Zurich Hotspot Benchmark

Output Generated Single Hotspot in Multi-hop Topologies

Mitch Gusat and Cyriel Minkenberg
IBM Research
ZRL, Switzerland
Why Output Generated in Multi-Hop?

- **OG** is a stress test
 - quadratic effect on G_d of hotspot degree (HSD) and bottleneck’s service rate $\mu_{HS} \Rightarrow G_d \sim (\mu_{HS}/HSD)^{-2}$

- Single stage case was covered by IBM and Cisco during the Nov.-December sim calls

- Next phase: Study **OG-HS** in multistage fabrics

- What fabric topology should we choose?
A. Baseline Multistage Topology: Bidir Fat Trees (FT)

- 2-level / 3-stage bidir MIN
- Simulate: 8 – 32 nodes
- Time per run: < 1.5 hrs.

- 3-level / 5-stage bidir MIN
- Simulate: 128 – 2K nodes
- Time per run: TBD

12/15/2006
IBM Zurich Research Lab GmbH
Issues Related to Fat-Tree Topology Simulation

• While desirable, FTs are not an easy target...

 ➢ MUCH larger simulation model => memory and runtime
 o may elicit an upgrade of the simulation environment, even new tool

 ➢ Specific problems to be solved
 o deadlocks of 2 types:
 - circular dependency
 - routing loops
 o routing
 o RLT - to - CPID association
 o ...

• Interim step to FTs: ‘lumped’ trees
B. 3-Stage Lumped Tree with OG Hotspot

- Hotspot period: from t_i to t_f, the sink at Server_C1 slows down its RX rate (as in ZRL’s tree-based study)
- Victim traffic
 1. Non-selective: Constant background load, uniform distribution
 2. Selective: Elect designated victim flows

1. edge nodes are bidir
 1. dual function: each client and server will simultaneously source and sink traffic
 2. hence 10 sources and 10 sinks
2. 3-hop network
OG Hotspot Example #1: Background “Victims” (non selective)

- **Offered load definition:** Mean aggregate load = \((6 \times 0.25 + 4 \times 0.4)/10 = 31\%\) (3.1 Gb/s)
 - All: Uniform destination distribution (background traffic)
 - nodes 1-6 = 25\% (2.5 Gb/s)
 - nodes 7-10 = 40\% (4 Gb/s)
- **Primary hotspot:** node 7 service rate = 5\% (RX only)
 - if saturation tree backspreads => 5 secondary congestion points (induced hotspots)

Obs. All switches and all flows affected.
OG Hotspot Example #2: Selected “Victims”

- Four culprit flows of 2 Gb/s each from nodes 1, 4, 8, 9 to node 7 (hotspot)
- Three victim flows of 7 Gb/s each: node 2 to 9, node 5 to 3, node 10 to 6
- Node 7 service rate = 20%
- Five congestion points
 - All switches and all flows affected
 - Fair allocation provides 0.5 Gb/s to all culprits and 7 Gb/s to all victims

Obs. All switches and all flows affected.