Multi-link topology: Recent results

Ashvin Lakshmikantha, Balaji Prabhakar

UIUC and Stanford University

Outline

- Study flow-level performance.
- Description of the Simulations
- Interpretation of the results
- Conclusions

Introduction

So far.....

- Study of N long-lived flows:
- First step in the analysis of a protocol.
- Model amenable to control theoretic analysis.
- Deterministic analysis: Helpful in tuning parameters.
- Fairness properties: Can be studied by comparing the throughput achieved by various flows.

Real network-like situation:

- Flows arrive and depart.
- Finite (but random) file sizes.
- Number of flows in the network random.
- Use flow completion time as a metric to evaluate network performance and fairness.

 $bandwidth = \frac{flowsize}{FCT}$

Introduction

Flow completion time:

- Time taken for a flow to transmit the entire file.
- Depends on network load.
- Good metric to measure end user performance.

Fairness??

- Has to be qualified indirectly.
- Ex: Measure the variance in the completion times of the same file at various times.
- Ex: Measure flow completion times of flows on different paths, but same congestion point.
- Good network performance :
 - Number of flows in the network is bounded.
 - Flows face a finite delay.

Simulation: Goals

Study the effect of congestion spreading in multi-link topology.

Study the *robustness* of BCN protocol

- To changes in
 - flow sizes
 - starting transmission rate
 - turning off switch-signalled rate increases
- Using
 - flow completion time
 - fairness (variance of FCT)

Network Topology

Fixed Load

Figure 1: Topology

Simulation parameters

Traffic parameters:

Arrival process	Poisson	
File size distribution	Exponential	
Mean file size	1 MB	
RTT	100 μs	
Total load	50% - 80%	

BCN parameters:

W	4
G_i	2
G_d	$\frac{1}{128}$
Starting rate	1Gbps
Drift	Multiplicative
a	10/sec
Buffer size	100pkts = 150 KB
X_{0FF}	75pkts
X_{ON}	25pkts
sampling probability	0.03
Q_e	16 pkts (24 KB)

Effect of BCN

Multi-link topology: Recent results - p.8/19

Effect of mean flow size and flow size distribution

BCN parameters:			
Traffic parameters:		W	4
Arrival process	Poisson	G_i	2
File size distribution	Hyper-exponential	G_d	$\frac{1}{128}$
Short-flow size	20pkts	Starting rate	1Gbps
Short-flows percentage	90%	Drift	Multiplicative
Long-flow size	320pkts	a	10/sec
Long-flow percentage	10%	Buffer size	100pkts = 150 KB
Mean file size	50 KB	X_{0FF}	75 pkts
RTT	100 <i>µs</i>	X_{ON}	70 pkts
Total load	50%-80%	sampling probability	0.03
		Q_e	16 pkts (24 KB)

Effect of BCN

Fixed Load

Interpretation of the results

- Mean flow size = 1MB: gain in throughput is about 10%.
- Mean flow size = 50KB: gain in throughput is about 5%.
- Flow completion time: Using BCN messages improves the overall FCT.
- Fairness:
 - Without BCN, FCT depends on the loading of uncongested links too !
 - With BCN, FCT depends on most congested links.
 - BCN messages, helps improve the fairness.

Effect of BCN on the FCT

Interpretation of the results

- Without BCN, no priority for short-flows. All flows are worse off equally.
- With BCN, the short-flows completion time remain same irrespective of the loading.
- At 70% loading FCT of 80% of the flows remain unchanged.

Bursty loading

Effect of BCN on the FCT

L1 10Gbps 10Gbps 10Gbps 10Gbps 10Gbps 10Gbps

Effect of switch-signalled rate increase

Effect of switch-signalled rate increase

Switch increase is turned off. RPs respond only to switch decrease messages.

Effect of starting rate

Conclusions

- Studied the effect of BCN system in a multi-link topology.
- Studied the performance of BCN under flow arrivals and departures.
- Studied the effect of
 - Flow size distribution.
 - Mean flow size.
 - BCN increase messages.
 - Link pauses.

on the performance of BCN.

Qualitatively studied the fairness properties of BCN.