Some Fabric Interconnects in Today’s Data Centers

• **Ethernet**
 - Default fabric for networking traffic

• **InfiniBand**
 - Emerging fabric for inter-process communication (IPC) traffic

• **Fiber Channel**
 - Preferred fabric for storage traffic

• **Advanced Switching Interconnect (ASI)**
 - Aimed at inter-board, backplane, and multi-rack systems typically used in Telecom environments

• **Proprietary (Myrinet, Quadrics, ...)**
 - Preferred fabric for low latency traffic
Consolidation

TODAY

Processor
Memory

HBA
HCA
NIC

Storage
IPC
LAN

Fibre
Channel
Proprietary
and
InfiniBand
Ethernet

FUTURE

Processor
Memory

Storage
IPC
LAN

Ethernet

Trend towards consolidation due to higher cost and complexity of multiple fabrics – Can Ethernet be the consolidated fabric?
InfiniBand

Congestion management capabilities
InfiniBand
Congestion management capabilities

• Link level flow control
• End-to-End flow control
• Static Rate Control
• End-to-End injection rate control
• VL arbitration
InfiniBand
Link level flow control

• Granular link level credit based flow control
 – Per Virtual Link (VL) flow control (upto 15 data VLs)
 • Per VL flow control eliminates HOL blocking between VLs
 • Latency sensitive traffic using one set of VLs can be unaffected by congestion of best effort traffic in other VLs

• Effectively deals with transient congestion without dropping packets
 – Feedback-based mechanisms cannot deal with time constants of transient congestion
InfiniBand
End-to-End flow control

• End-to-End (message level) credit based flow control
• Used by reliable connections to prevent receive queue overflow
• End-to-End credits are generated by a responder’s receive queue and consumed by a requester’s send queue
• Encoded credits are transported from the responder to the requester in an ACK message
InfiniBand
Static Rate Control

• Enables Fabric Manager to configure the network to avoid oversubscribed links in the fabric

• Effectively handle link speed mismatches
 – A path with 4X link feeding a 1X link can be constrained to a 1X rate
InfiniBand
End-to-End injection rate control (1)

- Added in 2004 (Release 1.2) to address congestion spreading problem
 - Oversubscription to destination 3, blocks traffic on the inter-switch link
 - This blocks flow to destination 6 which is uncongested
- Uses Forward Explicit Congestion Notification (FECN) and Backward Explicit Congestion Notification (BECN)
- Pushes congestion to the source to avoid head-of-line blocking and congestion spreading
InfiniBand
End-to-End injection rate control (2)

- Switches detect congestion based on threshold and mark packets with FECN bit
- Destination responds to source queue pair with BECN, either piggybacked on ACK or special Congestion Notification packet
- Source reduces the injection rate of flow by increasing index into Congestion Control Table (CCT) which stores inter-packet delay values
- Source recovers rate based on timer by decreasing index into CCT on timer expiry
InfiniBand
VL arbitration

• Dual priority WRR arbitration scheme between VLs
• Allows configurable link sharing between VLs
Fibre Channel

Congestion management capabilities
Fibre Channel
Flow Control

• Buffer-to-Buffer credit based flow control
 – Destination port signals by sending a Receiver_Ready primitive signal to the transmitting port when it has free receive buffers

• End-to-End credit based flow control
 – Happens between initiator (source) and responder (destination) ports
 – ACK frames used to replenish credits
Fibre Channel

Class of Service

• Classes define communication strategy to use depending on the type of data to be transmitted
 – Determines the types of flow control used
• Class 1: Dedicated connection (reserves entire link on the path)
 – Only End-to-End flow control
• Class 2: Connectionless communication with end-to-end acknowledgements
 – Both buffer-to-buffer and end-to-end flow control
• Class 3: Connectionless with no end-to-end acknowledgements
 – Only buffer-to-buffer flow control
• Class 4: Similar to Class 1 except that only part of link bandwidth reserved for a VC
 – Only End-to-End flow control
• Class 5: Undefined
• Class 6: Multicast service
 – Only End-to-End flow control
• Intermix class: Allows Class 2 or Class 3 frames to be transmitted at times Class 1 frames are not being transmitted
Advanced Switching Interconnect (ASI)

Congestion management capabilities
ASI
Congestion management capabilities

• Link level flow control
• Endpoint source injection rate limiting
• Link bandwidth arbitration
• Reliable data transport
• Centrally managed fabric
ASI

Link level flow control

- Multiple “virtual channels” per link
 - Up to 16 unicast VCs: 8 are bypass-capable
 - Up to 4 multicast VCs
 - Separate flow control for each VC.

- Credit-based link-level flow control
 - Link VC receiver gives the VC transmitter a limit on how much data it can forward based on the currently free buffering in Rx.
 - The limit is updated as Rx buffering empties.
 - Credit update messages conveyed in a special, 4-byte packet.

- Optional Status-based flow control
 - Switches send output port status messages to their immediate upstream neighbors.
 - Provides one stage look-ahead view on congestion situation.
 - Upstream nodes temporarily stops data to congested downstream output ports.
ASI
Endpoint source injection rate limiting

• Optional

• Match bandwidth of
 – Slowest link along the path
 – Data rate of traffic’s destination

• Source node maintains a connection queue (CQ) for each flow.
 – Per traffic class
 – Per path through the fabric

• Token bucket controls the flow of traffic through a CQ.
 – Shapes the transmission of the packets in time.
 – Allows limited burstiness

• Higher layer protocols determine the token bucket parameter values.
 – Protocols not specified in ASI spec., as far as I can see.
ASI

Link bandwidth arbitration

• Output port uses a “Minimum BW” scheduler to allocate link bandwidth to the active VCs.
 – An active VC has both waiting traffic and sufficient credits.
• Allocates available BW based on per-VC weighting parameter.
 – Allocates link BW on a data basis, not on a packet basis.
• Work conserving
 – If there is at least one packet ready to send, it will be sent.
 – Traffic is not held back for rate limiting/shaping at the switches.
• Specific algorithm not specified by ASI.
ASI
Reliable data transport

• Retransmission of lost or corrupted packets.
 – Minimum delay to detect the problem.
• Avoids the need to resend a lost packet end-to-end.
 – Reduces network BW needed to recover a lost packet.
 – Congestive collapse is almost impossible (?).
ASI
Centrally managed fabric

- Agents responsible for various aspects of fabric operation.
- Fabric-wide optimization and management
- Some fabrics have multiple paths between end nodes.
 - Important redundancy for failovers
 - For more BW or QoS than a single path can provide.
- Source routing of each packet allows traffic source to pick the route.
 - Potentially different for each traffic class * end-point.
 - Fabric manager typically discovers and defines the routes.
- Fabric management software may regulate access to the ASI fabric.
 - No new flows except when sufficient resources are available.
Ethernet

Congestion management capabilities
Ethernet
Priority and Flow Control

• Traffic Classes
 – Support for up to 8 priorities for traffic differentiation

• 802.3X flow control with link level granularity
 – Causes congestion spreading
 – Can not differentiate between latency sensitive and best effort traffic
Can Ethernet be the consolidated fabric?

- For Ethernet to be the consolidated fabric, it needs to have better congestion control capabilities including
 - End-to-End congestion control to push congestion to the sources
 - More granular link level flow control
 - Standard enhanced scheduling mechanisms
Backup