Sensitivity Analysis of BCN with ZRL Congestion Benchmark

Part 1

Mitch Gusat and Cyriel Minkenberg
IEEE 802
Dallas Nov. 2006
Outline

• Next phase: BCN validation
 ➢ larger datacenter networks
 ➢ demanding traffic patterns

• ZRL congestion benchmarking
 ➢ congestion taxonomy and a practical toolbox

• Analytical dual ranking: The APS method
 ➢ BCN’s algorithmical sensitivity to parameters
 ➢ Parameters’ sensitivity to benchmarking traffic

• Simulation results
 ➢ validation of analytical selection
 ➢ parameters’ sweep: stability plane

• Conclusion
Next phase of BCN validation

• Baseline BCN: validated by multiple parties
 - joint effort of the .1au adhoc simulation teams
• Basic scheme is functional
 - for detail conclusions see .1au repository

• Next: BCN w/ larger networks under stress traffic

• How to proceed?
 - Empirical approach: Brute force simulations (see next foil)
 - More rigorous approach: ZRL congestion benchmarking
 - Iterate between analytical and simulation models to systematically parse the combinatorial tree and reduce the dimension of the parameter space
Empirical approach: Brute force simulations

Multi-dimensional problem
1. no. nodes
2. switch / adapter arch.
3. topology
4. LL-FC settings
5. BCN params
6. traffic scenario
7. metrics of interest
8. no. of simulation points

⇒ Combinatorial explosion of an 8D (actually 20+ dim's) search space.

⇒ Not practical for standard work

BCN with baseline settings: unstable.

Which dimension to explore 1st?
A More Rigorous Alternative

- Dimensions 1-3 (architectural) are determined by
 - market of datacenter and HPC
 - 802 architectural definitions (e.g., ideal OQ)

- Dim’s 4,5 (scheme settings) => Our main target.

- Dim’s 6-8 (methodology) => Toolbox

- Toolbox proposal: “ZRL Congestion Benchmarking”
 1. Benchmarks designed for datacenter environments
 2. Combines analysis w/ simulation in a systematical method
 3. Tried and improved thru work in related standards.
Baseline Topology Proposal: Bidir Fat Trees (FT)

- 2-level / 3-stage bidir MIN
- Simulate: 8 - 32 nodes
- Time per run: < 1hr

- 3-level / 5-stage bidir MIN
- Simulate: 128 - 2K nodes
- Time per run: TBD

Toolbox-1. Traffic: ZRL Congestion Benchmark

- Source nodes generate* one or more hotspots according to matrix $[\lambda_{ij_hot}]$: $t_{p->q} = \alpha_k_hot[\lambda_{ij_hot}]$, $[\lambda_{ij_hot}]$ is specified** per case as below

1. Congestion type: IN- or OUT-put generated

2. Hotspot severity: $HSV = \lambda_{agg} / \mu_{HS}$, $\lambda_{agg} = \sum \lambda_i$ at hotspotted output, μ_{HS} = service rate of the HS
 - Mild $1 < HSV \leq 2$
 - Moderate $2 < HSV \leq 10$
 - Severe $HSV > 10$.

3. Hotspot degree: HSD is the fan-in of congestive tree at the measured hotspot
 - Small $HSD < 10\%$ (of all sources inject hot traffic)
 - Medium $HSD \sim 20..60\%$
 - Large $HSD > 90\%$.

* Traffic generation is a Markov-modulated process of burstiness B (indep. dimension)
** Metrics and measurement methodology are subject of another deck

IBM Zurich Research Lab GmbH 7
Toolbox-2: BCN Parameters. How to proceed?

BCN entails 6 params
1. Equilibrium threshold Q_{eq}
2. Rate unit R_u
3. Sampling rate P_s
4. Feedback weight W
5. Increase (additive) gain G_i
6. Decrease (multiplicative) gain G_d

Next step?

a) The empirical approach is unsustainable because it generates too many singular points, as seen on foil #4

b) A purely analytical approach is difficult owing to non-linearity of model. Would also require validation by simulation.

c) However, a combined analytical and simulation method is feasible!
Reduction of Simulation Space: Dual Ranking

• Using ZRL Benchmarking, the smallest simulation space is given by the tuple product
 \[\text{SimRuns} = \{\text{topology, HS type, HS severity, HS degree, burstiness}\} \times \{\text{BCN param}\} = 2 \times 2 \times 3 \times 3 \times 4 \times \{\text{BCN param}\} = 144 \times \{6D\} \]

• \(\text{SimRuns} = 144 \times \{Q_{eq}, R_u, P_s, W, G_i, G_d\} \) ... still a VERY large space!

• Further reduction by (simplified) dual ranking analysis
 1. algorithmical sensitivity to BCN params: which param matter most?
 2. parametrical sensitivity to traffic: which benchmarks are critical?

Next: Algorithmic and parametrical (AP) sensitivity of BCN
Sensitivity is often a more accurate metric of stability margin than either gain or phase margin! However, here we didn’t use canonical sensitivity.
Ranking by AP Sensitivity - 1

From BCN stability model

1. Conservation: \(\frac{dq}{dt} = HSD*\lambda(t) - \mu_{HS} \)

2. \(q(s) = \frac{HSD*\lambda(s)}{s} \)

3. Feedback: \(F_b(t) = -(q(t) - Q_{eq}) + w*(\frac{dq}{dt}) / (\mu_{HS} * p_s) \)

4. \(F_b(s) \approx G * \left[1 + w*s / (\mu_{HS} * p_s) \right] \)

5. AI: \(\frac{d\lambda(t)}{dt} = G_i*\lambda(t) * p_s * F_b(t-\tau) \)

6. \(\frac{\delta AI(t)}{\delta F_b(t-\tau)} = G_i*p_s*\mu_{HS}/HSD \)

7. AP sensitivity of \(G_i = \frac{\delta AI(t)}{\delta F_b(t-\tau) * HSD/(p_s*\mu_{HS})} \)

8. MD: \(\frac{d\lambda(t)}{dt} = G_d*\lambda(t)*\lambda(t-\tau)* p_s * F_b(t-\tau) \)

9. \(\frac{\delta MD(t)}{\delta F_b(t-\tau)} \approx G_d*p_s*(\mu_{HS}/HSD)^2 \)

10. AP sensitivity of \(G_d = \frac{\delta MD(t)}{\delta F_b(t-\tau) * (\mu_{HS}/HSD)^2 / p_s}. \)

\(q(t) = \) queue occupancy; \(HSD = \) no. of hot flows, each with rate \(\lambda(t) \), at hotspot served w/ rate \(\mu_{HS} \)
Ranking by AP Sensitivity - 2

(7,10) =>

a) p_s directly impacts G_i and G_d
 - 1st order sensitivity on p_s

b) G_i and G_d depend on the HSD/μ_{HS} ratio
 - congestion w/ high HSD and low μ_{HS} stresses stability

(10) =>

c) G_d is more sensitive than G_i to the HSD/μ_{HS} ratio (squared)

(4,7,10) =>

if denominator $\sim f(p_s*\mu_{HS})$, where $p_s \ll 1$ and $\mu_{HS} \leq 1$, \rightarrow the hotspot drain rate further increases the sensitivity to p_s

d) Everything else being equal, output-generated (OG) congestion is more stressful for BCN’s stability than IG

What to begin with?
 - BCN params: p_s and G_d
 - Traffic: Output-generated congestion w/ high HSD and low μ_{HS}.
Qualitative Validation: Input- vs. Output-Generated HS

IG: T_{put}

OG: T_{put}

IG: Queue

OG: Q
Simulations Confirm Our Sensitivity Ranking

• **OG requires higher control effort than IG**
 - Slower throughput recovery; overshoot
 - Higher queue size fluctuations
 - Less stability margin: more sensitive to parameter settings

• **BCN’s impulse response improves as P_s and G_d increase (within bounds!)**
 - Applies to both scenarios => as P_s and G_d increase, so does the system’s distance between pole(s) and origin... up to a point

• **Next: Simulation-based sensitivity analysis of P_s and G_d**
Simulation Overview

- Single-stage network, 32 nodes
- Shared-memory switch
- Background traffic is uniformly distributed
- All frames minimum size (64 B, time slot = 51.2 ns)
- No TCP/IP, raw Ethernet!

- Parameters
 - Mean load λ
 - Mean burst size B
 - Shared-memory size M
 - Round-trip time RTT (in slots)
 - BCN parameters ($P_s, G_d, G_i, Q_{eq}, W, R_u$)

- Metrics
 - Throughput (aggregate and per port/flow)
 - Latency (measured per burst)
 - Queue length (congested queue)
 - Fairness (RJFI, ALFI)
 - Number of PAUSE and BCN frames sent
Switch and **Adapter Model**

- Shared-memory output-queued switch
- PAUSE enabled
 - Global high- and low-watermark memory threshold trigger pause and unpause
 - High watermark $T_h = M - N \times (RTT \times B + L_{max})$
 - Low watermark $T_l = T_h / 2$
 - PAUSE renewed before expiry (take into account RTT)

- VOQ-ed per end node
- Round-robin service discipline
- Number of rate limiters unlimited
- Egress buffer flow-controlled using PAUSE (high/low watermarks)

Lossless operation:
No frame drops due to buffer overflows!
Traffic Scenarios

• Output-generated hotspot
 ➢ Service rate of output 0 is reduced to 20% of full line rate
 ➢ Results in an N-degree hotspot
 ➢ Without CM, aggregate throughput is limited to 20% due to hogging

Initial Param Settings
1. $Q_{eq} \leq M / N$ (memory is partitioned to reduce hogging)
2. $R_u = R_{\text{max}} / 1000$
3. $P_s = [0.01, 0.1]$
4. $W = 1$
5. $G_i = 1$
6. $G_d = [0.0005, 0.05]$
Note: Above settings may be neither optimal nor a baseline match.
Results: OG hotspot (N=8)

- RTT=0, M=256*N, Q_{eq}=M/N
- Throughput measured during hotspot
- Hotspot rate = 20%
- T_{p_{max}} = \lambda *(N-1)/N + 0.2/N
- \lambda = 85\%, N=8 \Rightarrow T_{p_{max}} = 0.77
- Varying G_d and P_s
Results: OG hotspot (N=32)

• RTT=0, M=256*N, Q_{eq}=M/N
• Throughput measured during hotspot
• Hotspot rate = 20%
• T_{pmax} = \lambda \cdot (N-1)/N + 0.2/N
• \lambda=85\%, N=32 \Rightarrow T_{pmax} = 0.83
• Varying G_d and P_s
Results with $M/(2N)$ Memory Partitioning: OG hotspot 1L32N

- RTT=0, $M=256*N$, $Q_{eq}=M/(2N)$
- Throughput measured during hotspot
- Hotspot rate = 20% => severity = 85%/20% = 425%
- $T_{p\text{max}} = \lambda \times (N-1)/N + 0.2/N$
- $\lambda=85\%$, $N=32$ => $T_{p\text{max}} = 0.83$
- Varying G_d and P_s
IG results

- **Input-generated severe hotspot**
 - Uniform background traffic load = 85%
 - Multiple (HSD) inputs send 100% of their traffic to output 0
 - Primary HSD = 8 (all the other also send a smaller quota)
 - Hotspot is targeted by 8 hot flows and 24 background flows
 - Aggregate severity = (8*100% + 24*85%/32) = 863%
 - Without BCN, aggregate throughput is limited to about 100% / (HSD((N-1)/N)+1)
Results: Input-gen’d hotspot (1)

Queue length [x 64 B]

Upper mem. thr.

Lower mem. thr.

P_s=0

Ps=0.02, M=8192 Ps=0.0, M=8192

Ps=0.02, M=2048 Ps=0.0, M=2048

Ps=0.02, M=1024 Ps=0.0, M=1024

Ps=0.02

Q_eq

Ps=0.0

Ps=0.02

N=32, B=1, RTT=0, Load=85%, G_i=1, G_d=0.002, Q_{eq} = M/N, W=1, R_u=0.001*R_{max}
Results: Input-gen’d hotspot (2)

Throughput

Time [ms]

N=32, B=1
W=1, Gi=1
Gd=0.002
Ru=0.001*Rmax

Ps=0.02, M=8192
Ps=0.02, M=2048
Ps=0.02, M=1024

Ps=0.0, M=8192
Ps=0.0, M=2048
Ps=0.0, M=1024
Results with $M/(2N)$ Memory Partitioning: IG hotspot 1L32N

- RTT=0, $M=256*N$, $Q_{eq}=M/(2N)$
- Throughput measured during hotspot
- Hotspot severity = 863%
- $T_{p_{max}} = 0.65$
- Varying G_d and P_s
Conclusions

• Analytical and simulation modeling show that BCN's stability and performance depend on
 - Two 1st order params: p_s and G_d
 - Type of traffic: Output-generated congestion is a stress test

• Optimal ranges for OG (assuming fixed W^*, G_i, R_u, Q_{eq})
 - $p_s = [0.02, 0.05]$
 - $G_d = [0.002, 0.005]$

• Burstiness also determines sensitivity
 - Large bursts (MTU-Jumbo) increase the sensitivity

• Upcoming
 - Increase network size to 128, with 2 and 3 levels.

* In simulations W proved less sensitive than we've analytically expected