
MAC Status Propagation

Revision 0.8 August 20th, 2006 Mick Seaman 1

MAC Status Propagation
Mick Seaman

MAC Relays (such as the P802.1aj TPMR) that provide a frame forwarding (sub)layer below and
transparent to other bridges and their protocols can significantly degrade service availability. If the
relaying sublayer were not present, changes in connectivity would be accompanied by a change in
the MAC_Operational status parameter. MAC_Operational provides rapid notification of
connectivity failures and prompts the necessary initial protocol behavior to ensure that new
connectivity has not caused an instantaneous data loop. If the MAC status is not propagated by the
relays, bridge protocols have to rely on periodic transmissions to detect connectivity changes. These
take time to cut loops and repair failures caused by changes in the relayed links.
This note describes media independent propagation of MAC status, while allowing connectivity to
a relay while one of its links is not operational. It builds on the ideas discussed at the 802.1 May
interim, partly captured in P802.1aj D0.5, and discussed further in the July 2006 meeting. It should
be regarded as work in progress.

1. Introduction
The MAC_Operational ISS status parameter (802.1D,
802.1Q clauses 6.4.2) provides a media access method
independent indication of the availability of the MAC
Service at a service access point (port). The rapid
reconfiguration capabilities of RSTP and other protocols
depends on link failure notification through a
MAC_Operational transition to false. Additions to the
underlying physical topology are preceded by
MAC_Operational becoming true at a Bridge Port, so that
new connections do not result in immediate data loops that a
spanning tree protocol will take time to resolve.
A MAC Relay that is not an active participant in the
spanning tree protocols should propagate the
MAC_Operational state from one port to another. Consider
such a relay (Figure 1) connecting two Bridge Ports.

Assume that Bridge A is the spanning tree Designated
Bridge for the LAN that comprises the physical LANs a and
b and the TPMR that connects them, and that Bridge B’s
spanning tree Root Port is shown. If a fails (is disconnected
etc.) and the TPMR does not relay the MAC status, Bridge
B will not reselect its Root Port until it has timed out the last
BPDU from A.
Consider a link that uses two relays (Figure 2) perhaps
deployed because the intervening ‘LAN’ c is realized using
a non-802 technology together with an appropriate
convergence function.

Unless the MAC status is propagated, failure of c will not be
immediately visible to either bridge. Worse, if c fails and is
restored after a while, both A and B will come to believe

themselves to be Designated Bridge for the composite LAN,
and will forward frames until one receives a BPDU from the
other, even if a data loop has been created†1 †2.
This note:
a) discusses the meaning of MAC_Operational (2)
b) distinguishes ‘MAC status propagation’, ‘link status

notification’, and ‘MAC status notification’ (3)
c) describes how management connectivity to relays that

use MAC status notification is retained (4)
d) sets out some initial thoughts on the protocol or protocols

to support status propagation (5)
e) describes how status propagation should be modelled

within the TPMR architecture (6) †3
f) specifies state machines for protocol operation (7)
g) shows that the additional status propagation protocol

does not exhibit undesirable properties in cases where it
would not have been required, and in cases of mutliple
near simultaneous MAC status transitions (8)

h) discusses status propagation for virtual links, such as
point-to-point S-VLANs (9).

2. MAC_Operational
To a first approximation, the MAC Service provides (when
working correctly) bi-directional connectivity or no
connectivity at all. However the fact that MAC_Operational
is true does not guarantee connectivity to a peer that is
(thought to be) connected to the same LAN. Even if the
LAN is point-to-point, the peer could have just reinitialized.
Moreover it is clearly not possible, given only the use of the
LAN medium for communication, to arrange that two peers

TPMR

Bridge BBridge A

a b

Figure 1—Relay connecting bridge ports

TPMR

Bridge BBridge A

a b

TPMR

c

Figure 2—Relay chain connecting bridge ports

†1It is possible to configure bridge to bridge links so that frames are not
forwarded unless BPDUs are received from the peer bridge. A bridge port
might be configured to transmit BPDUs always, irrespective of Port Role,
or the Designated Bridge could set the Proposal flag in all BPDUs to solicit
Agreements continuously (with some impact on network reconfiguration
performance). If we do not mandate comprehensive MAC status
propagation through TPMRs we should definitely standardize such a
solution, even though it depends on configuration, and we may want to
standardize it in any case. Of course, BPDU reception monitoring does not
speed link failure detection, and so complements rather than replaces MAC
status propagation and is not discussed further in this note.
†2This problem (unannounced new connectivity) does not arise if
P802.1AE MAC Security is being used and the use of the Uncontrolled
(insecure) Port is limited to the necessary authentication and key agreement
protocols.
†3TPMRs and the relays described in this note are really just bridges, albeit
with possible conformance variations from the bridges standardized so far.

MAC Status Propagation

Revision 0.8 August 20th, 2006 Mick Seaman 2

will transition MAC_Operational from false to true (or even
from true to false) at exactly the same time.
What is true for two peers connected to the same LAN is
that if MAC_Operational is true for both they can
communicate, and if false for either they do not. Protocols,
such as the spanning tree protocols, that make use of
MAC_Operational to detect new connectivity and initialize
state machines rely on the peer that sees MAC_Operational
transition last to enforce any necessary special behavior
after a status transition†1. For example, it is the last
powered on of two connected Bridge Ports that enforces the
necessary delay prior to declaring the Port ‘OperEdge’.
One way two communicating peers can correctly†2
implement MAC_Operational is to signal to each other
when they are ready to receive, and to assert
MAC_Operational true and accept frames (for transmission)
and deliver frames (on reception) from and to their local
client on receipt of ‘ready to receive’ from their peer†3.
This does not require a MAC client to recognize separate
‘receive operational’ and ‘transmit operational’ status
parameters. Signalling ‘I am ready’ is equivalent for links
that are not aggregated†4 or not expected to be aggregated
without an increased risk of frame loss.

3. Status notification and propagation

Clearly a change in the operational status of a given LAN
can be communicated by transmitting a frame (over another
LAN!) conveying that information. This note defines the
term ‘link status notification’ to describe the transmission of
a frame conveying information about (some LAN’s)
MAC_Operational parameter. The term ‘MAC status
notification’ is used to describe a (layer) management
interaction with an underlying MAC Service to change
MAC_Operational in a bridge or relay that is a peer user of
that service†5.
These two notification methods differ, as follows.
Link status notification does not interrupt or prevent other
communication between adjacent relays, or between a relay
and a bridge. On the other hand, its successful use depends
on both implementing a new protocol. Since it does not
prevent communication it cannot, by itself, prevent loops
caused by new connectivity.
MAC status notification is the equivalent of cutting the
wire. It is immediate, and effective for all MACs and
services that currently support MAC_Operational correctly.
It also interrupts all other communication, including the use
of in-band management to rectify an underlying problem.
This note uses the term ‘MAC status propagation’ for the
overall process of communicating a MAC_Operational

parameter value through one or more relays, possibly
involving link status notification between some and MAC
status notification between others.

4. Management connectivity

If MAC status is propagated using MAC status notification,
management connectivity is lost. Link status notification is
generally preferred, unless it is known that one party does
not implement it, or responds slowly to the receipt of
notification frames.
To allow management of links that would otherwise
propagate a ‘down’ MAC status, the MAC status can be
‘blipped’, i.e. taken false for a brief period whenever it
changes, and allowed to return true. While this slows the
recognition of newly available connectivity, that is rarely an
issues since several seconds hysteresis should be applied to
any MAC_Operational status transition to prevent higher
layer protocols ‘flapping’†6.

5. Initial protocol thoughts

What we seek is not so much a new MAC status
propagation protocol, as an analysis of required
functionality that can be mapped onto existing protocols,
with minimal extensions. In particular the functionality
provided by CFM should already be close to what we need,
while the various MACs all have more or less sophisticated
capabilities are part of basic operation. In analyzing the
required functionality, we further hope to identify
fundamental communication primitives that can be relayed
independently of the details of particular protocols—thus
providing a overall solution for MAC status propagation on
a link that might comprise individual LANs of different
MAC types and chains of TPMR like devices with their
own preferred link maintenance protocols.
Throughout this protocol description the term ‘LAN’ will
be used solely to refer to the individual LANs at the lowest
layer in the architecture shown, connecting adjacent TPMRs
or a TPMR and an adjacent bridge. A ‘chain’ is a series or
part of a series of TPMRs connected by LANs, and a ‘link’
is the connectivity provided by a chain between non-TPMR
devices communicating at a higher (sub) layer that see
entire link as a simple transparent LAN.
This note makes an underlying and very important
assumption. It is concerned about what happens in plug and
play and default cases, where TPMRs provide links that are
either not subject to detailed provisioning management, or
have not been provisioned yet. Of course moving some
equipment around is a good way to provoke this scenario.
The use of provisioned CFM between two or more selected
ports on the TPMR chain, or between the end of a link,
cannot be relied upon, though it would be nice if such CFM
use fitted neatly into an overall solution. It is quite possible
that those who want to rely totally on the fail-proof nature
of their pre-provisioning systems and operational practices
will want to disable what ever plug-and-play solution we
devise to the problems of unsignalled connectivity changes.
However we should have a solution for the person who is
surprised when his new TPMR deployment starts trashing
his network. Because some administrators will turn off
whatever protocol we devise to keep them out of trouble,
the protocol itself should be benign if there are TPMRs in

†1Such protocols are, therefore, naturally symmetric in operation.
†2That is, in a way that exhibits no frame loss after MAC_Operational
becomes true for both, unless it very shortly becomes false for one or the
other again.
†3This is essentially the rule used by 802.3ad link aggregation (when
implemented properly) to ensure that frames are not lost when links are
added to an existing aggregate.
†4It is not equivalent for a link (LAN) that is being added to an aggregation,
since such a link should deliver frames to its ‘user’ (the aggregator) once it
has sent ‘receiver ready’, but should not be used for transmission until it
has received ‘receiver ready’ from its peer. Clearly both ends of the
aggregate link cannot wait for the other to send ‘receive ready’ first.
†5I am not wedded to these particular terms but there is a need for three
simple terms, one for communication by ‘cutting the wire’, one for
communication using frames, and one for the overall process of
communication through concatenated relays—possibly involving
transmission of frames between some relays and wire-cutting at others.

†6It is an open question as to whether the ‘MAC’ or the higher layer
protocol should apply the hysteresis. The latter clearly provides more
flexibility, but has less knowledge of when the underlying service is truly
likely to become reliable for a sustained period.

MAC Status Propagation

Revision 0.8 August 20th, 2006 Mick Seaman 3

the chain that do not use it—though of course it will not
then meet its goals for link operation.
The number of TPMRs in the time sequence examples that
follow is deliberately high, four where one or two might be
more common, in order to show all the necessary aspects of
protocol behavior. In the examples, the MAC_Operational
and MAC_Enabled status at each port is shown, (thumbs
up) for OperUp, (thumbs down) for OperDown but
locally MAC_Enabled, (pointing down) for
MAC_Enabled false, and (pointing up) for
MAC_Operational but temporary preventing traffic through
the port by reporting OperDown to the port’s clients.
There are two major approaches to the design of protocols
of the type investigated in this note. One communicates the
status of a link continually, ‘up’ or ‘down’, the other is
event driven and focuses on the transitions—the addition of
connectivity, ‘add’, or loss of connectivity, ‘loss’. It is fairly
easy to convert signalling of one type into the other, and
both approaches can be made to communicate the state held
by the transmitting entity and to be (to within the time deltas
implied by message loss or repetition) idempotent. At the
same time it is necessary to be very clear what form of
signalling is being used, as the design process goes around
in circles if metaphors are mixed. The initial presentation in
this note uses the event (transition) signalling approach.
This protocol description begins with signalling new or
recovered connectivity. This is more difficult than
signalling failure—the wide range of options for the latter
provide little guidance for the overall design. Figure 3
shows the ideal response to a new LAN connection in a link
between two bridges that do not participate in link status
protocol—and thus require MAC status notification.

When the new connection is made, the TPMR ports at either
end of that LAN recognize OperUp but do not immediately
report that to their local clients (), thus preventing an
immediate data loop. The TPMR (1) that is immediately
adjacent to a higher layer bridge disables its other MAC ()
for a period to signal new connectivity to the bridge. The
other TPMR (2) sends an ‘add’ message on its other port.
The ‘add’ propagates through the chain of TPMRs until it
reaches the last LAN, connected to a higher layer bridge.
The TPMR’s MAC for this LAN is disabled and a ‘confirm’
message is sent through the chain to the TPMR port that
originated the ‘add’, causing that port to report OperUp to
its clients (). Finally TPMR 4 re-enables its disabled
MAC restoring connectivity to the adjacent higher layer
bridge. The time (Td in the figure) for which that MAC is

disabled should be chosen to be sufficient for the ‘confirm’
to reach the TPMR originating the ‘add’, and for that TPMR
to enable its clients, thus ensuring that there is connectivity
between the two higher layer bridges when they both report
OperUp to their local protocol clients†1.

The foregoing assumes that TPMR 4 knows that its right-
hand LAN connects to a system that does not participate in
the link status propagation protocol. If that system did
participate, the time for which connectivity from it to the
TPMR chain is prevented could be kept brief. However we
have to recognize that most existing equipment will never
be changed to add status propagation support, and that the
benefit is minor as compared to potential competing
demands on engineering and deployment time. It is
therefore quite likely that it does not participate, and that the
TPMR (4) is not aware of that before hand. Figure 4 shows
how the protocol deals with this scenario.

After receiving, and forwarding, ‘add’ messages without
receiving a confirm, TPMR 4 disables its right hand MAC
to be sure that the attached system sees an OperUp/Down/
Up transition. Since MAC status notification should only be
used at the end of the TPMR chain to avoid disrupting
TPMR to TPMR protocols†2, an acknowledgment that is
local to two adjacent TPMRs, is used to suppress that
transition (by cancelling the Tw timer).

Figure 3—New connectivity

add
add

MAC
recovers

confirm

confirm

TPMRTPMR TPMR TPMR

Bridge Bridge1 2 3 4

Td

Tr

Td

†1While relying on any time in this way is tacky protocol design, there is no
reasonable alternative without requiring the bridge at the end of the link to
participate in the protocol. Since link up downs should have ample
hysteresis (at least 2 seconds) to protect against flapping links, while the
confirm should be forwarded and processed within a few milliseconds, the
right result should be easily obtainable without timer tweaking.
†2Like the spanning tree at the relay level, which will be required inevitably
once we allow ‘three port MAC relays’, communication switching systems
that ‘look like MAC relays’ and so on. Unless of course we want to put the
technology back thirty years and invent loop detection protocols.

Figure 4—New connectivity with
MAC status notification

Tw

add
add

MAC
recovers

TPMRTPMR TPMR TPMR

Bridge Bridge

add
add

Tr

Tr

add
add

add

add

confirm

confirm

1 2 3 4

Td

Td

Tw

Td

confirm

confirm

ack

ack

ack

ack

ack

Tw

Tw

Tw

Tr

Tw

Tw

MAC Status Propagation

Revision 0.8 August 20th, 2006 Mick Seaman 4

This ‘ack’ can be a true ack, prompted by receipt of the
‘up’, or any other indication that the next (or a further)
TPMR in the chain has or will receive the ‘add’ to within a
reasonably low probability of loss—such as having received
any message from that TPMR indicating that it is operating
the protocol. Similarly there is a degree of flexibility in the
choice of when the MAC is to be deliberately disabled to
propagate MAC status. That could happen, as shown in
Figure 5, after a timeout (Tw) after the receipt of an ‘add’
without a corresponding ‘ack’ or ‘confirm’, or it could
happen, as in Figure 3, on receipt of first ‘add’ if the
knowledge that the TPMR is at the end of the link status
notification chain is already available. The state machines
for each TPMR port status propagation can vary in the way
that this detail is handled, without affecting the viability of
the link status propagation and confirmation along the
TPMR chain.

There is little reason not to use an ‘ack’ when signaling
connectivity failure as well, see Figure 5. The ‘confirm’
message could have been avoided by passing on the
responsibility for retries using the ‘loss’/‘ack’ exchange, as
the port that experienced the transition on TPMR (2) is not
holding state. However using different propagation
philosophies for the ‘loss’ and ‘add’ cases seems odd†1. As
it is, it is clearly the case that ‘add’ and ‘loss’ could be
replaced by a single ‘chg’ (change) message, which gives
more flexibility in adapting to existing protocols.

†1I originally wrote this up the other way round, but the difference
continued to jar.

Figure 5—Connectivity failure

Tw

loss
loss

MAC
fails

TPMRTPMR TPMR TPMR

Bridge Bridge

loss

1 2 3 4

ack

ack

Tw

Tw

T
Tr

loss
loss

Tr

Tr

loss
loss

loss

confirm

confirm Td

Td

confirm

confirm

ack

ack

ack

Tw

Tw

Tw
Tw

MAC Status Propagation

Revision 0.8 August 20th, 2006 Mick Seaman 5

6. Interface architecture
It is clearly desirable to add MAC status propagation to the
existing bridging architecture with the minimum of changes
to the existing components of the specification. That is why
the protocol summary suggested continuing to report
MAC_Operational false to the local client of a port that has
just come up, pending status propagation. A shim per port,
or at least modelling using a shim, is clearly indicated.
Figure 6 shows shims for the two ports of a TPMR, together
with a MAC Status Propagation Entity (MSPE) that
facilitates communication between the shims †1.
Status propagation through LMI interactions with the MSPE
allows the use of generic management requests and
indications that can be communicated differently by the
different MACs, as well as providing a way for one MAC
State Shim to signal to the other(s), through the MSPE, even
though MAC_Operational for its upper ISSAP is false.

Modeling status propagation through the relay in terms of
forwarding link status notification frames would lack that
latter attribute.
The MSS does not receive or transmit frames itself, but calls
upon the MSPE to do that on its behalf. If the MSS is
reporting MAC_Operational False to its clients (ultimately
the MAC Relay Entity, the MSPE, and other Higher Layer
Entities) it allows neither the reception nor the transmission
of frames.
The MSPE does not forward link status notification frames
itself, though an LMI request from an MSS can result in
frame transmission on another port. Link status notification
frames are forwarded by the MAC Relay Entity, like any
other frame. This provides the fastest possible
communication of status notification. Link status
notifications are sent to a multicast address, and are
received by the MSPE as well as being forwarded. The
MSPE attaches to each Port by a Bridge Port connectivity
function (see 802.1Q clause 8.5.1) that is augmented to
allow transmission and reception only to the attached
individual LAN, as shown in Figure 6.

†1It is probably worth noting that, in a TPMR, the VLAN tagging functions
are very much a subset of those currently in 802.1Q Clause 6.7, being
limited to tag recognition to support service class queue. Tags are not
added, removed, or changed by the TPMR but retaining the tagging
function

Bridge Port connectivity

MAC Relay Entity

Higher Layer
Entities

LLC

Bridge Port connectivity

(ISS)

MSPE

MAC Status Shim
(ISS)

LAN MAC

LM
I

(ISS)

(ISS)

(ISS) (ISS)

MAC Status Shim
(ISS)

LAN MAC

Higher Layer
Entities

LLC

LM
I

(ISS)

VLAN
tagging

VLAN
tagging

(ISS)(ISS)

(EISS)(EISS)

Figure 6—MAC Status Shims and the MAC Status Propagation Entity

MAC Status Propagation

Revision 0.8 August 20th, 2006 Mick Seaman 6

7. State machines

Figure 7 shows a MAC Status Shim and its interaction with
its peer(s) in the same system through the MSPE in more
detail, including the necessary state machine variables.

This note specifies the per port state machines that compose
the MSPE—the Status Transition Machine (STM), Status
Notification Machine (SNM), Status Propagation Machine
(SPM), Status Confirmation Machine (SCM), and the
supporting Transmit and Receive processes.

Some variables in Figure 7 are preceded with ‘r.’, this
indicates that the variables referred to are those of
corresponding state machines of the other port(s) of the
relay. The operation of the state machines can be
generalized, by the addition of explicit relaying elements, to
provide MAC status propagation through a multi-port relay
or to a relay that uses different status propagation protocols
on some ports. However, the simplest application of the
state machines of Figure 7 is to a relay with two ports,
operating identical status propagation protocols on those
ports. The MSPE state machines for such a relay comprise
two sets of the per port state machines shown, with each of
the variables preceded by ‘r.’ being that of the same name
for the ‘other’ port.

The STM is responsible for telling the SPM about
MAC_Operational transitions on its own Port (repeatedly if
necessary), so that it can send link status notifications
through the other Port(s).
The SNM is responsible for monitoring the progress of link
status notifications sent through its Port (as notified by the
SPM of the other Port), so that MAC status notification can
be used (after a delay to allow the link status notification to
elicit a confirmation) if necessary.
The SCM informs the other Port of receipt of a
confirmation, as well as its own SNM.

7.1 State machine variables and timers

add — set by the STM to tell the SPM that the attached
individual LAN has become operational, cleared by the
SPM when it has taken note of that transition.
addConfirmed — set by the other Port’s SCM to tell the
STM that the addition has been confirmed, i.e. has been
signaled one way or another to the system attached to the
relay chain, or to a point where the relay chain ends (no
further individual LAN, or LAN is OperDown), cleared by
the STM when it has taken note of the confirmation.
disableMAC — provides communication from SNM to the
individual LAN MAC (or other underlying service), via an
LMI, resulting in some MAC specific action to disable the
MAC in such a way that peer clients of the MAC are aware
that it is disabled by inspecting own values of
MAC_Operational for the MAC.
NOTE— The state machines do not assume that a client of the MAC can
tell whether the MAC is not operational because that client has disabled it,
or whether some other client has disabled it. The state machines also allow
for the MAC to take some time to become operational after disabledMAC
is set True.

disabledMAC — set by the SNM when it has intentionally
disabled the underlying MAC, and for a recovery time
following that, to communicate to the STM to ensure that
blipping the MAC does not result in signaling a loss in the
reverse direction.
loss — similar to add, but set to indicate that the attached
individual LAN is no longer operational.
lossConfirmed — similar to addConfirmed but confirms
a loss.
macOperUp — The value of MAC_Operational for the
individual LAN MAC or other underlying service.
mssOperUp — the MAC_Operational signal to the MSS
client.
prop — set by the other Port’s SPM to notify the SNM that
a change is being propagated through the Port.
propConfirmed — set by the SCM to notify the SNM that
the change being propagated has been confirmed.
rxAck—set by the Receive process to tell the SNM that an
acknowledgment has been received.
rxAdd—set by the Receive process to tell the SPM that an
Add message is being propagated through the relay†1,
cleared by the SPM.

Figure 7—State machine overview

MAC Service Provider
(Individual LAN MAC etc.)

prop

m
ac

O
pe

rU
p

m
ss

O
pe

rU
p

di
sa

bl
eM

AC

STATUS NOTIFICATION
(PER PORT)

macNotifyWhen,
macNotifyWhile,

macRecoverWhile

di
sa

bl
ed

M
AC

propConfirmed

STATUS TRANSITION
(PER PORT)

linkNotifyWhen

MAC STATUS PROPAGATION ENTITY

add

addConfirmed

loss

lossConfirmed

MAC Status Shim
(Individual LAN MAC etc.)

m
ac

O
pe

rU
p

TRANSMIT
(PER

PORT)

txAdd
txLoss

txAck

txAddConfirmed
txLossConfirmed

rxAdd
rxLoss

rxAck
rxAddC

onfirm
ed

rxLossC
onfirm

ed

r.prop

r.addConfirmed
r.lossConfirmed

r.txAddConfirmed
r.txLossConfirmed

STATUS PROPAGATION
(PER PORT)

STATUS
CONFIRMATION

(PER PORT)

RECEIVE
(PER

PORT)

r.txAdd
r.txLoss

†1If an instance of spanning tree is operating at the level of the relay (in
addition to any spanning tree operating at the level of the systems
connected to the periphery of the relay chain) additional considerations
apply. These are only significant for multi-port relays and are not explored
further in this note.

MAC Status Propagation

Revision 0.8 August 20th, 2006 Mick Seaman 7

rxLoss— similar to add, but for a Loss.
txAck—set by the SPM to instruct the Transmit process to
send an acknowledgment, cleared by the Transmit process.
txAdd—set by the other Port’s SPM to causes transmission
of an Add message through this Port, and cleared by the
Transmit process.
txAddConfirm—set by the other Port’s SNM to causes
transmission of a message (through this Port) confirming
that a received Add message has been acted upon. Cleared
by the Transmit process.
txLoss—similar to a txAdd but causes a Loss message to be
transmitted.
txLossConfirm—set by the other Port’s SNM to causes
transmission of a message (through this Port) confirming
that a received Loss message has been acted upon. Cleared
by the Transmit process.

7.2 State machine timers

Timers are implemented by variables that are decremented
on each timer tick, with timer expiry occurring when they
reach zero.
linkNotifyWhen — causes a link status notification to be
sent on each expiry until the original status transition is
confirmed.
macNotifyWhen — started when a change is first
propagated through the Port (as signaled to the SNM by the
MSPE), on expiry causes MAC status notification.
macNotifyWhile — sets the time for which the MAC is
disabled for MAC status propagation.
macRecoverWhile — sets the time for which the mAC is
permitted to be non-operational after being disabled before
the link is reported as lost.

7.3 State machine procedures

No procedures are defined beyond those represented in the
state machines.

7.4 State machines

Figure 8 shows the state machines, using the conventions
common to 802.1 specifications.

7.5 Managing status propagation

In the absence of any better ideas and for the convenience of
depicting timer values on the protocol time sequence
diagrams in this note, the starting values of the timers have
been given the following names:

linkNotifyWhen : Tr — ‘retry time’
macNotifyWhen : Tw — ‘wait time’
macNotifyWhile : Td — ‘down time’
macRecoverWhile : Tm — ‘recovery time’

The protocol behavior at each port can be managed by
changing some of these times, as follows:

If Tr is set to zero, a single link status notification of loss
or addition will be sent and a confirmation will not be
required before the LAN is used by the MSS’ client or
another transition is signaled.
If Tw is set to zero, MAC status notification will be used
immediately, without waiting for link status notification
to work.

If Td is set to zero, then MAC status notification will not
be used.
If both Td and Tw are zero then notification is skipped
altogether, and the link status notification confirmed
immediately.
Clearly if we decide that all or any of Tr, Tw, and Td are
fixed rather than manageable parameters, the same
functionality can be provided by a flag for each, or by a
mode switch that covers the useful combinations.

The default protocol behavior, i.e. when Tr, Tw, and Td are
all non-zero, matches the time sequence diagrams above.
When MAC_Operational transitions false on one port of a
relay:
1) Status notification is initiated on the other port(s) with

MAC_Operational true (if any)
2) Initially link status notification is used, and persists until

an acknowledgment or confirmation is received or a
timer expires

3) If the link status notification is unacknowledged by the
time the timer expires, MAC status notification is used,
again until an MAC status confirmation is received or a
timer expires

4) The MAC status is allowed to revert true on the ports that
are providing status notification.

Similarly, when MAC_Operational transitions true on one
port of a relay:
5) The value of MAC_Operational reported to the local

client of the port is held false
6) Status notification is initiated on the other port(s) with

MAC_Operational true, and proceeds as in (1) thru (4). If
there are no such ports this step is skipped.

7) The MAC status (MAC_Operational) on the initiating
port is allowed to become true

MAC Status Propagation

Revision 0.8 August 20th, 2006 Mick Seaman 8

Figure 8—State machines

INIT_NOTIFICATION

BEGIN

prop = None; propConfirmed = False; acked = False;
macNotifyWhen = macNotifyWhile = macRecoverWhile = 0;

disableMAC = disabledMAC = False;

LINK_NOTIFICATION

macNotifyWhen = Tw; acked = False;

(prop != None) &&
macOperUp

MAC_NOTIFICATION

(macNotifyWhen == 0) ||
 !macOperUp

macNotifyWhen = 0; macNotifyWhile = Td;
if (Td == 0) disableMAC = disabledMAC = True;

if (prop == Add) r.txAddConfirmed = True;
if (prop == Loss) r.txLossConfimed = True;

prop = False;

macNotifyWhile == 0(prop != None)

END_NOTIFICATION

disableMAC = False;
macRecoverWhile = Tm;

!prop && (macOperUp || (macRecoverWhile == 0))
prop

acked

propConfirmed
(linkNotifyWhen == 0) &&
!addConfirmed && (Tr !=0)

DOWN

BEGIN

add = loss = addConfirmed = lossConfirmed = False;
linkNotifyWhen = 0;

mssOperUp = False;

ADD

add = True; linkNotifyWhen = Tr;

macOperUp

UP

addConfirmed = lossConfirmed = False;
mssOperUp = macOperUp;

LOSS

addConfirmed || (Tr == 0)

!macOperUp && !mssOperUp &&
!addConfirmed &&
!lossConfirmed && !disabledMAC

(mssOperUp != macOperUp) ||
addConfirmed || lossConfirmed

(linkNotifyWhen == 0) &&
!lossConfirmed && (Tr !=0)

loss = True;
linkNotifyWhen = Tr;

lossConfirmed || (Tr == 0)

Status Transition Machine Status Notification Machine

Status Propagation Machine

rxAdd = rxLoss = add = loss = False;

PROP_IDLE

SIGNAL_ADD
r.txAdd = True;
r.prop = Add;

PROP_ADD
txAck = True;
r.prop = Add;

SIGNAL_LOSS
r.txLoss = True;
r.prop = Loss;

PROP_LOSS
txAck = True;
r.prop = Loss;

BEGIN

add lossrxAdd rxLoss

UCT UCT

UCTUCT

Status Confirmation Machine

rxAddConfirmed = rxLossConfirmed = False;

CONFIRMED_IDLE

CONFIRMED_ADD
r.addConfirmed = True;
propConfirmed = True;

SIGNAL_LOSS
r.lossConfirmed = True;
propConfirmed = True;

BEGIN

rxAddConfirmed rxLossConfirmed

UCT UCT

MAC Status Propagation

Revision 0.8 August 20th, 2006 Mick Seaman 9

8. Curious cases

Figure 4 (new connectivity) and Figure 5 (connectivity
failure) above represent the target cases for the MAC sttaus
propagation design. Before deciding that the or any
proposed design is satisfactory we have to verify that it at
least does no significant harm in cases where its help was
not needed at all, and works in the (hopefully) rare cases of
multiple near simultaneous transitions. Consideration of the
latter should help in establishing formal goals for the
protocol by revealing what happens, what is desirable, and
what is achievable in complex cases.

Figure 10 shows recovery of the individual LAN at one end
of at TPMR chain. The result is to ‘blip’ the MAC status at
the other end of the chain, delaying availability of the
recovered link by slightly more than Td. The figure also
shows the effect of a possible effect of timing relationships
between Tr and Td, as the initiator of the change rerties its
Add message transmission just as the TPMR at the other
end of the chain returns a confirm. The crossing of
messages shown is unlikely, as the time sequence diagrams
overemphasize the delay experienced by the Add and
Confirm messages, but the effect is benign in any case.

If the LAN between the end system and the first TPMR in
the chain (1 above) had failed instead of recovering, the rest
of Figure 10 would have looked the same, with the
exception of the final state of that first LAN. The net effect
of the status notification protocol is to transfer the change in
mAC_Operational to the other end of the chain so that both
ends see the transition. Clearly for best effects the transfer
should complete in a short enough time so that the end
system protocols at the initiating end of the link are still
executing their initial state.

Figure 10 shows what happens if both ends of the link come
up at the same time, the net effectis simply to delay the
simultaneous start.

Figure 11 shows simultaneous transitions of one LAN in the
chain to OperUp and the other to OperDown, and illustrates
a number of points about how the protocol or protocols do
or should operate.

First, signalling of addition or loss can be somewhat
arbitrary and depend on the relative timing of transitions on
separate individual LANs. The same final connectivity can
be represented by a loss followed by an addition, or an
addition followed by a loss. If the implied resulting state is
to mean anything then the information ‘connected as far as’,
or ‘connected to and beyond’ also needs to be
communicated. However, while this is a candidate for
inclusion in any new protocol, support by existing protocols
is unlikely. However this note persists with distinguishing
Add and Loss messages, and their confirmations, because
that ensures that closely spaced transitions, which might
otherwise disguise unusual loss of higher layer protocol
messages are not missed by the systems connected to the
TPMR chain. Figure 12 shows a loss followed by recovery
of the same LAN.

Second, no message is sent across the LAN between
TPMRs 1 and 2 when the MAC is OperDown from the
protocol clients point of view. That allows support of the
protocol to be architected such that a message that signals
‘add(ition)’ or ‘loss’ is forwarded through the normal
bridged path, so its speed of propagation does not depend on
scheduling or notifying a status propagation process in each
TPMR. This also means that we have a free choice as to
what additional functionality can reside between the entities
responsible for status propagation and the ‘real’ MAC†1.

Figure 9—Recovery at end of chain

Tw

Tw

add

add

TPMRTPMR TPMR TPMR

Bridge Bridge

add

add

Tr

Tr

add

add

add

add

confirm

1 2 3 4

Td

Tw

Td

confirm

ack

ack

ack

ack

ack

Tw

Tw

Tw

Tr

Tw

Tw

MAC
recovers

add

add

ack

ack

Tw

Tw

add
confirm

confirm

confirm ack
ack

confirm

Figure 10—Near simultaneous transitions

add

add

TPMRTPMR TPMR TPMR

Bridge Bridge

add

add

Tr

add

add

1 2 3 4

Td

Tw

Td

confirm

MAC
recovers

MAC
recoversadd

add

confirm

Tr Tr

add

add
Tr

confirm

Tr

add

add

confirm

confirm
Tr

Tw

Td
confirm

confirm
Td

MAC Status Propagation

Revision 0.8 August 20th, 2006 Mick Seaman 10

One last common case of simultaneous transitions is worth
mentioning, what happens when the two ports of a TPMR
power up or are enabled at the same time? Each tries to send
a link notification through the other, and each link
notification is discarded as th port is not yet available
(mssOperUp false). The result is to ‘blip’ each LAN. The
ends of the TPMR chain see an Add Loss Add sequence, if
they are protocol capable), and a blip in MAC_Operational
otherwise. If Tw is less than Td this will be a single blip.

9. Virtual links
The need for MAC status propagation arises from the
standardization of TPMRs, relaying frames between LANs
that are attached to higher layer bridges, but not
participating in their spanning tree and other rapid
configuration protocols. However the link notification
signaling mechanisms described in this note could equally
well be carried over multiplexed service instances, such as
VLANs. MAC status notification could be used at the ends
of those service instances, where a single (presumably
untagged) VLAN is being carried over the MAC.
The multicast destination addresses of link notification
frames clearly vary depending on the level of the link. In
addition some relays along the link may wish to filter Add,
Loss, or Confirm frames, as these relays are ‘repair’ points
for the service being provided and are capable of switching
connectivity to a spare link section (to give a part of a link a
name).

†1Assuming such a thing exists any more.

Figure 11—Near simultaneous transitions

MAC
recovers

TPMRTPMR TPMR TPMR

Bridge Bridge
1 2 3 4

MAC
fails loss

Tr

Tr

loss

add

confirm

add

Tr

loss

add

Tw

TrTr

Tw

TdTd

TdTd

confirm

Figure 12—Loss with quick recovery

Tw

loss
loss

MAC
fails

TPMRTPMR TPMR TPMR

Bridge Bridge

loss

1 2 3 4

ack

ack

Tw

TwTr

loss
loss

Tr

Tr

loss
loss

loss

confirm

confirm Td

Td

confirm

confirm

ack

ack

ack

Tw

Tw

Tw
Tw

MAC
recovers

add
add

ack Tw

Tw

confirm

confirm

Td

Td

