Summary of Elliptic Curve Key Exchange in TLS

Working Group Discussion on 11/15/06
Notes by Guy Hutchison

Material constituting and contained within this presentation has been released into the public domain.
EAP-TLS Message Exchange

- hello
- s_hello
- server_cert
- server_key_exchange
- cert_req
- client_cert
- client_key_exchange
- change_cipher_spec
- finish
- change_cipher_spec
- finish

d_{CEQ}_S contained in msg

d_{SEQ}_C contained in msg
Operations Required

- Random Number Generator (RNG)
- Sign (ec_sign)
 - uc_ansi_x9_p256r1 w/ SHA-256
- Verify (ec_verify)
 - Verify certificate path validation for each certificate in chain
 - Verify signed DHE parameters
- EC_sign
 - Sign the DHE parameters
- ECDH – point multiply
Primitives Required

- RNG
- Point multiplier (for EC)
- SHA hash calculator
The basic scheme is ECDHE_ECDSA: using ephemeral Diffie-Hellman key agreement with ECDSA signing certificate for mutual authentication.

1. This discussion was based around RFC 4492.
2. In the current concept for EC-based DevID credentials, the corresponding RFC 4492 elliptic curve identifier is secp256r1.
3. We noted that an implementation would need both SHA-1 and SHA-256 at different points in the protocol.