
Approach to a Latency-bound Ethernet

Max Azarov, SMSC

April 21, 2006

For 802.1 AVB group

Contents
1 Introduction 2

1.1 Background . 2
1.2 Scope . 2
1.3 Paper structure . 3

2 Ethernet with priority tagging and QoS 3
2.1 Stream distortion . 3
2.2 Topology sensitivity . 6

3 Impact of a per-port ingress/egress shaping 6
3.1 Egress shaper . 7
3.2 Ingress shaper . 7

4 Modifications enabling low latency bound 7
4.1 Proposed list . 7
4.2 Shaper definition . 8
4.3 Sufficient level of modifications 9

5 Worst-case latency theorem 9
5.1 Assumptions . 9
5.2 Theorem . 10
5.3 Proof . 10

6 Extended model 12
6.1 Relaxing assumption of the same size packets 13
6.2 Other traffic shaping periods . 13
6.3 Partial network load . 15
6.4 Varying number of ports for switches 16
6.5 Adding lower-priority interfering traffic 16
6.6 Higher-priority interfering traffic 17
6.7 Adding routing delay . 19

1

7 Worst-case latency expression analysis 19
7.1 Parameter sensitivity . 19
7.2 Allocation granularity . 20

8 Architecture of Ethernet with a bound low-latency 20
8.1 Architecture drivers . 21
8.2 Network with two payload classes 21
8.3 Switch architecture . 23

9 Conclusions 23

1 Introduction

1.1 Background
Low cost and reliability of Ethernet is thought to make it a technology of choice
for building a back-bone networks in people homes, hotels. While in terms of
bandwidth, Ethernet deems to offer a sufficient head room, it unfortunately
falls short on providing adequate level of QoS (quality of service). This lack of
stream-oriented QoS guarantees is characteristic of both best-effort Ethernet as
well as for the Ethernet supporting priority tagging.

This lack of QoS capabilities puts in question the vision for distribution
of audio/video (A/V) content over the existing network infrastructure, which
requires QoS for reliable operation. To ensure its future, Ethernet needs to be
extended with QoS guarantees, while keeping its cost low.

While there is a number of existing technologies (PowerLink, etc.), extending
Ethernet to enable QoS, they are mostly oriented for industrial use with low-
latency requirements and are not very well suited for A/V streaming, while
others have higher cost.

1.2 Scope
This paper aims at providing a low-cost solution for Ethernet network, which
would allow provision of deterministic stream-oriented QoS guarantees:

• support arbitrary network topology with arbitrary number of end-points
and switches,

• guaranteed worst-case packet delivery latency (from this point of refereed
to as just latency)

– below 2 ms for any path of 7 Fast Ethernet switches,

• guaranteed inter-packet jitter (referred to as just jitter),

• guaranteed bandwidth.

• traffic contracts enforcement

2

Listed guarantees cannot be efficiently provided in the existing Ethernet tech-
nology with priority tagging, which will be illustrated in Section 2.

1.3 Paper structure
Paper begins with Section 2, where we provide analysis of short comings of the
existing Ethernet networks with priority tagging and examples of inability to
provide a reasonable bound for packet delivery latency. Further, in Section 4,
paper proceeds to offer outline of changes that need to be made in Ethernet in
order to support QoS. This is followed by Section 5 with analytical proof of the
ability to offer deterministic latency and jitter guarantee for a simple network
model, and then followed by Section 6, which offers analytical analysis of more
realistic extended network model. Section 7 offers analysis of expressions for
worst-case latency for parameter sensitivity and provides some latency figures for
specific configurations. With analytical proof and analysis at hand, in Section 8
we proceed to describe in more detail proposed changes to the Ethernet enabling
low-latency A/V streams.

Paper is concluded by summary of results.

2 Ethernet with priority tagging and QoS
In this section we will review short-comings of the Ethernet with priority tag-
ging, which prevent it from providing QoS guarantees.

To clarify, we will be calling an Ethernet network with priority tagging, a
network of full duplex Ethernet end-points and store-and-forward switches with
certain number of prioritized queues for packets, tagged with a different priority.
Each queue operates as a best-effort queue.

First and foremost, Ethernet does not have any means to control bandwidth
utilization by traffic sources emitting packets. There can easily be a situation
where two sources over-utilize the channel. This can be addressed on the higher
level with some sort of resource reservation protocol running on end-points and
on switches to provide topology information.

But even if we assume that packet sources are controlled by a resource reser-
vation protocol and do not over utilize communication channels, Ethernet with
priority tagging still fails to guarantee deterministic latency bound.

2.1 Stream distortion
If we consider a constant-rate stream of packets marked with the same priority
emitted by sources, we can show that in fact, with simple output queuing rules
(i.e. port priority), we can get temporary congestions caused by a packet delay
variation within the stream, which causes stream distortion. We can also show
that it is possible for this distortion to get aggravated, causing excessive delays.

Let us give an example for a network of switches with 4 input/output ports

3

1
 2

1
 2

3

I1_1

I1_2

I1_3

I1_4

O1

D1_1=4

125mks

4
 5
 7
6

3
 4
 5
 6
 7

0

0

Figure 1: Stream distortion on the first switch

and packets with transmission time 31.25µs We will be measuring stream band-
widths over a period of 125µs.

On the Figure 1, we show 4 streams, 1
4 bandwidth each, coming to input

ports I1_1, I1_2,I1_4 and I1_4. All streams get routed to the output port O1.
The rest of output ports we omit from the picture. We will number packets of
the stream coming to I1_4 and non-numbered streams we will consider as inter-
fering. As an additional twist, three interfering streams, stop transmitting after
the second depicted 125µs period, while fourth stream continues uninterrupted.

On the output port O1, packet number 1 experienced a modest delay of
D1_1=4 packets=125µs, but because the interfering streams have stopped,
packets number 1 and 2 get much closer to each other and thus cause temporal
stream distortion (this condition is also referred to as bunching). This hap-
pened because packet number 2 experienced much shorter delay at the switch
than packet number 1. Since packets are much closer, stream uses 1

2 of available
bandwidth during the third depicted period of 125µs instead of the allocated 1

4 .
Now imagine that we have topology with 3 more switches which have expe-

rienced the same situation as just was described above. Along with the packets
from the output port O1, we forward the identical outputs of 3 other switches
with 3 more distorted streams to separate inputs of the next switch on the path
of our numbered stream. This will give us an arrangement depicted on the
Figure 2. Note that numbered stream is deliberately shifted by 1 packet.

In order to avoid over-subscription, we assume that from each switch sending
packets to inputs I2_*, only distorted streams get routed to the output port
O2, all other streams are routed to one of the remaining 3 output ports. To
keep picture from getting too crowded, we show on input ports only packets
getting routed to the output port O2. Our original numbered stream packets
are identified with the same numbers and 3 other distorted interfering streams
are not numbered.

With 4 distorted streams on the inputs, during the second depicted 125µs
period, switch receives 8 packets, which creates a backup in the switch queue.
This causes packet number 1 to experience an excessive delay of D1_2=6
packets=187.5µs.

If we assume that interfering streams have stopped transmitting after the

4

3
1
 2

1
 2
 3

4

4

I2_1

I2_2

I2_3

I2_4

O2

D1_2=6

5
 7
6

5
 6
 7

125mks

0

0

Figure 2: Stream distortion on the second switch

1
 2
 3
 4
 5
 6

1
 2
 3
 4
 5
 6

7

7

I3_1

I3_2

I3_3

I3_4

O3

D1_3=9

125mks

0

0

Figure 3: Stream distortion on the third switch

second 125µs as it is depicted, packets 1,2,3 and 4 get lumped together, pro-
ducing even bigger distortion. Now, during the fourth depicted 125µs period,
numbered stream takes up 3

4 of the available bandwidth for a period of 125µs
instead of the allocated 1

4 .
Applying the same technique to the third switch on the path, we see (Figure

3) that with four “double-distorted” streams on the input of the switch, distor-
tion keeps increasing and packet number 1 experiences the delay of D1_3=9
packets=281.25µs.

The constructed example shows that per-switch packet delay can increase
rapidly, while total latency would increase as a sum of per-switch increases.
Extrapolating result to more hops, we get following numbers for the latency:

Number of hops 1 2 3 4 5 6 7
Switch delay, µs 125 187.5 281.25 406.25 562.5 750 968.75

Latency, ms 0.1 0.3 0.6 1 1.6 2.3 3.3

We see that with selected topology, very well-behaved constant-bitrate sources
emitting packets precisely every 125 µs, over 7 hops we get the latency in an
excess of 3.3 ms, while neglecting such phenomenon as background best-effort
traffic and routing delay. If we consider less accurate sources, congestion will
aggravate even further.

5

Consider repeating our previous constructs, but with streams emitting pack-
ets with quadrupled transmission time of 125 µs (instead of 31.25 µs) and with
quadrupled bandwidth measurement period of 500 µs (instead of 125 µs). All
delays will be exactly valid in terms of number of packets, except that each
packet is 4 times longer now. This quadruples latency over 7 hops and brings
it to 13.2 ms.

For a number of A/V applications, this latency magnitudes are unacceptable,
which calls for modifications in the way Ethernet switches work to bring the
latency down.

Is Section 5 we will show analytically that traffic shaping in switches which
fixes traffic distortions, leads to significantly smaller latency figures.

For more scenarios on the Ethernet traffic distortion please see [3].

2.2 Topology sensitivity
In our example we used a specific topology, where measured stream mixes up
with its “twin” equally distorted streams coming from other paths and after
mixing gets even more distorted.

In fact, when thinking about the worst case, we should consider the topology
in which on every switch the measured stream mixes up with maximum-distorted
interfering streams which went through some N number of hops already. The
bigger the N , the more delay will distorted interfering stream cause.

If we consider growing N indefinitely, so will the latency bound grow indef-
initely.

This highlights the sensitivity of Ethernet latency bound to the overall topol-
ogy of the network. In extreme case, even if we have only one switch separating
talker and listener, but we have no control over the topology of the rest of the
network, latency bound cannot be guaranteed at any level.1

Such topology sensitivity is a very significant flaw. If one would try to impose
topology restriction, it would require user to maintain his network restricted to
a certain configuration, which can be a complicated task requiring non-trivial
network engineering knowledge. On top of that, by adding just one device on
the periphery of the network, one can invalidate whole configuration and prevent
whole network from providing a required level of bound latency.

3 Impact of a per-port ingress/egress shaping
One modification that can be considered to enhance the Ethernet network is the
addition of traffic shapers (see 4.2 for details) for each port either on ingress,
egress or both.

As we could see in section 2.1, stream distortion can cause heavy intermit-
tent queuing delays even in case of well-behaved sources, transmitting traffic

1of course in practice, because of limited switch queue size, inability to provide latency
bound means that no-drop operation cannot be guaranteed, i.e. dropped packet was “deliv-
ered” with infinite latency.

6

compliant with its bandwidth reservations. We will show that presence of just
ingress/egress shapers cannot alleviate the stream distortion. This placement
of shapers does not allow for a sufficient level of discrimination of the internal
structure of the traffic, i.e. more information is needed about each packet in
order to make shaping effective.

3.1 Egress shaper
Consider the scenario from the section 2.1, depicted on figures 1, 2 and 3. Let’s
introduce a shaper on the egress and tune it for the aggregate traffic we expect
on the output. Since we have four streams 1/4 bandwidth each coming in, the
expected bandwidth on the egress will be 100% of the link. This means that
newly introduced shaper will need to be tuned for 100% of the bandwidth, i.e.
shaper will never reschedule packets, because packets will never come at the
rate exceeding the 100% link utilization.

This means that such shaper will be rendered void, and stream distortion
will not be alleviated.

In case when the maximum network utilization is limited below 100%, shaper
will influence the distortion, but will not completely remove it.

3.2 Ingress shaper
If we introduce a shapers on the ingress and tune them for 25% bandwidth per
port, this would seemingly ensure that stream distortion would get corrected
before reaching the output queue. This example is limited, because in this case
shaper is processing a single stream only.

Let’s consider a scenario, where 4 streams 1/4 bandwidth each are coming
into each input port and each get forwarded to a separate output port. Essen-
tially, this is a scenario depicted on the figures 1, 2 and 3, repeated 4 times on
each switch, forwarded to separate output ports. In this case, ingress shapers
will need to be tuned for combined bandwidth, i.e. 100% of the link.

As we showed earlier, shaper tuned at 100% is effectively void as it has no
effect on packets passing through it. This means that stream distortion will not
be alleviated.

4 Modifications enabling low latency bound

4.1 Proposed list
As we have shown in Section 2, without modifications, Ethernet cannot pro-
vide a reasonable bound packet delivery latency. We will outline a proposed
modifications, which will enable lower latencies.

1. Stream-oriented and topology-aware QoS parameters reservation protocol

2. Network consists of only store-and-forward switches with deterministic
routing delay (no soft-switches)

7

3. Sources emit shaped A/V traffic within their reserved bandwidth

4. One or more separate priority tags above best-effort for each A/V traffic
class

5. Per port pair/class ingress traffic shapers in the switch (One shaper per
each input-output port pair and each A/V traffic class)

In this paper we will assume that items number 1 is addressed with some ap-
propriate protocol. We will merely assume that this protocol allows signalling
between talkers and listeners, where

• Each talker can request channel to listener with specified bandwidth, la-
tency and jitter;

– request can be either granted or denied,

– in case of denial possible best-service parameters may be communi-
cated.

• Each listener can request joining ongoing multicast stream with specified
bandwidth, latency and jitter;

– request can be either granted or denied,

– in case of denial possible best-service parameters may be communi-
cated.

Item 2 is essential because software switches typically fail to offer low and de-
terministic routing delay (not including queuing delay).

Item 3 ensures that sources initially produce shaped traffic, and thus honor
made reservations and do not exceed allocated bandwidth, even temporarily.

Item 4 ensures that best-effort traffic is kept on the lower priority thus en-
suring that its impact of the A/V streams latency is limited. Having more than
one priority tag allows to have multiple classes of A/V traffic with different
latency requirements.

Item 5 ensures that A/V stream distortions (as illustrated in Section 2) are
removed before they are routed by the next switch. This ensures that distortions
do not accumulate and do not cause excessive delays. Most importantly, this
item removes topology sensitivity.

4.2 Shaper definition
We will call in this paper the shaper to be a device or algorithm, which re-
ceives on the input a potentially arbitrary stream of packets and produces on
the output a stream of packets compliant with specified bandwidth reservation
characterized by parameters B and Ω.

• Parameter B is a reserved bandwidth in byte per second units.

8

• Parameter Ω is a period in time units, over which the bandwidth is mea-
sured.

We will define stream to be compliant with reservation B and Ω if measured
bandwidth of the stream over any period of time of length Ω within the stream
is below or equal to the B.

Definitions of compliant streams and shapers are similar to those introduced
in [2].

The particular implementations of shaper depend on the known limits of
input stream which is to be shaped. Shapers would typically have the ability
to queue packets up to some limit, which characterizes the shaper’s ability to
shape severely non-compliant traffic without dropping any data.

Particular shaping techniques are described in details in [1]. Overall, the
shaper (rate regulator in this work’s terminology) implements a Leaky Bucket
algorithm, which detects rate distortions and delays misplaced packets which
would cause the congestion. One important result the paper establishes is that,
despite delaying some packets, correctly designed shapers do not increase end-to-
end worst-case latency bound. This happens because in correct design, shaper
only delays packets routed “ahead of the schedule” compared to the other packets
in the stream and it doesn’t cause delay more than the worst-case delay on each
switch.

4.3 Sufficient level of modifications
With proposed modifications at hand, we should look into which modifications
are sufficient for latency-bound Ethernet.

Our analytical analysis, presented in Sections 5 and 6, shows that items 2-5
are sufficient to enable a deterministic guarantee for low latency (< 2 ms).

On the other hand results from Section 2 suggest that if higher latencies
are acceptable and topology can be restricted, just having items 2-4 may be
sufficient. In other words, shaping in switches may be omitted.

If this paper we will concentrate on networks with shapers, because even if
higher latencies are acceptable, restricting topology seems very problematic.

5 Worst-case latency theorem

5.1 Assumptions
In order to derive mathematically a worst-case latency we will need to make cer-
tain assumptions about the network we are dealing with. Following assumptions
are set forth:

1. All switches on the network are straight store-and-forward and function
as output queue switches

2. All receiving and transmitting ports are functioning independently (HW
router and full duplex)

9

3. All traffic has the same priority.

4. Processing time for packets (time between reception and start of trans-
mission of the target port) inside switches is considered to be zero.

5. All packets have the same size.

6. PHYs on switches have identical speed and transmit/receive single packet
in fixed amount of time of τ seconds.

7. Packet source and sink are separated by N switches and each switch has
n input ports with one source connected to each port.

8. Network is never congested, we will define this as sum of incoming traffic
to the switch targeted on the same output port over any period of time
n · τ does not exceed output port capacity. This should be true for each
port of each participating switch. This effectively means that no more
than n packets targeted for one output port come from all input ports
during the period of time n · τ .

We should note that in order to meet assumption 8 we should have sources
emitting traffic which is shaped not to exceed the constant bitrate with band-
width measurement period of n · τ and reservations for bitrate are arranged is
such a way that combined incoming traffic for each switch is below the network
throughput. But this alone is not sufficient, because it would not address stream
distortion effects reviewed in Section 2. In order to address distortions, shaping
should be done on ingress of each pair of input and output ports in the switch.

This way shaped sources ensure validity of assumption 8 on the boundary
of the network, while shapers inside switches ensure this assumption validity
inside the network.

5.2 Theorem
With the assumptions set forth in Section 5.1 worst-case propagation delay for
the packet from the source to the sink will be

T = (n ·N + 1) · τ (1)

5.3 Proof
Proof will consist of two parts:

1. construction of example network with delay expressed with formula (1),

2. proof from the opposite that worse propagation value is not possible

First let’s build the network with needed propagation delay. For this we will
imagine that our source of interest emitted a packet, which we refer to as marked
packet. All interfering sources on the network, i.e. all sources but the one we

10

Input 1

Input 2

Input n

Output

τ

n · τ

...

mrk

mrk

Figure 4: Worst-case switch delay scenario

measure propagation delay for, emit packets in such a fashion that they, for
each switch, all arrive and get queued for transmission just before the marked
packet (See Figure 4). This means that when marked packet arrives, there are
n− 1 packets queued waiting to be transfered.

Since there are n−1 packets in the queue, it will effectively take τ ·(n−1)+τ =
n · τ seconds for packet to reach the next switch or sink, in case if this switch
was last on the path.

In order to apply same speculation to subsequent switches, we arrange topol-
ogy and interfering streams in such a way that all packets except for the marked
packet will get routed off the marked packet’s path. This allows us to re-create
the same packets arrangement as on the previous switch on the next switch with-
out violating non-congestion condition. Since arrangement is the same, marked
packet will again find n− 1 packets waiting to be transmitted ahead of it.

Since by our assumption there are N switches between the source and the
sink and every switch produces n · τ seconds of delay, adding the time τ is
takes for marked packet to reach a first switch, we get the value for the total
propagation delay as

T = N · n · τ + τ = (N · n + 1) · τ

, which is identical to the expression (1) we’re trying to prove.
Now we shall show that given expression is the upper bound.
Let us assume that this is not the case and there is a configuration which

causes greater propagation delay T̃ . This would mean that at least on one
switch marked packet found more than n− 1 packets enqueued when it arrived.
At the minimum, there was n packets queued, so adding marked packet we will
get minimum n + 1 packets in the queue total.

11

Lets show that no congestion assumption made in Section 5.1 is equivalent to
demanding that at no time any output port on switch has more than n packets
in queue.

Indeed, output port is a Leaky Bucket with a constant leakage rate, equal
to the link capacity. Number of queued packets can be expressed as

m(t) = m(t− n · τ)− ptx + prx (2)

,where prx is a number of packets arrived from input ports and ptx is the number
of packets transmitted to the output port. By assumption of non-congested
network prx ≤ n.

Naturally ptx ≤ n since n is the maximum number that can be transmitted
at the maximum transmission rate.

Let’s consider a moment of time t0 when m(t0) > n for the first time. This
means that ∀t < t0,m(t) ≤ n. We can ensure that such t0 exists if we assume
than m(ts) = 0, ∀ts < n · τ , which means that initially router had no packets
queued for the time period of n · τ .

This allows us to write particularly that m(t0 − n · τ) ≤ n. This in turn
means that

ptx ≥ m(t0 − n · τ) (3)

, since at the minimum all packets queued at the time t0−n ·τ would have been
transmitted by the time t0 because there was less then n of them.

Using (2) we will write an expression for maximum value of m(t0)

max m(t0) = max(m(t0 − n · τ)− ptx + prx) (4)

Now we will re-write (3), by subtracting m(t0 − n · τ) + prx as

−prx ≤ ptx − (m(t0 − n · τ) + prx) ⇒

m(t0 − n · τ) + prx − ptx ≤ prx ⇒

max(m(t0 − n · τ)− ptx + prx) ≤ prx ≤ n

, here we used prx ≤ n (assumption 8 of non-congested network).
Substituting to (4) we get

max m(t0) ≤ n.

Thus we get contradiction with means that such t0 does not exist and our initial
proposition that at least one of switches would have at least n+1 packets queued
contradicts with our assumptions of the network not getting congested.

Theorem is proved.

6 Extended model
In this section we expand out result from the Section 5 to a more realistic
assumptions about the network.

12

6.1 Relaxing assumption of the same size packets
In our theorem we assumed that all packets on the network have the same
size and transmission time τ . Let’s examine what happens if we relax this
requirement to say that:

• The τ is the maximum size while smaller packet sizes are permitted. We
will assume that there’s no overhead of transmitting separate packets ver-
sus a single.

Non-congestion requirement will change its meaning. Since packets have differ-
ent sizes, non-congestion requirement will mean that:

• the sum of transmission times for incoming packets during the period of
n · τ targeted for the same output port shall not exceed n · τ .

This substitutes limit of n incoming packets as explained in Section 5.1.
It is obvious that our initial worst-case example can still be used since all

packets of the maximum size still represent a valid case. This means that per-
switch worst-case delay is no less than n · τ .

Expressions (2)-(4) can be rewritten in terms of transmission times of packets
rather than number of packets. We will come to the conclusion that under
assumption of shaping interval being n · τ , the sum of transmission times for
packet queued at each router will not exceed n ·τ . This means that transmission
delay per hop will still be bound by n · τ and latency formula (1) will still be
correct.

6.2 Other traffic shaping periods
We’ve assumed in theorem above that traffic is shaped to not exceed network
capacity on intervals of time n · τ . Lets relax this restriction and derive latency
for an arbitrary shaping time period of Ω.

Let consider a case where Ω > n · τ .
This condition allows each input port on a switch to have more than one

incoming maximum size packet back-to-back. Short of a strict proof we will
construct a worst case latency scenario for a switch based on the intuitive as-
sumption that in order to provide maximum queueing delay we need to produce
combined burst with the maximum data rate on input ports targeted to the
same output port and make sure marked packet get queued last.

Maximum burst data rate will occur when all input ports are receiving simul-
taneously. This can be achieved by spreading total budget of incoming data size
Ω (in terms of transmission time) evenly over all incoming ports on the switch.
As illustrated on the Figure 5, this will amount to the bursts with combined
size of packets Ω

n coming from the each input port.
Because of the store-and-forward nature of the switch, we can introduce

maximum queueing delay if initial packets on all bursts are maximum-sized
packets with transmission time τ . This will ensure that transmission on the

13

Input 1

Input 2

Input n

Output

τ
Ω
n

Ω
...

...

mrk

mrk

δ

Figure 5: Worst-case scenario for sharing period Ω > n · τ

output port will be delayed by τ . Once transmission is started, it will take
exactly time Ω for output port to transmit all the incoming data including the
marked packet at the end. On the other hand, marked packet will get queued
in the switch only after all burst is received on the input port, which will take
Ω
n . So marked packet will be transmitted after Ω + τ from the beginning of
the burst, but it will only get queued at the time Ω

n since the beginning of the
burst. Putting it all together we get a delay marked packet will experience on
this switch as:

δ = Ω + τ − Ω
n

= Ω(1− 1
n

) + τ

,please see Figure 5 for a graphic explanation.
To extend same speculation on the next switch on the path we ensure that

only the last portion of the bursts with the size Ω
n , including marked packet,

will be routed on the output port on the marked packet’s path, while the rest
of the data is routed elsewhere. This will allow us to recreate exactly the same
scenario on the next switch and get the same expression for the per-switch delay
δ. Including the initial delay of marked packet from source to the first switch,
we get following for the total latency:

T = (Ω(1− 1
n

) + τ) ·N + τ ,Ω > n · τ. (5)

Note that on the edge Ω = n · τ formula turns into the original formula (1).
Lets inspect the case where Ω < n · τ .
This essentially means that not all input ports on a switch are allowed to have

maximum-sized packet queued up simultaneously. At least one port will have

14

Input 1

Input 2

Input n

Output

τ

Ω

...

mrk

mrk

Figure 6: Worst-case scenario for sharing period Ω < n · τ

a smaller packet or no packet at all, and total maximum size of packets will be
Ω. To ensure that output port doesn’t start forwarding packets from incoming
burst before marked packet is received, we will align all incoming packets’ ends
with the end of the marked packet. Now if we arrange that marked packet gets
queued last, we will get queuing delay of exactly Ω (see Figure 6).

To obtain an exact worst-case proof in this case one can rewrite expressions
(2)-(4) in terms of transmission times versus packets count and show that with
shaping period Ω, per-switch delay worse than Ω is not possible.

If we again arrange that on the next switch all packets except for the marked
packet are routed off the marked packet’s path, we can extend same speculation
for every following switch, which puts total latency at:

T = Ω ·N + τ ,Ω < n · τ (6)

Now we can combine all together formulas (5), (6) and original formula (1)
(for the case Ω = n · τ) we get:

T = δ ·N + τ, δ =
{

Ω(1− 1
n) + τ , Ω ≥ n · τ

Ω ,Ω < n · τ (7)

Formula (7) suggests that if we shape traffic at sources more coarsely, prop-
agation delay upper bound will increase.

6.3 Partial network load
We assume in all our speculations above that network can be fully loaded. In
fact, designer may choose to limit the load on the network to some specific value
L ∈ (0, 1].

We will define limited network load with coefficient L as

15

• network where during any period of time Ω any switch can receive on all
input ports packets targeted for the same output port with aggregate size
of up to Ω · L (in terms of transmission time).

With this definition we can repeat same speculations we had in Section 6.2 for
fully loaded network, but instead of Ω we will need to substitute Ω · L because
this will be our maximum burst size now. With this in mind formula (7) will
become:

T = δ ·N + τ, δ =
{

ΩL(1− 1
n) + τ , ΩL ≥ n · τ

ΩL ,ΩL < n · τ

6.4 Varying number of ports for switches
We can further generalize formula for networks with switches each having dif-
ferent number of ports. Let’s denote number of ports switch number i has as
ni. Using this we can easily generalize formula (7) to

T =
N∑

i=1

δi + τ, δi =
{

ΩL(1− 1
ni

) + τ , ΩL ≥ ni · τ
ΩL , ΩL < ni · τ

, . (8)

6.5 Adding lower-priority interfering traffic
It is very easy to extend equation (8) to take into account presence of an in-
terfering traffic of a lower priority. To do that we add two more assumptions
about our network in addition to assumptions spelled out in Section 5.1.

• Network has a lower priority interfering traffic with the maximum packet
transmission time τ ′ and this traffic is serviced in the router using a strict
priority scheduling. Essentially this means that this traffic has a separate
output queue which is serviced only when our higher-priority output queue
is empty.

• Lower-priority frame transmission is not interrupted by the arrival of
higher-priority frames into the higher-priority output queue .

It is easy to see that with this model at each hop we will incur at the maximum
an additional delay τ ′.

It will happen when our burst constructed in Section 5.3 gets queued up
when lower-priority frame transmission just got started. And this means indeed
an additional τ ′ delay. On the other hand delay cannot exceed τ ′ since this
would mean that more than one lower-priority packet got serviced while at least
one higher-priority packet (marked packet) was queued up, which is impossible
with strict-priority scheduling.

With this in mind we can extend expression (8) to

T =
N∑

i=1

δi + τ + N · τ ′. (9)

16

Original burst

Ω

Ω̃

ΩL

Ω̃L̃

Higher priority
bursts

Combined
burst

Ψ

mrk

mrk

Ω̃(1− L̃)

Figure 7: Higher-priority stream impact

Note that lower-priority traffic is not expected to abide any bandwidth re-
striction. In particular parameter L only limits bandwidth for a higher-priority
traffic.

6.6 Higher-priority interfering traffic
Lets extend our model with the higher-priority (HP) interfering traffic. Besides
measured traffic, running at the shaping period Ω and utilization L, we assume
that HP traffic is present, and is allocated a dedicated bandwidth share L̃ and
runs at the shaping period of Ω̃. We assume here that L̃ + L < 1, i.e. HP
traffic and measured traffic combined do not exceed the available bandwidth.
When considering worst-case conditions for both the HP and measured traffic,
both streams will have a form of bursts of the maximum allowed size. The HP
traffic will come in bursts every Ω̃ for the duration of Ω̃L̃, while the measured
traffic will come in bursts every Ω for the duration of ΩL. Naturally, when
both streams go through the same output port, they will get combined, as it is
illustrated on the Figure 7.

Let’s denote via Ψ the difference between the length of the original (measured
traffic) burst and the combined burst. If we find Ψ, it will give us the maximum
latency impact that HP traffic will have on the measured traffic.

Since the combined burst gets bigger because on the inserted HP bursts, we
can re-write Ψ = k·Ω̃L̃, where k is the number of HP bursts that get merged into
the original burst. Now, to find k, we notice that the number of HP bursts in the
combined burst is the same as the number of spaces in-between HP bursts that
get filled in with the pieces of the original burst. Since each space in-between
HP bursts has a size of Ω̃(1− L̃), we can write expression for k as

k =
⌈

ΩL

Ω̃(1− L̃)

⌉
=

⌈
Ω
Ω̃

L

(1− L̃)

⌉
,

17

we use rounding to a next integer to account for a last space in-between HP
bursts with a partial fill.

Now, with the expression for k we can easily rewrite Ψ as

Ψ =

⌈
Ω
Ω̃

L

1− L̃

⌉
· Ω̃L̃.

With the expression for the latency impact on a per-hop basis, we can write
a full latency with higher-priority traffic interference added:

T =
N∑

i=1

δi + τ + N · (Ψ + τ ′) =
N∑

i=1

δi + τ + N · (

⌈
Ω
Ω̃

L

1− L̃

⌉
· Ω̃L̃ + τ ′). (10)

If our analysis we disregarded the fact that bursts actually are composed
of packets and during merging, higher-priority stream will not merge perfectly
at the time they arrive on the input, but may get pushed off to the end of the
pending packet from the measured stream. If we take this into consideration,
it is easy to see that the impact of the HP traffic will not increase and in fact
may decrease when HP burst on the right edge of the measured traffic burst get
pushed off to the side. In other words, when packetization is considered, k may
decrease, but not increase, which means that our initial analysis holds true as
a upper bound.

Now, let’s get the latency impact for measured stream with two interfering
streams, one of higher (HP) and another one with even higher (HP1) priorities.

For practical purposes, we will limit the scope of our analysis to the case
where streams HP1 and HP have the same shaping period Ω̃. Stream HP
uses bandwidth fraction L̃ and HP1 uses L̃1. Both streams are assumed to be
honoring their respective bandwidth reservations, so over the period Ω̃ stream
HP sends no more data than Ω̃L̃, while stream HP1 sends no more data then
Ω̃L̃1. This means that both streams will contribute to the output port on the
switch no more data than Ω̃(L̃ + L̃1).

Now we need to note that for a measured stream both HP and HP1 streams
can be viewed as a single combined stream of a higher priority. Indeed, the
difference in priorities for HP and HP1 streams is only manifested in how these
streams get multiplexed relative to each other, but not relative to the measured
stream.

With this observation, we treat HP and HP1 streams as a single stream with
combined load L̃ + L̃1 and substitute it instead of L̃ in formula (10) to get a
new latency expression

Ψ =

⌈
Ω
Ω̃

L

1− (L̃ + L̃1)

⌉
· Ω̃(L̃ + L̃1) ⇒ .

T =
N∑

i=1

δi +τ +N · (Ψ+τ ′) =
N∑

i=1

δi +τ +N · (

⌈
Ω
Ω̃

L

1− (L̃ + L̃1)

⌉
· Ω̃(L̃+ L̃1)+τ ′).

(11)

18

6.7 Adding routing delay
We can take into consideration the fact that routing does not generally happen
instantaneously we can replace assumption of zero-time routing set forth in
Section 5.1 with the assumption that routing is bounded by some time ξ.

Worst-case scenario described in Section 5.3 have the same effect on the
maximum queue occupation. Since all packets including marked packet are
getting delayed some amount of time before being queued in the output queue,
we can always arrange them on the wire such that interfering packets will queued
just a moment before our marked packet exactly reproducing same worst-case
configuration. This means that marked packet at the maximum will experience
an additional delay of ξ at each hop. Adding this delay to formula (9) we get

T =
N∑

i=1

δi + τ + (τ ′ + Ψ + ξ) ·N. (12)

7 Worst-case latency expression analysis

7.1 Parameter sensitivity
In the formula (12) delay is a linear function of all variables. For the sake of
simplicity we will consider all switches having the same number of ports ni = n.
This will simplify latency expression to:

T = δ ·N + τ + (τ ′ + ξ) ·N, δ =
{

ΩL(1− 1
n) + τ , ΩL ≥ n · τ

ΩL ,ΩL < n · τ .

Looking at n,N as given parameters of network topology, sensitivity to other
variables changes can be easily obtained by getting partial differentials:

∂T

∂τ
=

{
(N + 1) ,ΩL ≥ n · τ

1 ,ΩL < n · τ ,

∂T

∂ξ
= N,

∂T

∂(ΩL)
=

{
(1− 1

n) ·N , ΩL > n · τ,
N ,ΩL < n · τ (13)

From these expressions we can conclude that with given topology (given n
and N) all variables (τ, ξ,ΩL) have roughly the same influence on the overall
latency. This means we should start adjusting the one with the maximum
absolute value since this will provide more headroom for the adjustment. When
ΩL is bigger in value we should adjust it first. Once ΩL is the same or less than
τ , both variables should be adjusted. Finally, assuming that ξ is small, it will
provide very little room for improving a latency figure.

19

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

20%

40%

60%

80%

100%

L =

T, ms

N

Figure 8: Latency for n = 5, Ω = 125µs

We skipped partial differential over τ ′ because adjusting a best-effort traffic
packet size is very hard in practical terms. Changing this size would cause
backward compatibility issues.

Figures 8 and 9 show increase of T with respect to number of hops N for
different network utilization levels L. In both graphs we have neglected the
routing delay and maximum packet size for all traffic is set to τ = τ ′ = 125µs.

From figures we can see that the worst-case latency of 2 ms through 7 hops is
achievable only for shaping period Ω = 125µs. For bigger period of Ω = 1000µs,
the latency is bounded by 8 ms.

7.2 Allocation granularity
Is should be separately noted that, when we shrink Ω to get lower latency
bound, granularity of bandwidth allocation will increase since it is defined by
the minimum packet transmission time τmin ≈ 10µs. For the case Ω = 125µs
we will get only Ω

τmin
≈ 12 allocation slots, while for Ω = 1000µs we will get

≈ 100 slots.

8 Architecture of Ethernet with a bound low-
latency

Here we will outline an architecture option for designing the Ethernet LAN
with low latency guarantees. We assume that bandwidth reservation signaling

20

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

20%

40%

60%

80%

100%

L =

T, ms

N

Figure 9: Latency for n = 5 ,Ω = 1000µs

is defined elsewhere.

8.1 Architecture drivers
One main driving force will be an assumption that the modified Ethernet should
be able to provide at least 2 ms latency guarantee over 7 Fast-Ethernet hops.

Another assumption we make is that only a limited number of applications
will actually need a 2 ms latency guarantee, while most applications will function
with higher, 10 ms+ guaranteed latencies.

We can see from the analysis on the latency formula in Section 7, that
latency varies greatly for different shaping periods Ω. In order to get latency
figure below 2 ms, we would have to operate on a very stringent shaping period
of 125 µs, which imposes restriction of packetization, as well as leaves only a
limited number of bandwidth allocation slots.

Since number of low-latency streams is expected to be small, to address
this issue streams are divided into two separate classes with different latency
requirements and different shaping periods.

8.2 Network with two payload classes
This type of network consists of compliant end-points and switches, connected
into the arbitrary topology with no loops (if loops exist, we assume they are
resolved somehow). Network has the following traffic classes:

• Best effort

21

Traffic class Priority Shaping pe-
riod

Bandwidth
reserved

Latency
guaranteed

Best Effort Lowest N/A N/A N/A
Payload 1 +1 1kHz TBD >2ms ?
Payload 2 +2 8kHz TBD ≤2ms ?
Control +3 8kHz TBD TBD

Table 1: Traffic classes in Two Payload class network

• Payload 1 — higher latency guaranteed

• Payload 2 — low latency guaranteed

• Control (timing, reservation signalling?)

Switches on the network schedule packets using a strict priority algorithm and
do the re-shaping of flows before transmission for each input-output port pair
and each guaranteed latency class. Each traffic class uses it’s own priority as
depicted in Table 1.

For both classes, Payload 1 and Payload 2, guaranteed latencies are calcu-
lated using the formula (12).

As part of the process of reserving the bandwidth along the delivery path,
each switch provides a value for a worst-case latency bound pertaining to this
switch. Once all switches along the path provide the latency values, end-points
use those values to obtain the total path guaranteed worst-case latency. This
approach allows for heterogeneous networks with the mix of the hardware (i.e.
Fast Ethernet and Gigabit Ethernet).

It is assumed that end-points generate streams abiding their traffic contracts.
In our case this means that streams do not exceed reserved bandwidth over any
period of time Ω, which is a shaping period for a specific class this stream
belongs to.2 In this case, shapers inside switches will not drop any data during
re-shaping of the streams.

For both end-points and switches, shapers can be implemented using schedul-
ing algorithm of Leaky Bucket. This can be a simple credit-based algorithm,
where credit of at least the size of a pending packet is needed for transmission
to occur. Once transmission occurs, used credit is subtracted and next packet
doesn’t go out until the credit is restored to be at least the size of the packet
again. Credit is linearly adjusted periodically with the appropriate increment,
depending on the combined target rate and Ω until it gets saturated at some
point. For details please refer to [1].

In order to effectively use the bandwidth, source will have to packetize it pay-
load into the equal-sized packets. If this is not true, source will have to request
more bandwidth than it will actually use to account for odd-sized packets.

2If it found to be useful, this requirement can be relaxed to allow some stream distortions
similar to the one that may occur in the switch during the packet multiplexing.

22

8.3 Switch architecture
A network with priority classes, described above would require switches on the
network to implement additional set of traffic shapers. Rough outline of such
switch architecture is depicted in the Figure 10.

As one can see from the diagram, switch would require to inject shapers
in-between a switching fabric and the output queues to handle shaping of the
latency-bound traffic. For each output port, there is one shaper per input
port and per latency-bound traffic class. Each of those shapers need not be
a separate physical device, assuming packets forwarded to a specific port are
serialized when they come out of the switching fabric . In this case a single
physical set of shaper logic can be used with multiple RAM slots for separate
shapers’ state machines. For packet storage, all shapers can utilize the same
RAM pool, shared with TX queues.

In the diagram, TX queues for regular traffic and TX queues for a latency-
bound traffic are separated because they have different size requirements, oth-
erwise, latency-bound TX queues can utilize identical logic with regular TX
queues. TX queues for latency-bound traffic will need substantially less RAM,
because the latency-bound traffic is well-shaped compared with the regular traf-
fic.

Despite the fact that each shaper would require a separate queue, overall
per-port RAM utilization for all shapers will not be significantly higher than
a per-port RAM utilization of a conventional switch. This is due to the fact
that separate shapers use smaller queues, because they deal with only a fraction
of a bandwidth of the output port. Counting in smalled size requirements for
latency-bound TX queues, overall RAM requirements for the switch should not
be substantially higher when compared to a conventional strict priority switch.

9 Conclusions
We have produced an exact upper bound (worst-case) for propagation delay
under assumptions outlined in Section 5.1 as well as generalizations for differ-
ent shaping time periods, best-effort traffic, different packet sizes and non-zero
routing delay. Resulting latency bound can be found using derived formula (12).

Our analysis of the formula suggests that:

• delay can be varied effectively by changing link utilization level and shap-
ing period,

• worst-case latency guarantee of 2 ms is achievable with the shaping period
Ω = 125µs,

Based on the results, we have produced an example of a modified Ethernet ar-
chitecture with two traffic classes, allowing deterministic low-latency guarantees
below 2 ms over 7 hops. In this architecture traffic shaping inside switches is es-
sential to prevent stream distortion, topology sensitivity, and indefinite growth
of guaranteed wost-case latency with arbitrary topology.

23

Input port 1

Input port 2 Output
port 2

Output
port 1In 1

Switching

In 2
Switching

Switching
fabric

Port 2 shaper
fabric

Stream reservations
database

One shaper per
latency-bound traffic

class

Port 1 shaper
fabric

Shapers 2_1

Shapers 2_2

TX queues
port 2 (regular)

TX queues
port 1 (regular)

Shapers 1_2

Shapers 1_1

Latency-bound traffic
Regular traffic
Control

TX queues
port 2

(latency-bound)

TX queues
port 1

(latency-bound)

One queue per latency-
bound traffic class

One queue per
regular traffic class

To port 1

To port 2

To port 1

To port 2

Figure 10: Latency-bound switch architecture diagram

24

We noted that if higher latencies and restricted topology are acceptable,
architecture without shapers inside switches can be sufficient, but topology re-
striction requirement is very undesirable.

References
[1] Peter Kim, Resource Reservation in Shared and Switched Demand Priority

Local Area Networks (ftp://cs.ucl.ac.uk/darpa/pk_phd_thesis.ps.Z), PhD
dissertation, 1998

[2] David E. McDysan, Darren L. Spohn, ATM Theory and Application,
McGraw-Hill, 1994

[3] Dave V James., AV Bridges White Paper

25

	Introduction
	Background
	Scope
	Paper structure

	Ethernet with priority tagging and QoS
	Stream distortion
	Topology sensitivity

	Impact of a per-port ingress/egress shaping
	Egress shaper
	Ingress shaper

	Modifications enabling low latency bound
	Proposed list
	Shaper definition
	Sufficient level of modifications

	Worst-case latency theorem
	Assumptions
	Theorem
	Proof

	Extended model
	Relaxing assumption of the same size packets
	Other traffic shaping periods
	Partial network load
	Varying number of ports for switches
	Adding lower-priority interfering traffic
	Higher-priority interfering traffic
	Adding routing delay

	Worst-case latency expression analysis
	Parameter sensitivity
	Allocation granularity

	Architecture of Ethernet with a bound low-latency
	Architecture drivers
	Network with two payload classes
	Switch architecture

	Conclusions

