802.1AS Time Synchronization
discussion for 802.11
and .3/.11 Layering

Kevin Stanton
Intel Corporation
June 27, 2006
Objective

Goals

– Ensure 802.1AS enables AVB-application-relevant time synchronization across 802.3 and 802.11 networks with minimal complexity and cost.

– Propose 802 layering and Service Interface extensions allowing proper layering for the 802.1AS specification over 802.3 and 802.11 MACs
Considering 802.11

The 1:N problem

• The 1:N problem – Are we OK?
 – It is OK to multicast SYNC
 – And we’ll use 802.11v to get link delay
Considering 802.11
Boundary or Transparent Clock at AP?

- If AP is Boundary Clock (BC):
 - Advantages:
 - Sync interval can be media specific
 - Some media types could choose to implement BC throughout

- If AP is p2p Transparent Clock (TC)
 - Advantages:
 - No servo loop end-to-end
 - Uniform protocol end-to-end
Considering 802.11
Grand Master selection?

- GM is permitted to be in either LAN
 - A single LAN may be present
- Wireless oscillator has better PPM
 - But more transmission jitter (from retransmissions), varying bandwidth available
- A very accurate time in 802.3 LAN doesn’t help the application stations if they’re all 802.11 STAs
Considering 802.11
802.11 TG-V

• Need to timestamp SYNC message
• If Boundary Clock
 – Need to ALSO timestamp Delay_Req?
Considering 802.11

Clock tree

- Assumptions
 - Infrastructure mode ONLY – no ad hoc

- Today
 - Station associated to one AP
 - Only APs do “Bridging”. Station bridges problematic.

- Tomorrow
 - DLS – stations talk to stations with AP permission
 - These links will not be part of a clock hierarchy
 - 802.11s mesh of forwarders
 - Multiple spanning trees (similar to 802.1aq)
 - Similar to 802.1aq but separate (.1aq sees mesh as pruned tree)
 - Should we assume AP-only meshing, or also station meshing?
Layering

• Simplifying Assumptions:
 – Assume follow-up messages (no on-the-fly)
 – Retransmissions are possible
 – Dropped packets are possible
Comments from George

• Roaming or migrating STA's that associate with one of many AP's. This may occur based on AP proximity.
 – How do we allow fast migration? Need to have link delays already available.

• Blocking sync messages from external sources.
 – How do we identify our preferred house clock?

• AP extends network into more wired infrastructure.
 – [KBS: AP<->STA link connects two bridged/wired LANs]

• AP nodes need to be more dynamic on changing the sync interval based on available bandwidth.
 – How can we bound the clock quality in this environment?
 – Crowded spectrums may impair media flows. Some sources are external and uncontrolled (unlicensed bandwidth).

• In some cases, wireless may be the only local network.