

CN Simulation Ad Hoc Report

September 28, 2006

Manoj Wadekar

CN-SIM Ad-Hoc: Overview

- Meetings:
 - 6 Weekly meetings help since July 2006 IEEE 802.1 Plenary meeting
- Participation:
 - 15+ members actively participated in the calls
 - Representing 10+ companies
- Goal:
 - Achieve baseline models for BCN before September Interim meeting
- Status:
 - Consistent results across 4 independent simulation environments for baseline topology

Thank you all for great team work!

CN-SIM Modeling Teams

- We had four simulation teams with independent environments
 - Bruce Kwan: Broadcom
 - Zhi-hern Loh/Uri Cummings: Fulcrum
 - Davide Bergamasco: Cisco
 - Tanmay Gupta: Intel
- Pat Thaler created excel based traffic model for BCN for comparing the results with theoretical best outputs

Baseline Model Discussion

- Group agreed that it is necessary to:
 - Have common bridging model for simulation
 - Use 802.1 (output queued bridge) model
 - Use simple topology and workload for creating baseline simulations
 - Weekly review of individual results for getting consistency
 - Common baseline important for
 - calibrating individual simulation models
 - Agreement over protocol, device models and workload across all the environments

Baseline Simulation Topology

- Single congestion point
- Use Output queued model for bridges
- RP function in the end stations
- Link Capacity = 10Gbps
- Buffer Size (150 KB) (CP & RP)
- Link Length = $100m (.5 \mu S)$
- Switch Latency = $1 \mu S$
- Station processing = $2 \mu S$
- Loop Latency = 8 µS

Simulation Scenario and Workload Characteristics

- Scenario:
 - Runs = 25
 - Duration = 100 mS
 - Initial Transient (all 4 sources start) t = 5 mS
 - Final Transient (2 sources stop) t = 80 mS
 - Sampling jitter = 20 KB
- Workload:
 - S1-S4 send to S5
 - 100% UDP traffic
 - Fixed length 1500B packets
 - Bernoulli temporal distribution
 - offered load at End Point = 49%

BCN Parameters

- Qeq
 - 16 (1500-byte frames)
 - 375 * 64 byte pages
- Frame Sampling
 - Frames are sampled on average 150 KB received to the egress queue
- W = 2
- Gi = 12.42
 - Computed as (Linerate/10) * [1/((1+2*W)*Q_eq)]
 - Gi = 5.3 x 10-1 * (1500/64) = 12.42
- Gd = 6.09 x 10-3
 - Computed as 1/2*[1/((1+2*W)*Q_eq)]
 - $Gd = 2.6 \times 10-4 \times (1500/64) = 6.09 \times 10-3$
- Ru = 1 Mbps

Measurements

- Throughput
 - On congested link
 - On uplinks

- Buffer Utilization
 - Congested Link
 - Rate Limiter Queues

•Fairness Indices & Max Error

- Maximum Error: max

$$\operatorname{ax}(\frac{K_i - T_i}{T_i})$$

D T

– Jain's Fairness index:
$$\frac{(\sum R_i/T_i)^2}{N\sum (R_i/T_i)^2}$$

– Alternative Fairness index: $\sum_{i=1}^{K_i} \sum_{j=1}^{K_i} \sum_{j=1}^{K_i$

Variables

- Ri: rate of individual flows
- Ti: target rate (= 2.5 Gbps)
- N: number of flows (= 4)

Results from various simulations

• Davide Bergamasco (Cisco): <u>http://www.ieee802.org/1/files/public/docs2006/au-sim-bergamasco-baseline-sim-scenario-092106v5.pdf</u>

• Bruce Kwan (Broadcom): http://www.ieee802.org/1/files/public/docs2006/au-sim-kwanbcn-calibration-092106.pdf

• Zhi-Hern Loh (Fulcrum): http://www.ieee802.org/1/files/public/docs2006/au-sim-loh-bcnfairness-index-09202006.pdf

• Tanmay Gupta (Intel): http://www.ieee802.org/1/files/public/docs2006/au-sim-guptabaseline-092106.pdf

Summary status for Baseline modeling

- Common understanding of BCN protocol, parameters and device models is achieved
- Jain fairness index for all the models is nearly matching
 - One anomalous result is being debugged
- "no-drop" is achieved using BCN in baseline topology in the "stable" zone
- Packets get dropped during initial burst period (allowing for control loop delay)
 - Pause being reviewed as complimentary mechanism to BCN
 - Early results for BCN+PAUSE shared

Next Steps

- Study Pause and BCN together in baseline
 - Define device model for PAUSE
 - Define PAUSE configuration parameters and statistics
- Validate following topologies and workloads
 - Multi-hop congestion with same workload
 - TCP+UDP workload
 - Parallel efforts for simulation
- Anything else?

