains the following state:

• A MI value and current MN representing the
station’s own the most recently used MN.
The MN begins at 1 and is monotonically
incremented for each packet that it sends.
When the MN value is in danger of
wrapping a new MI value is chosen. This
method guarantees that a station’s MI/MN
pair is always unique.

• A list of MI/MN pairs from stations that
have been proven to be live, called the Live
Peers List. A station adds a peer station is to
its Live Peers list when the peer reflects the
current MI/MN pair of the receiving station
in its message. This reflection of an MI/MN
pair proves that the peer recently received a
packet containing the station’s MI/MN pair.

• A list of MI/MN pairs from entities from
which a packet was received, but that peer
has not yet been proven to be live. That is,
the most recent message from that peer did
not include the current MI/MN pair of the
receiving station. This list is called the
Potential Peers List.

In summary, a station maintains an MI/MN pair used
when sending its own packets. It also maintains an

5 The station MAC address is not used as an identity,
because it cannot be changed when the MN needs to be
wrapped.

MI/MN pair documenting the most recent stations
that have recently sent messages, and an MI/MN
documenting stations that appear to be sending
messages but have not been proven to be live.

When a station receives a packet from a peer, it
makes a determination as to the reliability of the peer.
The following logic is followed, and is also shown
pictorially in Figure 1.

1. The receiving station checks its locally stored

Live Peer List and Potential Peer Lists for the
sender’s MI value.

2. If the sender’s MI is found in either list, the MN
received in the message is compared to the MN
stored on the list.
a. If the MN in the packet is equal to or smaller

than the stored MN, the packet is considered
to be a replayed or delayed packet and it is
dropped.

b. If the receiver’s MI/MN pair is found in
either Peer List of the message, the sender is
considered to be a LIVE PEER (because
they claim to have seen a recent packet from
the receiver). If the sender’s MI/MN pair is
found in the Potential Peer list, the peer’s
MI/MN pair is also moved to the Live Peer
List.

c. If the receiver’s MI/MN pair is not found in
either Peer List of the message it is added to
the Potential Peer list and considered to be a
POTENTIAL PEER.

3. If the sender’s MI is not found in either of the
locally stored Live Peer List or Potential Peer
List, the sender is considered to be a
POTENTIAL PEER, and is added to the
Potential Peer List.

5/15/06 Page 7

Figure 1. Anti-Replay/Liveness Receiver

Processing

Each entry in the Live Peer and Potential Peer list
also documents when the message containing the
MI/MN pair was received. The station periodically
reaps entries that are older than a given threshold.
This mechanism allows a station to detect when other
stations have become non-responsive.

4.5. Key Server Election Process
LKS employs the key server model of group key
distribution. However, in most cases a single pre-
ordained key server would be useless, since its
absence at any time would result in the rest of the

devices on the link being unable to communicate.6
Thus, LKS includes a key server election process. As
long as one station is active, the LAN will have a key
server.

For efficiency, key server election is not a separate
protocol exchange. Each LKS message contains
enough state for each station to determine at any
given time which station should be the key server on
the LAN. The “election” process consists of an
evaluation of peer state and the station’s own state.
This evaluation process happens as the result of any
of the following events:

• A station determines that no station is
currently acting as key server. (This includes
the case where no live peers are found.)

• A station deems the current key server to be
non-responsive.

• A message is received from a station
claiming to be a key server, and this station
is not the current key server.

It is possible for two or more stations to believe they
are the key server for the LAN. This will happen
when a new station comes online, or a partitioned
network is joined. In this case, each station applies an
election heuristic to determine which station should
retain the role of Primary.

During an election, each station numerically
compares the Member Identifiers (MIs) of all stations
claiming to be Primary. The station retaining the
Primary Role is the station with the highest MI
value.7 If two devices claiming to be Primary also
choose the same MI value, then the device with the
highest Secure Channel Identifier (SCI) value is
chosen as the key server.8

6 The exception would be when hosts use a key
agreement protocol to join a network via a network
access point, but don’t expect to communicate
amongst themselves. The absence of a key server
would then be no worse than the absence of the
network access point itself.
7 Use of the MI provides the following advantage:
Some devices (e.g., switch ports) are natural
preferred key servers in some use cases. Those
devices could skew its choice of MI values to be in
the high end of the MI namespace.
8 If a station believes that two devices have the same
SCI and MI values, then it should log an error, since
the odds of this accidentally happening should be
quite low.

5/15/06 Page 8

4.6. State Machine Overview
Stations begin after obtaining the CAK. The state
machine begins in the Initialize state where it
initializes state variables. It then transitions to the
waiting state and reacts to events as they happen.
Figure 2 shows an overview of the LKS state
machine.

4.6.1. Protocol State Overview
Each station running this protocol maintains the
following state:

• Current CAK and its identifier (CKI).
• The station’s own identity (MI, SCI), as well

as the most recent sequence number used
(MN).

• The station identity currently believed to be
in the P role

• The role of the current station.
• The current SAK (and its identifier (SKI))
• The identities of stations known to be live

on the LAN, the most recent sequence
number that has been seen in a valid packet
sent from that station, and whether the
station claims to take the Primary role.

• The identities of stations that appear to have
recently sent a packet, the most recent
sequence number that has been seen in a
valid packet sent from that station, and
whether the station claims to take the
Primary role.

4.6.2. Protocol Messages and Timers
LKS supports a single message type, called a
SAK_MSG. A station acting in the Primary role
(called P) broadcasts the current SAK to other
stations using a SAK_MSG. A station not in the P
role uses the SAK_MSG as a heartbeat message
declaring their liveness to other stations.

The following timers are required for this protocol:

• Heartbeat Timer, to cause a station to send a
message periodically. A station in the P role
during the SAK transmission detects when a
SAK is will expire before the next scheduled
heartbeat and creates a new SAK.

• Management Timer, to periodically purge
state peer entries in the Live Peer and
Potential Peer lists.

4.6.3. Implementation Configuration
Values
The following values need to either be configured, set
as an implementation default, or defined in this
document. (TBD)

• Maximum lifetime of a SAK
• Length of the period between SAK_MSG

transmissions.

5/15/06 Page 9

Figure 2. LKS State Machine

4.7. Initialization State
This state is the beginning of the key agreement
protocol, and is entered when the station obtains the
CAK. Various state variables are initialized as
follows.

• An MI value is randomly chosen.
• The MN is set to 0.
• The station’s role is set to Primary (P)
• A SAK is randomly chosen.
• A SKI is randomly chosen.

When initialization is complete, the station
unconditionally transitions (labeled “UCT”) to the
Transmit State to transmit its new SAK. The
Initialization state is never re-entered unless an
external event causes the state machine to start over.

4.8. Send SAK_MSG State
This state is entered whenever a SAK_MSG must be
broadcast. Reasons for entering the Transmit State
are:

• The station transitioned from the
Initialization state,

• A Heartbeat timer popped, or
• The Process SAK_MSG state resulted in

needing to broadcast a message in return.

A station in the primary role formats and transmits a
complete SAK_MSG including the current SAK. For
state machine simplicity, the decision to create a
replacement for an expiring SAK is made in this state
as part of formatting the message.

A station not in the primary role always adds the
NULL_SAK flag when formatting the message and
omits sending a SAK. The setting of the NULL_SAK
flag also indicates to the receiver that they are not in
the primary role.

5/15/06 Page 10

Detailed actions performed in this state are described
in Section 4.13.1.

4.9. Process SAK_MSG State
This state is entered when a SAK_MSG is received.
The message is first authenticated and proven to be
from a live peer. In all cases a receiver updates its
peer state based on the liveness state in the message.
Processing the message differs whether or not the
sender of the message is in the P role.

The receiver is known to be not in the P role if it
included the NULL_SAK flag set. If the receiver is
also not in the P role, it has no need to further process
the packet. But a receiving station is in the P role
makes two additional checks, both of which result in
the creation and transmission of a new SAK:

• The CREATE_NEW flag is set in the packet
• The sender has an MI value not previously

stored in the Live Peer list.

If the message contains a SAK (i.e., the NULL_SAK
flag is not set), and if the sender is currently believed
by the receiver to be the group Primary, then it
accepts and installs the new SAK. The only exception
to this rule is if the receiver detects that the sender
has not yet marked the receiver as a Live Peer in the
message. In this case, the receiver cannot yet install
the SAK because doing so may violate an AES-GCM
security condition.

If the message contains a SAK from a sender NOT
currently belived by the receiver to be the group
Primary, then it performs the election process
(described in Section 4.5).

Detailed actions performs in this state are described
in Section 4.13.2.

4.10. Management State

Periodic and miscellaneous management events are
handled in the Management state. Periodic
background processing happens as a result of the
Management Timer pop:

• Non-responsive (“dead”) peers are pruned
from the peer lists.

• After the peer lists have been pruned, the
stations detects if the current Group P
station has become non-responsive and
performs the election process as defined in
Section 4.13.3.

When LKS receives a request from LMI, it handles it
in this state (TBD).

If a management event requires a new SAK (e.g.,
MACsec indicates that a new group key is necessary
because its Packet Number is about to wrap), the
station transitions to the Send SAK_MSG state.
Otherwise, control returns to the Waiting State.

4.11. Waiting State
This state is entered when other states have
completed. It waits until one of the following events
effects a transition:

• A timer interrupts the software, indicating
that some time interval has finished.

• A message is received from a peer.
• A Layer Management Interface (LMI)

request is received from MACsec.

When the Heartbeat timer pops, control transitions to
the Send SAK_MSG state to send a message. Every
station does this, regardless of their current role. This
periodic sending of packets proves to other stations
that the sender is live.

When either the Management timer pops, control
transitions to the Management state. When an LMI
request is received, control is also transitioned to the
Management state to handle the request.

When a SAK_MSG is received, control transitions to
the Process SAK_MSG state to validate and store the
new state in the message.

4.12. Frame formats
The following figure shows the general frame format
for protocol messages. [NOTE: Frame formats are
not complete. E.g.., little thought has yet been put
into word alignment of fields.]

Figure 3. PDU Format

5/15/06 Page 11

4.12.1. IEEE 802.1 Header
The header comprises three fields:

• Destination Address (12 bytes). A
multicast address, confined by bridges to a
single LAN.

• Source Address (12 bytes). The station’s
own address.

• Ethertype (2 bytes). A new Ethertype value
defined for this protocol.

4.12.2. LKS Header
The LKS protocol header has the following fields:

• Connectivity Key Identifier (8 bytes). The
CKI identifies a particular Connectivity
Association Key.

• Secure Channel Identifier (8 bytes). The
SCI is a MACsec identifier comprised of the
station’s MAC address and Port ID. The
default MACsec Default Cipher Suite (the
GCM-AES-128 Suite) depends upon all
stations in the CA having unique SCI values.
It is passed in the LKS header so that LKS
can detect SCI collisions.

• Member ID (4 bytes). This field contains
the current identity for the sending station.

• Message Number (4 bytes). This field
contains sequence number that increases
monotonically for each message sent by this
Member ID. Receiver processing of this
messages number provides anti-replay
protection.

4.12.3. Specific Message Data
Each message contains the following fields.

• Message Type (1 byte). This field defines
the type of the message.9

Type Value
SAK_MSG 0x1

o SAK_MSG. All stations send this
message type. A station in the P
role includes a SAK to be used by
the group. A SAK is sent without
any policy describing how that key
should be used (e.g., which Cipher
Suite should be used). It is assumed
that this policy is provided to the
station via a management interface
[802.1AE, Section 10.7] A station
not in the P role includes the
NULL_SAK flag (see below) but
no SAK.

9 One message type has been currently defined, but
this field provides extensibility.

• Flags (3 byte).

Type Value
CREATE_NEW 0x1
NULL_SAK 0x2
o CREATE_NEW. This flag is

included when a station requires a
new key (e.g., if its IV space is
about to run out).

o NULL_SAK. This flag indicates
that no SAK is included in this
message. When NULL_SAK is set,
the remaining fields in the Specific
Message Data are omitted.

• Key Wrapped SAK Type (1 byte).

Identifies the type of key wrapping around
the SAK.

Type Value Length of
Wrapped Key

AES_KEY_WRAP 0x1 16 bytes
• Key Wrapped SAK. (variable). The SAK.
• Secure Association Key Identifier (SKI)

(4 bytes). Identifies the current SAK.
• Key Lifetime (4 bytes). The maximum

duration (in seconds) that the station should
expect to use this key. The actual lifetime of
the key may be much smaller depending on
other events that may cause a rekey before
that time.

• Association Number (1 byte). The AN in
the CA in which this SAK should be
installed, as well as attributes of the AN.

AN value Rx Tx
2 bits 1 bit 1 bit

o AN Value. The primary should
alternate between the two values
0x01 and 0x10 for successive
SAKs that it generates.

o Rx. If set to 0x1 directs the station
to receive on this AN.

o Tx.]If set to 0x1 directs the station
to send on the AN.

For a group key, both the Rx and Tx bits
will be set.10

4.12.4. Liveness State
A station maintains liveness state for all peers on the
LAN that are able to construct a valid ICV. The
liveness state consists of MI:MN values for each
peer. Peers that have recently sent a packet with the
station’s own NI:MN values are considered “live

10 If the SAK were per-sender it would only have the
Rx bit set.

5/15/06 Page 12

peers”; peers that have not are considered “potential
peers”.

The following structure comprises the liveness state.

Figure 4. Liveness State

• Live Peer List Length (2 bytes). Number
of MI/MN value pairs for peers that have
recently shown to be live.

• Member Identifier (4 bytes). Identifier of
an authenticated station on the network.

• Message Number (4 bytes). Latest
sequence number observed for the Member
ID.

• Potential Peer List Length (2 bytes).
Number of MI/MN value pairs for peers that
have apparently recently sent a packet, but
that have not yet reflected back a recent
MI/MN pair for the sending station.

4.12.5. Termination Block
This field consists of two bytes, and has the value
0x0. It marks the end of message data fields. Future
versions of this protocol may add TLVs with a two
byte “type” field which are non-zero.

4.12.6. ICV
The ICV is calculated as described in Section 4.3.2.2
(16 bytes).

4.13. Message Operations
Sending or receiving a message will have nearly
identical semantics, with the exception dealing with
the specific message data as described above.

4.13.1. Transmitting Messages
The following steps are followed to create and
transmit a message.

1. Create the IEEE 802.1 header, populating the
header fields as defined in Section 4.12.1.

2. Add the LKS Header, populating the header
fields as defined in Section 4.12.2.

3. Add a SAK according to the following rules.

IF the station is in the Primary role
 IF SAK lifetime is near its end
 Create new SAK, its identifier, and
 lifetime.
 Add new SAK to message.
 ELSE
 Include current SAK in message.
ELSE
 Set the NULL_SAK flag in the message
 indicating both that there is no SAK
 and the sender is not in the P state.
 IF the prior state called for a new SAK
 Set the CREATE_NEW flag in the
 message.

4. Add Liveness State, as defined in Section 4.12.4.
The Live Peer List is populated from the locally
stored live peer list described in Section 0.
Similarly, the Potential Peer List is populated
from the locally stored live peer list.

5. Add the Termination Block, as defined in
Section 4.12.5.

6. Create the ICV as defined in Section 4.3.2.2, and
add it to the message.

4.13.2. Receiving Messages
The following steps are followed when receiving a
message with the Ethertype defined for this protocol,
and with the correct multicast destination address. In
all cases, an error condition results in processing of
the packet being aborted. Errors should be logged,
and should be rate limited.

1. Verify liveness & freshness of the packet. Doing

this before the ICV check mitigates some DoS
attacks.
a. If either peer list contains the receiving

station’s MI, verify that the station’s current
MN is within an acceptable window of
recent values (window size TBD).

b. Detect if this is an old packet by comparing
the Member Identifier in the LKS Header
with the stored peer state, as defined in
Section 4.4.1. Note whether the peer is a
LIVE PEER or POTENTIAL PEER but do
not yet update the stored state.

2. Verify the ICV with the following steps:

5/15/06 Page 13

a. Extract the CKI from the LKS Header, and
verify that it is a known CKI, associated
with a CA.

b. Using the CAK associated with the CKI,
compute the expected ICV as defined in
Section 4.3.2.2. Compare the result to the
actual ICV in the message. If the expected
ICV and actual ICV values do not match,
abort processing.

3. Validate that the format of the message is
correct. I.e., that it is a well formed message
conforming to the definition in Section 4.12.

4. Update the sender’s status as a LIVE PEER or
POTENTIAL PEER, and its most recent MN
value.

5. Check whether two distinct live peers are
claiming the same SCI value. If so, a log
message must be displayed.

6. Follow this logic:

IF sender is not a LIVE PEER
 Transition to Waiting
IF the NULL_SAK flag is set
 IF the receiver is P
 IF the CREATE_NEW flag is set
 Create new SAK, its identifier, and
 lifetime.
 Transition to Send SAK_MSG
 ELSE
 IF the sender has a new MI value
 Create new SAK, its identifier,
 and lifetime.
 Transition to Send SAK_MSG
ELSE
 IF sender is P
 IF the SAK is a new SAK
 IF the receiver is found in the
 sender’s live peer list
 Install new SAK
 ELSE

 Perform election
 IF sender is new P
 IF the receiver is found in the
 sender’s live peer list
 Install new SAK
Transition to Waiting

NOTES

• If the sender is not a LIVE PEER, no further

processing is performed on the message, even if
it contains a new SAK. This stops SAKs in
replayed and delayed packets from being
erroneously installed.

• If a station in Primary role receives a SAK_MSG
with the NULL_SAK flag, it checks if the MI
value is newly added to the LIVE PEER list. If
so, then it creates and distributes a new SAK.
This semantic protects the receiver from
breaking the AES-GCM security condition, as
described below.

• A receiver of a new SAK does not install a new
SAK if the sender does not yet show the receiver
in its live peer list sent in the message. This
check protects against a re-initialized live station
from re-installing a SAK that was previously in
use before it re-initialized. If the receiver had
used it previously, then it cannot use the key
again because it cannot know its previously used
Packet Number (PN) values. The PN comprises
part of the AES-GCM Initialization Vector (IV).
If B were to re-use MACsec PN values, it would
violate the AES-GCM security condition that a
packet never be encrypted twice with the same
key and IV. The receiver must wait for P to
recognize that the receiver is a live peer,
whereby it will generate a new SAK.

• When the station performs the election process it
follows the process described in Section 4.13.3.

5/15/06 Page 14

Figure 5. Receive SAK_MSG Processing

4.13.3. Election Process
When a station receives a message containing a SAK
from a station that it does not currently believe to be
the current group Primary, it performs an election.
An election is also called when the current group
Primary becomes non-responsive. The following
process is followed by the station:

1. Find all stations last known to be in the P role

and Compare their MI values.
a. If more than one MI is found, choose the

highest MI value to be the new Group P.
i. If more than one station carries the

winning MI value, compare the SCI
values of the stations and choose the
highest MI value to be the new Group
P.

ii. No two stations should ever have the
same MI and SCI values.

b. If only one MI value is found in the P role,
choose it to be the new Group P.

2. If no stations are found to be in the P role,
compare the MI values of all stations.
a. If more than one MI is found, choose the

highest MI value to be the new Group P.
i. If more than one station carries the

winning MI value, compare the SCI
values of the stations and choose the
highest MI value to be the new Group
P.

4.14. Security Analysis
TBD

NOTES:

1. One station determines the key for the
group. It would be possible for that key to
act inappropriately and intentionally choose
keys in some non-random manner (e.g.,

5/15/06 Page 15

cycle through three keys known to a device
not holding the CAK. However, it should be
noted that there are other more insidious
side channels by which a station in any role
can covertly leak a key. E.g., using the key
as an AES-GCM nonce in a data packet.

2. Allowing stations to choose their own MI as
frequently as they like opens up the protocol
to a Sybil attack[3], where a station
intentionally or inadvertently chooses many
simultaneous identities. This attack cannot
be stopped without providing a source origin
authentication, which was not a goal of
IEEE P802.1af.

5. References
[1] E. Barker, et. al.,, “Recommendation for Key

Management – Part 1:General”, NIST Special
Publication 800-57 Part 1, August 2005.

[2] E. Barker, et. al., “Recommendation for Key
Management – Part 2:Best Practices for Key
Management Organization”, NIST Special
Publication 800-57 Part 2, August 2005.

[3] J.R. Douceur, 2002. The Sybil Attack. In
Revised Papers From the First international
Workshop on Peer-To-Peer Systems (March 07
- 08, 2002). P. Druschel, M. F. Kaashoek, and
A. I. Rowstron, Eds. Lecture Notes In Computer
Science, vol. 2429. Springer-Verlag, London,
251-260. Available at
http://www.cs.rice.edu/Conferences/IPTPS02/1
01.pdf

[4] M. Dworkin, “Recommendation for Block
Cipher Modes of Operation: The CMAC Mode
for Authentication”, NIST Special Publication
800-38B, May 2005.

[5] IEEE, “IEEE P802.1AE/D5.1 Draft Standard
for Local and Metropolitan Area Networks:
Media Access Control (MAC) Security”,
January 19, 2006.

[6] McGrew, D. A. and J. Viega, “The
Galois/Counter Mode of Operation (GCM)”,
May 31, 2005. Available at
http://csrc.nist.gov/CryptoToolkit/modes/propos
edmodes/gcm/gcm-revised-spec.pdf .

[7] NIST, “Advanced Encryption Standards”, FIPS
197, November 2001. Available at
http://csrc.nist.gov/publications/fips/index.html.

[8] NIST, “Annex C: Approved Random Number
Generators for FIPS PUB 140-2, Security
Requirements for Cryptographic Modules”,
Draft, January 31, 2005.

[9] NIST, “Security requirements for Cryptographic
Modules”, FIPS 140-2, May 2001. Available at
http://csrc.nist.gov/publications/fips/index.html.

[10] NIST Computer Security Division’s CSRC
Home page, See http://csrc.nist.gov/.

[11] Perrig, A. et. al., “Efficient Authentication and
Signing of Multicast Streams over Lossy
Channels”, IEEE Symposium on Security and
Privacy (May, 2000), pp. 56-73.

[12] Perrig, A., et. al., SPINS: Security Protocols for
Sensor Networks, Wireless Networks
(September, 2002), vol. 8, num. 5, pp. 521-534.
Available at
http://sparrow.ece.cmu.edu/~adrian/projects/mc
2001/spins-wine-journal.pdf

[13] Schaad, J. and R. Housley, “Advanced
Encryption Standard (AES) Key Wrap
Algorithm”, RFC 3394, September 2002.

[14] Seaman M., “A distributed fault-tolerant group
key selection protocol for MACsec”, Revision
0.4, December 2004.

6. Acknowledgments
This paper was written after several visits with Mick
Seaman. His help was vital for the author to
understanding the principles and operations of IEEE
802.1 networks, as well as better understanding the
issues surrounding implementing security in this area.
Mick also suggested several optimizations that
substantially simplified the LKS state machine.

For ease of comparison this paper carries forward
some mechanisms and terminology from the Key
Selection Protocol [14], which is authored by Mick
Seaman.

David McGrew provided guidance regarding the
cryptographic protections of LKS.

Joseph Salowey and Frank Chao provided many
valuable insights and suggestions.

Appendix A. Examples
The following sections illustrate the protocol flow for
LKS, including the election process.

A.1. Two-party Exchange

Assume a shared media LAN with only two
authorized stations, and the stations do not have a
synchronized boot-up procedure. The first station to
boot will assume it is the Primary. It will create a

5/15/06 Page 16

new SAK (“SAK(A1)”, and provide it to MACsec. It
will set its MI to “A” and initialize its MN at 1. It
then begins by sending a message containing a new
SAK. .

Because A receives no replies from other stations, it
continues to act as P (for itself) and continues to send
messages, acting as periodic heartbeat messages, as
shown below.

Eventually station with MI of “B” comes on-line. It
also begins in the Primary role. Since B does not yet
have any live peers in its “Live Peer” list, it creates
“SAK(B1)” and broadcasts it in a message., and
requests a SAK. When station A receives the
message the message it validates the packet and
updates its “Potential Peer” list include B/1.
However, because A does not yet have confirmation
that B is live it does not process B’s message any
further. A does reply with its own message,
including B/1 in its Potential Peer list..

B receives and validates the authenticity of the A/5
packet. It then believes that A is alive because A
reflected back its most current MI/MN pair. Station B
now has to enter the election process to decide
whether or not to relinquish its role as Primary.
Assuming the election process declares that A should
remain Primary, it accepts this decision.

However, B does not yet unwrap the SAK and give it
to MACsec. B does not know whether it ever used
SAK(A1) before it rebooted. If it had, then it cannot
use the key again because it cannot know the list of
previously used Packet Number (PN) values. The PN
comprises part of the AES-GCM Initialization Vector
(IV). If B were to re-use MACsec PN values, it

would violate the AES-GCM security condition that a
packet never be encrypted twice with the same key
and IV. Therefore, B must wait until A generates a
new key, which it is obligated to do after it discovers
a live peer with a new MI value.

In order for A to accept B as a live peer (and
therefore create a new SAK) B sends a message.
Proving its liveness to A. 11

When A receives B’s message, it first observes that B
includes A’s most recent MI/MN values and moves B
from its Potential Peer list to its Live Peer list. Since
B is now evidently not in the P role (due to the
NULL SAK in the packet), A recognizes that it
remains the Primary device.

For safety reasons, A also recognizes that a new MI
value has joined the group. This indicates that it must
generate a new key.

As time progresses, both B and A issue heartbeat
messages. A continues to broadcast SAK(A2) and B
now broadcasts a NULL SAK to indicate that it is not
in the P role.

At such time as SAK(A2) needs to be replaced,
Station A will create and send SAK(A3).

Both stations install SAK(A3), and begin using it
according to MACsec semantics.

A.2. Adding a Third party
Building on the previous example, assume that a third
authorized party with an MI of “C” comes on-line.
The protocol flow begins in the same manner as

11 For safety reasons B could request that A create a
new SAK in its return packet. However this
substantially complicates the state machine.

5/15/06 Page 17

when B joined the group. B and C respond with
heartbeat messages, indicating that they have
received the message from C by including C/1 in
their “Potential Peer” lists.

Because A’s message contains SAK(A3) C discovers
that A is also in the Primary role, and enters the
election process. Assuming the election process
declares that C should remain Primary, it does not
change its state (other than to mark A and B as Live
Peers).

After some interval, all three stations issue heartbeat
messages. Again, both A and C include their SAKs.
At this time, both A and B will discover that two live
stations are acting in the Primary role and will enter
the election process. Because A and B now the same
state as C, the election process on each will declare
that C is the Primary and they will adjust their state
accordingly.

C will continue to act as Primary now until there is
change of stations in the group.

A.3. Re-election of a Primary
Continuing with the previous example, assume that
station C goes off-line. It will stop sending
heartbeats, after which A and B will both remove it
from their Live Peer lists. At this time, both A and B
will observe that no station is claiming to be Primary
and they will enter the election process again.
Depending on its policy, the winner will either
generate a new SAK immediately or simply
broadcast the current SAK until it expires.

Assuming A wins, and assuming A’s policy is to
create a new key, A immediately creates a new
SAK(A4) and sends it to the group (i.e., to B).

Appendix B. Adding Per-sender
keying support to the LKS protocol

MACsec supports the concept of each station having
it’s own sending key (a.k.a, per-sender key). This is
shown in ([5], Figure 7-6), where three systems have
three SAKs installed. In that figure each system uses
a unique SAK for sending, and receives on the other
two. LKS can support per-sender keys with some
modest changes to its state machine.

The use of per-sender keys within a CA is
advantageous for the following reasons:

• Each sender controls the duration and usage
of its own keys independently.

• The key establishment function becomes
straightforward because no determination
must be made as to which station generates
the SAK.

There are some considerations to using per-sender
keys:

• Each station on the LAN must have the
capacity to store one key for each station on
the LAN.

• Requiring stations to be pre-configured to
use a group key or a per-sender key may not
be feasible. Therefore, the LKS protocol
must allow stations to move between a
group key and per-sender keys. If the
number of stations on the LAN exceeds any
one station’s available key capacity, the
group must revert to a group SAK.

B.1. State Machine
It is unreasonable for devices to be manually
configured in “group” or “per-sender” keys – the
protocol needs to have agreement between the active
entities as to which mode is to be in effect. This
implies that additional protocol state is required are
required. However, no additional states are required
in the state machine.

B.1.1. Protocol State

5/15/06 Page 18

Adding support for multiple controlled ports requires
additional state on each station:

• Knowledge of the number of the station’s
own available controlled ports

• Whether or not the group is currently using a
group SAK or per-sender SAKs.

B.1.2. Initialization State

An additional state variable must be set to indicate
that per-sender keys should be used whenever
possible. Also, the key capacity for each peer must be
stored (with the peer’s MI/MN values, etc.).

B.1.3. Send SAK_MSG State
When a station transmits a SAK_MSG it must
include its current key capacity for the CA in the
message (TBD). This allows other stations to
determine whether or not they are willing to use per-
sender keys.

6.1.1. Process SAK_MSG State
When a station receives a SAK_MSG, the logic it
follows in processing the SAK portion of the
message is greatly simplified:

IF sender is a LIVE PEER
 IF the SAK is a new SAK
 Install new SAK
Transition to Waiting

NOTES:
1. Because the receiver never creates packets

with a SAK forwarded by another station it
can unconditionally install the new SAK.

2. There is no reason for a station to send a
message with the NULL_PAK flag, and the
CREATE_NEW flag has no meaning.
Therefore, each SAK_MSG should contain
the station’s most current SAK.

B.2. Frame Format
The frame format gains a couple of fields to support
Per-Sender SAKs.

B.2.1. LKS Header
The LKS Header adds the following field:

• Number of Controlled Ports Available (2
bytes). This is a number that describes how
many controlled ports the station is able (or
willing) to devote to this CA.

B.2.2. Specific Message Data
The SAK_MSG specific message data adds the
following field:

• SAK Mode (1 byte). This describes the
scope of the SAK.

Type Value
GROUP 0x1
PER_SENDER 0x2

