Data dependent and data driven connectivity fault management (DDCFM)

Diagnosing data dependent and data driven
connectivity faults

Mick Seaman

This note follows up my presentation to the 802.1 March 2006 meeting and the ensuing discussion.
It proposes an extension to the basic capabilities of P802.1ag CFM to support detection, diagnosis,
and isolation of connectivity faults that affect frames containing particular data or data patterns. The
ideas described arose from the discussion of Linda Dunbar’s loopback presentations.

1. Introduction

There are two broad types of connectivity faults that affect
only frames carrying certain data, addresses, or data address
combinations. Simple data dependent faults result in the
repetitive loss of each of those frames, independent of any
other frames, and are usually the result of simple
misconfiguration or of a failure to appreciate the
consequences of a configuration option—installing protocol
specific filters, for example. Data driven faults are more
complex: the presence (or absence) of some data frames
cause or contribute to the loss of other frames. While the
services supported by bridged networks are notionally data
independent, data driven techniques enable enhanced
service delivery. To give three examples: multicast frame
filtering and consequent bandwidth saving is facilitated by
IGMP snooping; stateful firewalls are used to protect users
connected to managed services; and efficient allocation of
frames to the individual links of an aggregation is often
based on spotting conversations by looking at frame data.

Data driven faults can be expected to become the majority
of data related faults, as the reasons for simple data
dependent errors are easier to find and correct. Data driven
faults can be provoked both by errors in complex software,
and by unexpected customer behavior. In the absence of real
traffic they can be expected to disappear, or to revert to an
entirely expected state—no IGMP related multicast traffic,
for example. Diagnosis has to be carried out while the
network is actually running, and the diagnostic tools
themselves must not introduce further data dependent faults.
If one segment of a data path is to be tested in one direction,
the test frames have to be delivered to (and possibly
collected from) that segment without triggering any other
data driven behavior on the delivery (and collection) path—
it is no good looping back plain data traffic through a
firewall, for example, as the firewall will see an IP address
moving rapidly from one side to another with a changing
MAC address, and will likely block the traffic in
consequence.

This note proposes standardization of two additional CFM
opcodestl, together with an encapsulating ‘partial mirror’
functionality, to enable data testing of selected path
segmentst2. The goal is to support detection, isolation, and
diagnosis of both data dependent and data driven faults.

The purpose of the first additional opcode is to deliver the
elements of a framet3 to a point (a decapsulator) where it
can be sent as a normal data frame. In my presentation |

LN single opcode with two subtypes is a possibility, but using two does
have the advantage of encouraging supportive behavior by other network
elements. Some firewalls, for example, may be happy to let SFs ‘out’ of
their protected domain, and let RFs both ‘in’ and ‘out’, but would be
unhappy to let SFs ‘in’.

21 am using the term “path segment” to mean “part of a service instance,
bounded by MEPs or MIPs. We may already have a name for this, if not it
seems an important concept and I would welcome suggestions for a better
(and ITU friendly) term.

Revision 0.1 March 15th, 2006

called this the “send this back to” opcode, but have
shortened this to ‘SF’ or “send frame” in this note, since the
useful functionality is not limited to “sending back”. The
purpose of the ‘mirror’ is to extract or copy certain frames
from a given service instance, and then to encapsulate those
frames using the second opcode and a pre-programmed
address associated with the mirror. In my presentation |
called this second opcode “sending this back”, but have
shortened that to ‘RF’ or ‘returning frame’ in this note.

The reasons for providing this functionality within the CFM
context are:

a) to insulate the SF and RF frames against interpretation
by data driven functions and against additional CFM
handling;

b) to allow the decapsulator and encapsulating mirror to be
positioned at an appropriate MA Level and associated
with a MIP or MEP as appropriate;

c) to ensure that the encapsulating mirror does not return
CFM frames at its own level (or below).

The next section provides some examples, and is followed
by a more detailed description of the SF and RF frames, of
the functionality provided by the decapsulator and mirror
encapsulator, and by a review of security considerations.

Bt is worth noting at the outset that the ‘frames’ discussed are strictly the
parameters of a service request/indication, conveyed on a service instance,
and that the mirror is also particular to a given service instance. The
proposed mechanism discussed does not provide a way to violate service
instance segregation.

Mick Seaman 1



Data dependent and data driven connectivity fault management (DDCFM)

2. Examples

Figure 2 illustrates testing of the ‘forward path’ from one
end of a point-to--point service instance using a simple
‘loopback-like’ operation. In 2(a) a mirror is installed at a
MIP. Frames sent from system A are ‘reflected’, i.e. copied
and encapsulated behind an RF opcode and sent to an
address specified when the mirror was installed, in this case
back to A. This allows A to check the connectivity to the
mirror for various data frames. Moving the mirror allows
testing of successive segments of the data path.

N

@ VAN <& ’_+ )
= |

RF

S —
=\ ) i

(b) \\J
N

/2 RE |
< —1 \[5]

s
E

=55

(C) \\J

Figure 1—Forward path testing with a loopback

The reflected frames, and other frames from A, can also be
delivered to the other end of the service instance,
represented by system B in Figure 2(b), while frames in the
other direction can be delivered as normal, as shown in 2(c).

A ‘return path’ can be tested without installing a mirror, as
illustrated in Figure 2. The frame to be returned is
encapsulated after an RF opcode, and sent to a MIP that is
capable of decapsulation. As in Figure 2, changing the
choice of decapsulator allows successive testing of the path
segments.

.
= O
w

Figure 2—Return path testing

Use of both the SF and RF capabilities supports single-
ended testing of complete application dialogues. Figure 3(a)
shows two systems, A and B, at each end of a point-to-point
service instance. Figure 3(b) shows the same application
dialogue supported over just part of the path with A and B

Revision 0.1 March 15th, 2006

conveniently located (for diagnosis) at a single customer
service interface. A mirror has been installed at a MIP to
return frames sent ‘in clear’ on the forward path from A,
while frames transmitted by B are encapsulated and
transmitted to the same MIP to be returned in clear.

N

(a1 ——{E]
:\\/ < =D

IE]
]
1

| SF
(b) T
Figure 3—Single-ended application testing

Use of both SF encapsulation and a mirror with RF
encapsulation allows data driven effects to be restricted to
part of the path, as illustrated in Figure 4.

Jﬂ_’SF I | RF. \
% RF [———— <& %

Figure 4—Partial path testing

In this case the generality of the ‘mirror’ function is
exploited to encapsulate and send the frame onward.

The use of SF and RF in combination is also interesting
when testing a multi-point service instance. A technician
located at head office, H in Figure 4, can test connectivity
between satellite offices.

H

[ESF

Figure 5—Remote path testing

Mick Seaman 2



Data dependent and data driven connectivity fault management (DDCFM)

3. SF frame encapsulation

The SF (send frame) is destination addressed to the MIP or
MEP that is to send the encapsulated frame, and naturally
has the source address of the requestor. Apart from the
normal CFM format, including MA Level and the SF
opcode, it conveys the destination and source address of the
frame to be sent by the maintenance point, and the data for
that frame.

The addressed maintenance point can be either an ‘inbound’
MP, i.e. the data flow through the MP proceeds into the
MAC Relay Entity of a bridge, or an ‘outbound’ MP, i.e. the
data flow is proceeding from the bridge’s MAC Relay
Entity in the direction of physical transmission. The SF
specifies whether the encapsulated frame is to be sent
inbound or outbound (independently of the MP type). On a
multipoint service inbound frames will benefit from frame
filtering by the bridge.

4. RF frame encapsulation

The encapsulated RF (returning frame) has as its destination
an address specified when the mirror (or encapsulating
point) is created, and the source address of that mirror. As
for the SF frame, the mirror can be associated with an
inbound or outbound MP and the RF can be specified as
being sent inbound or outbound. This is necessary on a
point-to-point service as the bridge itself has not necessarily
learnt the RF’s destination, and can equally apply to a
multipoint service that uses only two ports of the bridge.

5. Mirror functionality

The ‘mirror’ functionality provided by an MP that
encapsulates a non-CFM frame requires that MP to hold
state, and thus may be unattractive for MIPs that support
many service instancestl. However in many cases the
number is not large, and reflects use of the underlying
service by a single customer. The mirror needs to be
configured with the following parameters:

a) the mirror’s orientation, i.e. does it ‘reflect’ frames that
are ‘inbound’ or ‘outbound’—a given MP could be
configured with mirrors for both orientations

b) the destination address for the RF encapsulated
(reflected) frame;

c) whether frames are passed through the mirror as well as
being reflected;

d) whether frames impinging on the reverse side of the
mirror are passed through transparentlyt2;

e) whether encapsulated frames are to be reflected, i.e. sent
in the direction from which they were received, or
simply diverted i.e. sent onward once encapsulated;

f) which frames are to be reflected.

The last of these parameters is the most complex, and could
lead to very extensive discussion. Reflecting all frames, as
might be done for a very simple loopback, could be very
performance intensive for the equipment supplying the
mirror, as well as adding significantly to the network load in
the direction of the reflection. Reflecting frames for specific

TI'Whether there is one MIP per service instance above a MEP, or one for
all service instances, is a moot point if the MIP has no associated state. As
has been pointed out there is a considerable difference between having
even one state variable with an associated MIB and having none.

2¥es, by default. If two potential mirrors are always associated with an
MP this parameter is redundant, as its predecessor can be used (for the
other paired mirror) to serve the same purpose.

Revision 0.1 March 15th, 2006

destination addresses is probably the easiest to manage, but
multicast and broadcast frames may also be required for full
application testing. A full ACL capability is unlikely to be
popular or effective as it could easily impact the
performance provided to other users of the equipment. One
option would be to consider mirrors as being installed per
destination address per direction through the MIP, as use of
just two or three of such mirrors would be likely to meet
even the most complex testing needs.

It should be clear that a mirror never reflects OAM frames
at the same level, and never moves frames from one level to
another. Since SF and RF are OAM frames, facing mirrors
will not endlessly bounce frames between themselves, and
there is no need for an overall configuration protocol to
guard against that eventuality.3

6. SF decapsulation functionality

In principle an MP does not have to hold state or participate
in any prior agreement to be used as the target for an SF
frame that is to be decapsulated, but see Security
considerations below.

7. Security considerations

All DDCFM ‘frames’ are confined to a single service
instance, they are generated and processed by MPs within
the scope of that service instance, and their ‘wire format’
includes those tags and/or addresses that segregate one
service instance from another.

If a service is secured by MACsec running across a
provider’s network over the service instance between
Provider Edge Bridge C-VLAN aware components (see
P802.1AE Figures 11-12 and 11-13) then, in the absence of
special arrangements, customer systems behind those
interfaces will not be able to send or receive SF and RF
frames. This is believed to be desirablet4, as it limits the
use of SF and RF to maintenance operations initiated at the
provider edge equipment.

The use of SF, as described above, does not require holding
state at an MP, but it may be desirable to only allow
decapsulation of SF frames from certain addresses for
transmission to certain other addresses, with those
parameters being preset by a secure dialogue with the target
MP. The SF capability is powerful and can cause serious
disruption, within the service instance, if abused.

8. MTU size considerations

A perennial bugbear: but | do not believe that it is worth
trying to assemble one frame from two to allow testing to
the maximum supportable MTU size. A provider network
should be configured with a little size to spare over that
offered to its customers so that testing for size related
failures is not unduly difficult.

If it were possible to decapsulate RF frames within the network and
automatically forward them it would be possible to setup such a data loop,
but it is not. Guarding against this eventuality is a benefit of clearly
distinguishing SF and RF frames.

To be honest I have not fully made up my mind about this. However
constructing a frame to be sent by someone else for successful receipt by
MACsec is far from trivial and I cannot recommend it. There is a non-
negligible chance of a serious security breach.

Mick Seaman 3



	Diagnosing data dependent and data driven connectivity faults
	1. Introduction
	2. Examples
	Figure 1- Forward path testing with a loopback
	Figure 2- Return path testing
	Figure 3- Single-ended application testing
	Figure 4- Partial path testing
	Figure 5- Remote path testing

	3. SF frame encapsulation
	4. RF frame encapsulation
	5. Mirror functionality
	6. SF decapsulation functionality
	7. Security considerations
	8. MTU size considerations

