
MAC Status Propagation
MAC Status Propagation

Mick Seaman

MAC Relays (such as the P802.1aj TPMR) that provide a frame forwarding (sub)layer below and
transparent to other bridges and their protocols can significantly degrade service availability. If the
relaying sublayer were not present, changes in connectivity would be accompanied by a change in
the MAC_Operational status parameter. MAC_Operational provides rapid notification of
connectivity failures and prompts the necessary initial protocol behavior to ensure that new
connectivity has not caused an instantaneous data loop. If the MAC status is not propagated by the
relays, bridge protocols have to rely on periodic transmissions to detect connectivity changes. These
take time to cut loops and repair failures caused by changes in the relayed links.

This note describes media independent propagation of MAC status, while allowing connectivity to
a relay while one of its links is not operational.

Since the first revision of this note (August 20th, 2006) the ideas described have been incorporated
in P802.1aj, with few text changes. This revision is referenced by my ballot comments on P802.1aj
D2.2. It aims to improve upon changes made to the original state machines in a prior P802.1aj ballot,
and to separate out ideas to be incorporated in P802.1aj from those that may (in time) be useful
elsewhere.

1. Organization of this note

The first revision of this note was a discussion document,
aimed more at describing and discovering protocol
alternatives, than at providing text for ready incorporation
in P802.1aj. This revision reverses that perspective,
concentrating on providing text and diagrams that can be
lifted more or less as is for use in the standard.

Section 2 of this note is suggested as complete replacement
text for P802.1aj Clause 23. It is based on text from
P802.1aj D2.2 that was in turn a modification of the first
revision of this note, with the intent that the ballot
comments that led to that modification do not have to be
resubmitted by others. While providing replacement text is
not the preferred way of making ballot comments, the
suggested changes are so extensive that it is necessary to
view them as a whole to see whether they work or not.

The main rationale for these changes is that introductory
material in a standard should be directed at explaining what
is in that standard, only alluding to other possibilities where
they might be part of the future evolution of the standard.
Since MAC status propagation is now a mandatory part of
TPMR operation (which the first revision of this note could
not assume) and one specific signaling method has been
chosen, a thorough revision was required.

The suggested text in Section 2. has borrowed heavily from
experience with other drafts, including those for 802.1D, for
amendments to 802.1Q, for parts of 802.1AB, for 802.1AE
and for P802.1af. Some of the more significant points in the
suggested text are discussed in Section 3.

Alternatives and possible future work are mentionned in
Section 4, though I have not seen a case for that work.

This note has been prepared in a fairly short time. While I
have endeavoured to proof read it, it is likely that errors
remain. I would be grateful for any comments, though am
unlikely to be able to respond before the middle of January.
Revision 2.0 December 7th, 2007 Mick Seaman 1

MAC Status Propagation
2. MAC status propagation

Individual LANs, each operating its own MAC and media
access method specific procedures, can be connected by one
or more TPMRs to form a composite LAN that is
transparent to other bridges and stations and their
configuration protocols. The MAC status protocol (MSP)
ensures that changes in the connectivity provided by the
composite LAN results in changes in the MAC_Operational
status parameter (802.1Q clause 6.6.2) at each of the
attached bridges and stations, just as if they were connected
to an individual LAN.
MAC_Operational provides rapid notification of
connectivity failures and prompts the necessary initial
protocol behavior to ensure that new connectivity has not
caused an instantaneous data loop. If this MAC status
parameter were not propagated by a TPMR, bridge
protocols would have to rely on periodic transmissions to
detect connectivity changes. On their own these periodic
transmissions take longer to detect failures, and cannot
detect the possibility of data loops until they have been
created, as illustrated by the following examples.
Figure 1 shows a TPMR connecting two Bridge Ports.

Assume that Bridge A is the spanning tree Designated
Bridge for the LAN that comprises the individual LANs a
and b and the TPMR, and that Bridge B’s spanning tree
Root Port is shown. If a fails and the TPMR does not
propagate MAC_Operational, Bridge B will not reselect its
Root Port until it has timed out the last BPDU from A.
Figure 2 shows a link that uses two TPMRs, perhaps
because LAN c uses a non-802 technology together with an
appropriate convergence function.

Without MAC_Operational propagation, failure of c will
not be immediately visible to either bridge. Worse, if c fails
and is restored after a while, both A and B will believe
themselves to be Designated Bridge for the composite LAN,
and will forward frames until one receives a BPDU from the
other, even if a data loop has been created.
When working correctly the MAC Service provides bi-
directional connectivity or no connectivity at all.
MAC_Operational is TRUE for each of two peers
connected to the same LAN if they can communicate, and
FALSE for either or both if they cannot. Protocols, such as
the spanning tree protocols, that make use of
MAC_Operational to detect new connectivity and initialize
state machines rely on the last peer that sees
MAC_Operational transition TRUE to enforce any
necessary behavior after a connectivity change. For
example, it is the last of two connected Bridge Ports to be

powered on that enforces the necessary delay prior to
setting operEdge TRUE (13.24).

NOTE—MAC_Operational being TRUE within a single station does not
guarantee connectivity to any peer. Even if connected by a point-to-point
LAN, the peer could have just reinitialized. It is clearly not possible, given
only the use of the LAN medium for communication, to arrange for two
peers to transition MAC_Operational at exactly the same time.

This clause defines media independent propagation of MAC
status between TPMRs and to attached stations, as follows.
It:

a) Models MAC status propagation within the bridge
architecture used to describe a TPMR (2.1)

b) Provides an overview of the MAC Status Protocol (MSP,
2.2)

c) Specifies state machines for MSP operation (2.3–2.9)

d) Specifies the addressing, protocol identification, format,
encoding, and validation of MAC Status Protocol Data
Units (MSPDUs, 2.13–2.16)

The term MAC status propagation (IEEE Std 802.1Q 3.5)
describes the overall process of communicating a
MAC_Operational parameter value through one or more
TPMRs. MSP can use link status notification†1 (IEEE Std
802.1x 3.3) between some relays and end stations, and MAC
status notification (IEEE Std 802.1x 3.4) between others.
These two notification methods differ, as follows:

a) Link status notification uses frames to convey
information about MAC_Operational. It does not
interrupt or prevent other communication between
adjacent relays, or between a relay and a bridge.
However, it requires both the source and destination of
the notification to implement additional protocol. Since
it does not prevent communication it cannot, by itself,
prevent loops caused by new connectivity.

b) MAC status notification uses a layer management
interaction with the local MAC Entity to change
MAC_Operational for a peer user of the MAC service
provided by an individual LAN. It is equivalent to
bringing a link down, and is generally effective for
MACs with specific point-to-point support. It also
interrupts all other communication, including the use of
in-band management to rectify an underlying problem.

Where management of a TPMR is permitted through one of
its ports, the failure of an individual LAN not in the
communication path does not cause MAC status
propagation to prevent management connectivity. In Figure
2, for example, the failure of LAN b does not prevent
connectivity to TPMR 2 from Bridge A. When b recovers,
MAC_Operational for Bridge A’s Port is ‘blipped’, i.e.
taken FALSE for a brief period and allowed to return
TRUE, thus meeting the requirement for transition when
connectivity changes.While this slows the recognition of
newly available connectivity, that is rarely an issue since
several seconds hysteresis should be applied to any
MAC_Operational status transition to prevent higher layer
protocols ‘flapping’.

TPMR

Bridge BBridge A

a b

Figure 1—TPMR connecting two Bridge Ports

Figure 2—TPMR chain connecting Bridge Ports

TPMR
2

Bridge BBridge A

a b

TPMR
1

c

†1The use of the term link status notification in this standard is not to be
confused with the term used in SNMP to refer to a type of trap notification.
Revision 2.0 December 7th, 2007 Mick Seaman 2

MAC Status Propagation
2.1 Model of operation

The model of operation presented in this clause (2) allows
the description of MSP functionality to be consistent with
that of the general bridge architecture and operation (IEEE
Std 802.1Q clauses 8.2, 8.3). Real implementations of a
TPMR may adopt any internal model of operation
compatible with the externally visible behavior specified.
The additional entities that model MSP operation, and their
relationship to the other processes and entities that model
the operation of a bridge are illustrated in Figure 3. They
comprise the following:
a) A MAC Status Shim (MSS) for each Port, that allows

MSP to control the value of MAC_Operational presented
to the Bridge Port connectivity function (IEEE Std
80.21Q clause 8.5.1) and hence to the frame transmission
and reception functions of the MAC Relay Entity, Higher
Layer Entities, and MSPE.

b) The MAC Status Propagation Entity (MSPE), that
implements MSP, controlling each MSS to ensure that
frames are not forwarded by the MAC Relay Entity until
status propagation is complete, transmitting and

receiving frames to support link status notification, and
controlling the individual LAN’s MAC to provide MAC
status notification.

NOTE—In a TPMR the VLAN tagging functions shown in Figure 3 are
limited to extracting priority from received tagged frames for use with
traffic class queuing. Tags are not added, removed, or changed.

The MSPE uses the LMI to control and receive status from
each MSS and individual LAN MAC, allowing generic
management requests and indications to be tailored to the
requirements of different MACs, as well as providing a way
for one MSS to propagate status to another (via the MSPE),
even though MAC_Operational for the MSS’ upper ISS
service access point is FALSE.

Link status notification frames are sent to a standard group
address. They are received by the MSPE, but are forwarded
by the MAC Relay Entity (like any other frame) in order to
communicate without a delay in each TPMR. The MSPE
attaches to each Port by a Bridge Port connectivity function
(see IEEE Std 802.1Q clause 8.5.1) that allows it to transmit
to and receive from the attached individual LAN only, as
shown in Figure 3.

Figure 3—MAC Status Shims and the MAC Status Propagation Entity

Bridge Port connectivity

MAC Relay Entity

Higher Layer
Entities

LLC

Bridge Port connectivity

(ISS)

MSPE

MAC Status Shim
(ISS)

LAN MAC

LM
I

(ISS)

(ISS)

(ISS) (ISS)

MAC Status Shim
(ISS)

LAN MAC

Higher Layer
Entities

LLC

LM
I

(ISS)

VLAN
tagging

VLAN
tagging

(ISS)(ISS)

(EISS)(EISS)
Revision 2.0 December 7th, 2007 Mick Seaman 3

MAC Status Propagation
2.2 MAC status protocol (MSP) overview

This clause (P802.1aj clause 23.2) provides examples of
MSP operation as time sequence diagrams that show the
following:
a) Exchange of MSPDUs (MAC Status Protocol Data

Units) transmitted and received to support link status
notification.

b) The values of MAC_Operational and MAC_Enabled
provided by:
1) each MAC Status Shim MSS, at its upper ISS service

access point, to the Bridge Port connectivity function.
2) each LAN MAC to the MSS, at the latter’s lower ISS

service access point.
The value of MAC_Operational provided by the MSS is
TRUE if, and only if the MSS’ MAC_Enabled is TRUE and
the value of MAC_Operational provided to the MSS by the
LAN MAC is TRUE. The latter can be TRUE only if
MAC_Enabled is TRUE for both the LAN MAC and its
peer in the other station connected to the LAN. The MSPE
can use the LMI to disable the MSS in order to prevent
communication until MAC status propagation has occurred,
and to disable the LAN MAC in order to provide MAC
status notification to a peer service user. This clause uses the
symbols defined in Table 1 to show combinations of the
MAC status parameter values for each Port.
Throughout this protocol description, the term LAN is used
in accordance with its identified meaning in this standard,
i.e. to refer to individual LANs at the lowest layer in the
architecture shown, connecting adjacent TPMRs or a TPMR
and an adjacent bridge. A chain is a series or part of a series
of TPMRs connected by LANs, and a link is the

connectivity provided by a chain between non-TPMR
devices that communicate at a higher (sub) layer and
perceive the entire link as a single transparent LAN.

The number of TPMRs in the following examples is
deliberately high, four where one or two might be more
common, in order to show all the necessary aspects of
protocol behavior.

Signaling the addition of new or restored connectivity is
considered first, as it is more difficult than signalling
failure—the wide range of options for the latter provide
little guidance for protocol design. Figure 4 shows the
response to a new or recovered LAN connection in a link
between two bridges that do not implement MSP—and thus
require MAC status notification.

Before the LAN that connects TPMR 1 to TPMR 2 is
MAC_Operational, each MSPE disables its MSS (). This
allows the MSPE to intercept the new connectivity as the
LAN MAC asserts MAC_Operational (). TPMR 2
propagates the new status to its other port, transmitting an
add MSPDU. TPMR 2 does not necessarily know that
TPMR 3 implements MSP (or indeed is a TPMR) but uses
the default MSP configuration—waiting before resorting to
MAC status notification and starting a linkNotifyWhile

timer (as do TPMRs 3 and 4) on receipt of the add (which is
forwarded by the Relay Entity). Each TPMR responds to the
add with an ack that clears the timer, but the bridge at the
end of the chain does not (as it does not implement MSP).
When TPMR 4’s timer expires, its MSPE disables the LAN
MAC (), ensuring that MAC_Operational becomes
FALSE () for the bridge’s port, and starts a
macNotifyWhile timer. When that timer expires, the MSPE
re-enables the LAN MAC so that the bridge port’s

Table 1—Time sequence diagram symbols

MSS
MAC_Operational T F F F F

MAC_Enabled T T F F —

LAN
MAC

MAC_Operational T F F T F

MAC_Enabled T T T T F

T = TRUE, F = FALSE, — = either TRUE or FALSE

Figure 4—Adding connectivity

add
add

MAC
recovers

add confirm

1 2 3 4

Tr

Td

Tw

TPMR

Bridge

TPMR TPMR TPMR

Bridge

add

Tw

add confirm

Tr

ack
Tw ack

Td

Timers: Tr : linkNotifyWhen (‘retry timer’) Tw : macNotifyWhen (‘wait timer’) Td :macNotifyWhile (‘down timer’)

22 11 21 21A B

ack
Revision 2.0 December 7th, 2007 Mick Seaman 4

MAC Status Propagation
MAC_Operational can become TRUE () once more. As
well as disabling the LAN MAC for its port 2, TPMR 4 also
transmitted an add confirm through port 1, and receipt of
this add confirm by TPMR 2 causes the latter to cancel its
retry timer (linkNotifyWhen). The initial value of
macNotifyWhile (MacNotifyTime) is sufficient for the add
confirm to reach the TPMR 2, and for that TPMR’s MSPE
to enable the MSS, thus ensuring that there is connectivity
between the bridges connected by the link when they have
both reported MAC_Operational TRUE to their local
protocol clients.
In Figure 4 the MSP configuration of TPMR 2’s port 2
differs from that for port 1 of TPMR 1. The latter is
explicitly configured to use MAC status notification
immediately without waiting to see if its peer implements
MSP.

Figure 5 illustrates the operation of MSP when the
connectivity provided by an individual LAN is lost. The
MSPE for each of the TPMR ports directly attached to the
failed LAN begins by disabling the MSS for that port () to
ensure that connectivity does not ‘flap’. Otherwise the
protocol proceeds as for connectivity addition, except that
loss and loss confirm are used instead of add and add
confirm, and the MSS’ attached to the failed LAN are left
disabled. The final state of the link components is the initial
state assumed in Figure 4 — both attached bridges have
seen MAC_Operational transition to indicate that the
connectivity has changed, and the TPMRs in each of the
two chains can be reached and managed (if their individual
configuration permits) through the attached bridge ports.

In the examples above, if an add, or loss is lost then the
TPMR port that transmitted or relayed that MSPDU will
revert to using MAC status notification, as will a TPMR that
fails to receive the ack from the next (or a subsequent)
TPMR in the chain. If the MSPDU is lost on a LAN
removed from the TPMR that initiated the link status
notification, then that notification will be retried on expiry
of the linkNotifyWhen timer which also serves to protect
against the loss of an add confirm or loss confirm.
Loss of a frame due to physical corruption is rare in LAN
technologies, and frame losses due to buffer overrun are not
expected when connectivity is being added (as the link is
not usable prior to the addition) nor when a loss of
connectivity is being signaled (as that connectivity loss will
have prevented other frames from being added to the link).
The loss of an MSPDU is most likely to be due to failure of
one of the LANs, or to interruption of a TPMR’s relay
functionality by another MSS whose MSPE is also waiting
for confirmation that a connectivity change that it has
detected has been propagated to the end of the link. MSP
does not, and cannot, ensure that information about each
and every connectivity change reaches both ends of the link.
Unless link status notification or MAC status notification is
disabled or the individual LANs fail to report
MAC_Operational correctly, MSP does ensure that any
change in connectivity is accompanied by one or more

notifications at each end of the link, and that a continuous
period during which MAC_Operational is reported TRUE
at both ends of the link provides connectivity from 1 second
after the start of the period to 1 second before the end. This
guarantee meets the requirements implicit in the initial
transmission and retransmission strategies of well designed
protocols. Protocol clients of the MAC Service should not
use the difference between loss and add MSPDUs to take
different actions on receipt, though the distinction can be
useful to a network administrator when investigating
connectivity changes.

Figure 5—Losing connectivity

loss
loss

MAC fails

loss confirm

1 2 3 4

Tr

Td

Tw

TPMR

Bridge

TPMR TPMR TPMR

Bridge

loss

Tw

loss confirm

Tr

ack
Tw ack

Td

22 11 21 21A B

ack
Revision 2.0 December 7th, 2007 Mick Seaman 5

MAC Status Propagation
Figure 4 provides a common example of simultaneous
change. TPMR 2 is powered on and initializes both its ports.
When the LAN MAC becomes operational, each port
attempts to send a notification through the other, but cannot
as they are both waiting for the connectivity addition to be
confirmed. However, in this eventuality, each port can
provide the other with the confirmation required, because

the peer system for each of the individual LANs will also
have seen the initial MAC_Operational transition and will
have initiated a notification towards its end of the link.
NOTE—The state machine transition direct from
SNM:LINK_NOTIFICATION to SNM:MAC_NOTIFYING supports this
behavior (see Figure 11).

If the individual LAN that recovers (or loses) connectivity
is at the end of the link, MSP ensures that the other end of
the link is also aware of the status change as illustrated in
Figure 7. This figures also shows the effect on MSP of

including two non-standard relays in the chain. Provided
they (and their attached LANs) never fail, MSP can
continue to operate as intended.

If TPMR 4 is configured to use MAC status notification
immediately, it does not return an ack as the add confirm
can be sent almost immediately (see Figure 8).

Figure 6—TPMR recovery

add

MAC
recovers

1 2 3 4

Tr

Td

Tw

TPMR

Bridge

TPMR TPMR TPMR

Bridge

add

Tw

add confirm

Tr

ack

Td

22 11 21 21A B

MAC
recovers

Figure 7—Notification from one end of the link to the other

add
add

MAC
recovers

add confirm

1 2 3 4

Tr

Td

Tw

TPMR

Bridge

Relay Relay TPMR

Bridge

add

Tw

add confirm

ack

22 11 21 21A B

add

ack
ack

add confirm
Revision 2.0 December 7th, 2007 Mick Seaman 6

MAC Status Propagation
Figure 8—Immediate MAC status notification at the end of a link

add
add

MAC
recovers

add confirm

1 2 3 4

Tr

Td

Tw

TPMR

Bridge

Relay Relay TPMR

Bridge

add

add confirm

22 11 21 21A B

add

add confirm
Revision 2.0 December 7th, 2007 Mick Seaman 7

MAC Status Propagation
2.3 MAC status protocol state machines

The operation of the MAC Status Propagation Entity
(MSPE) is represented by an instance of each of the
following for each Port of the TPMR:
a) A Status Transition state machine (STM, 2.8)
b) A Status Notification state machine (SNM, 2.9)
c) A Receive Process (2.10)
d) A Transmit Process (2.11)

Figure 9 shows the state machine variables that are used to
communicate between these machines and processes, and
that support management control over their operation.
Variables prefixed with ‘r.’ are those of the corresponding
state machines of the other Port of the TPMR.
The notational conventions used in Figure 9 and in the
specification of the state machine are identical to those used
in the specification of MSTP (IEEE Std 802.1Q Clause 13)
and RSTP and are defined in clause 17.6 of IEEE Std
802.1D.

In Figure 9, the prefix ‘r.’ identifies a variable of the other
port’s corresponding state machines. Port 1’s STM monitors
MAC_Operational transitions for its own LAN, and tells
Port 2’s Transmit process to send add or loss link
notifications and Port 2’s SNM to monitor the progress of
status notification, using MAC status notification if
necessary. Port 2’s SNM receives the ack that indicates that
it should wait for link status notification to complete, and
the add confirm or add confirm that indicates that
completion. Whether link status or MAC status notification
is used, Port 2’s SNM tells Port 1’s STM when the
notification has been confirmed, so the latter does not have
to retry the notification. Port 1’s SNM provides the same
service to Port 2’s STM.

A loss or add notification that is received from Port 1’s own
LAN is handled by its STM, which propagates the
notification to Port 2’s SNM (in the same way as a local
MAC_Operational transition) while transmitting an ack on
Port 1’s LAN. Similarly Port 2’s STM transmits an ack for a

link status notification received on its own LAN, and
propagates the notification to Port 1’s SNM.

2.4 State machine timers

Timers are implemented by variables that are decremented
on each timer tick, with timer expiry occurring when they
reach zero.
2.4.1 linkNotifyWhen

Causes a link status notification to be sent on each expiry
until the original status transition is confirmed.
2.4.2 linkNotifyWhile

Started when a change is first propagated through the Port,
on expiry allows MAC status notification.
2.4.3 macNotifyWhile

Sets the time for which the MAC is disabled for MAC status
propagation.

Figure 9—MSPE machine overview

Individual LAN MAC

prop

m
ac

O
pe

ra
tio

na
l

di
sa

bl
eM

SS

di
sa

bl
eM

A
C

STATUS NOTIFICATION
(PER PORT)

macNotifyWhen, macNotifyWhile,
macRecoverWhile

LinkNotify, LinkNotifyWait,
LinkNotifyRetry, MACNotify,

MacNotifyTime, MacRecoverTime

di
sa

bl
ed

M
A

C

STATUS TRANSITION
(PER PORT)

linkNotifyWhen

MAC STATUS PROPAGATION ENTITY

addConfirmed
lossConfirmed

MAC Status Shim

TRANSMIT
(PER

PORT)

txAdd
txLoss

txA
ck

txAddConfirmed
txLossConfirmed

rxAdd
rxLoss

rxAck
rxA

ddC
onfirm

ed
rxLossC

onfirm
ed

r.prop

r.addConfirmed
r.lossConfirmed

r.txAddConfirmed
r.txLossConfirmed

RECEIVE
(PER

PORT)

r.txAdd
r.txLoss

mssOperational

macOperational
ABBREVIATIONS:
STM: Status Transition Machine
SNM: Status Notification Machine

NOTATION:
A variable is shown within the machine that uses it, or between machines with an arrow head style that indicates how it is used to communicate:

Not changed by the target machine.
Set (or cleared) by the originating machine, cleared (or set) by the target machine.
Revision 2.0 December 7th, 2007 Mick Seaman 8

MAC Status Propagation
2.4.4 macRecoverWhile

Sets the time for which the MAC is permitted to be non-
operational, after being disabled, before the link is reported
as lost.

2.5 MSP performance parameters

These parameters are not modified by the operation of MSP
but are treated as constants by the state machines. They may
be managed independently for each TPMR Port—default
values and permissible ranges are specified in Table 2.

2.5.1 LinkNotify

TRUE if the port uses link status notification to propagate
MAC status, and will wait to allow link status notification to
succeed before using MAC status notification.
NOTE—If LinkNotify is FALSE, the TPMR may still forward loss and add
notifications transmitted by other TPMRs prior to using MAC status
notification, but the TPMR will not originate link status notifications.

2.5.2 LinkNotifyWait

The initial value of the linkNotifyWhile timer.

2.5.3 LinkNotifyRetry

The initial value of the linkNotifyWhen timer.

2.5.4 MACNotify

TRUE if the port uses MAC status notification.

2.5.5 MACNotifyTime

The initial value of the macNotifyWhile timer.

2.5.6 MACRecoverTime

The initial value of the macRecoverWhile timer.

2.6 State machine variables

2.6.1 BEGIN

This is a Boolean variable controlled by the system
initialization process. A value of TRUE causes all TPMR
state machines to continuously execute their initial state. A
value of FALSE allows all state machines to perform
transitions out of their initial state, in accordance with the
relevant state machine definitions.

2.6.2 addConfirmed

Set by the other Port’s SNM to tell STM that the addition
has been confirmed. Cleared by STM.
2.6.3 disableMAC

Set by SNM to instruct the individual LAN MAC (via an
LMI) to disable itself in a way that will cause
MAC_Operational to be FALSE for the peer user of the
MAC Service provided by that LAN.
NOTE— The state machines do not assume that a client of the MAC can
tell whether the MAC is not operational because that client has disabled it,
or whether some other client has disabled it.

2.6.4 disabledMAC

Set by the SNM when it has set disableMAC and for
MACRecoverTime after disableMAC has been reset, so
that the STM does not conclude that a loss notification
should be sent through the other TPMR port.

2.6.5 lossConfirmed

Similar to addConfirmed but confirms a loss.
2.6.6 macOperational

The value of MAC_Operational for the individual LAN
MAC.
2.6.7 mssOperational

The value of MAC_Operational provided by the MSS to the
TPMR Port’s bridge transmit and receive function.
2.6.8 prop

Set by the other Port’s STM to Add or Loss to notify SNM
that a change is being propagated through the Port. Reset by
SNM to None.
2.6.9 rxAck

Set by the Receive process to tell SNM that an
acknowledgment has been received. Cleared by SNM.
2.6.10 rxAdd

Set by the Receive process to tell STM that an add
notification is being propagated through the relay. Cleared
by STM.
2.6.11 rxAddConfirm

Set by the Receive process to tell SNM that an add confirm
has been received. Cleared by SNM.

2.6.12 rxLoss

Similar to rxAdd, but for a loss.
2.6.13 rxLossConfirm

Similar to rxAddConfirm, but for a loss confirm.
2.6.14 txAck

Set by the STM to instruct the Transmit process to send an
acknowledgment. Cleared by the Transmit process.

2.6.15 txAdd

Set by the other Port’s STM to causes transmission of an
add notification. Cleared by the Transmit process.
2.6.16 txAddConfirm

Set by the other Port’s SNM to causes transmission of an
add confirm (through this Port) confirming that a received
add message has been acted upon. Cleared by the Transmit
process.

Table 2—MSP performance parameters

Parameter Recommended
or default value Permitted range

LinkNotify TRUE TRUE or FALSE

LinkNotifyWait 0.4 s 0.2 – 1.0 s

LinkNotifyRetry 1.0 s 0.1 – 1.0 s

MACNotify TRUE TRUE or FALSE

MACNotifyTime 0.2 s 0.01 – 0.5 s

MACRecoverTime 0.1 s 0.02 – 0.5 s
Revision 2.0 December 7th, 2007 Mick Seaman 9

MAC Status Propagation
2.6.17 txLoss

Similar to a txAdd but causes a loss message to be
transmitted.
2.6.18 txLossConfirm

Similar to a txAddConfirm but causes a loss confirm
message to be transmitted.

2.7 State machine procedures

No procedures are defined beyond those represented in the
state machines.
Revision 2.0 December 7th, 2007 Mick Seaman 10

MAC Status Propagation
2.8 Status Transition state machine

The Status Transition state machine shall implement the function specified by the state diagram in Figure 10 and the attendant
definitions contained in 2.4 through 2.7.

2.9 Status Notification state machine

The Status Notification state machine shall implement the function specified by the state diagram in Figure 11 and the
attendant definitions contained in 2.4 through 2.7.

Figure 10—Status Transition state machine

r.LinkNotify && (linkNotifyWhen == 0)
&& !addConfirmed

DOWN

BEGIN

addConfirmed = lossConfirmed = FALSE;
linkNotifyWhen = 0; disableMSS = TRUE;

ADD
addConfirmed = lossConfirmed = FALSE;

if (r.LinkNotify) {r.txAdd = TRUE; linkNotifyWhen = r.LinkNotifyRetry;} r.prop = Add;

macOperational

UP
addConfirmed = lossConfirmed = FALSE;

rxAdd = rxLoss = FALSE; linkNotifyWhen = 0; disableMSS = FALSE;

LOSS

!r.LinkNotify ||
addConfirmed

!macOperational &&
!disabledMAC

r.LinkNotify && (linkNotifyWhen == 0)
&& !lossConfirmed

addConfirmed = lossConfirmed = False;
if (r.LinkNotify) {r.txLoss = TRUE; linkNotifyWhen = r.LinkNotifyRetry;} r.prop = Loss; disableMSS = TRUE;

!r.LinkNotify ||
lossConfirmed

PROP_ADD
if (r.LinkNotify) txAck = True;

r.prop = Add;

PROP_LOSS

UCT UCT

if (r.LinkNotify) txAck = True;
r.prop = Loss;

rxAdd rxLoss

macOperational

!macOperational &&
!disabledMAC

Figure 11—Status Notification state machine

INIT_NOTIFICATION

BEGIN

prop = None; rxAck = rxAddConfirmed = rxLossConfirmed = FALSE;
linkNotifyWhile = macNotifyWhile = macRecoverWhile = 0; disableMAC = disabledMAC = FALSE;

LINK_NOTIFICATION
if (LinkNotify) linkNotifyWhile = LinkNotifyWait;

(prop != None)

MAC_NOTIFICATION

(linkNotifyWhile == 0) &&
!rxAck && MACNotify

disableMAC = disabledMAC = True;

(macNotifyWhile == 0) || macOperational
END_NOTIFICATION

disableMAC = False; macRecoverWhile = MACRecoveryTime;
(macOperational || (macRecoverWhile == 0))

rxAck

rxAddConfirmed

MAC_NOTIFYING

if (prop == Add) {r.AddConfirmed = r.txAddConfirmed = TRUE;}
if (prop == Loss) {r.LossConfirmed = r.txLossConfimed = TRUE;}

macNotifyWhile = MACNotifyTime;

!macOperational
!mssOperational

CONFIRMED_ADD
r.addConfirmed = TRUE;

CONFIRMED_LOSS
r.lossConfirmed = TRUE;

rxLossConfirmed

rxAddConfirmed rxLossConfirmed

UCT UCT

(linkNotifyWhile == 0) &&
!(MACNotify || rxAck ||
rxLossConfirmed || rxAddConfirmed)
Revision 2.0 December 7th, 2007 Mick Seaman 11

MAC Status Propagation
2.10 Receive Process

The Receive Process shall receive and validate MSPDUs as
specified in 2.16.

2.11 Transmit Process

The Transmit Process shall transmit and encode MSPDUs
as specified in 2.13–2.15. If the Transmit Process is
instructed to transmit an MSPDU before it has had the
opportunity to transmit a prior MSPDU, that prior MSPDU
shall be discarded and not transmitted. If MAC_Operational
status provide by the MSS for the port is FALSE, the
MSPDU shall be discarded and is not transmitted.

2.12 Management of MSP

An implementation of MSP in a TPMR:
a) May allow the performance parameters (2.5) to be read

by management.
b) May allow the performance parameters (2.5) to be

modified by management.
c) May maintain each of the following counts for one or

both ports of the TPMR:
— acksTransmitted: The number of acks transmitted by

the port’s Transmit Process as a consequence of txAck
being set.

— addNotificationsTransmitted: The number of adds
transmitted by the port’s Transmit Process as a
consequence of txAdd being set.

— addConfirmationsTransmitted: The number of add
confirms transmitted by the port’s Transmit Process as
a consequence of txAddConfirm being set.

— lossNotificationsTransmitted: The number of loss’s
transmitted by the port’s Transmit Process as a
consequence of txLoss being set.

— lossConfirmationsTransmitted: The number of loss
confirms transmitted by the port’s Transmit Process as
a consequence of txLossConfirm being set.

— acksReceived: The number of acks received by the
port’s Transmit Process.

— addNotificationsReceived: The number of adds
received by the port’s Receive Process.

— addConfirmationsReceived: The number of add
confirms received by the port’s Receive Process.

— lossNotificationsReceived: The number of loss’s
received by the port’s Receive Process.

— lossConfirmationsReceived: The number of loss
confirms received by the port’s Receive Process.

— addEvents: The number of transitions to STM:ADD
directly from STM:DOWN or STM:LOSS.

— lossEvents: The number of transitions to STM:LOSS
directly from STM:UP or STM:ADD.

— macStatusNotifications: The number of transitions to
SNM:MAC_NOTIFICATION.

2.13 MSPDU transmission, addressing, and
protocol identification

MAC Status Protocol Data Units (MSPDUs) are transmitted
and received using the service provided by an LLC entity
that uses, in turn, a single instance of the MAC Service
provided at an MSAP. In a TPMR the MSPE transmit and
receives the MSPDUs, and the MSAP is provided by the
bridge port transmit and receive function as illustrated in
Figure 3. Each MSPDU is transmitted as a single MAC
service request, and received as a single MAC service
indication, with the following parameters:

a) destination address (2.13.1)
b) source address (2.13.2)
c) MSDU
d) priority (2.13.3)

The MSDU of each request and indication comprises an
number of octets that provide Ethertype protocol
identification (2.13.4) followed by the MSPDU proper
(2.15).

NOTE 1—For the purposes of this standard, the term “LLC entity”
includes entities that support protocol discrimination using the
Ethertype field as specified in IEEE Std 802a-2003.

NOTE 2—The complete format of an MSP frame ‘on the wire’ or
‘through the air’ depends not only on the MSPDU format, as
specified in this clause, but also on the media access method
dependent procedures used to support the MAC Service.

2.13.1 Destination MAC Address

The destination address for each MAC service request used
to transmit an MSPDU shall be the group address identified
in Table 3.

2.13.2 Source MAC Address

The source address for each MAC service request used to

transmit an MSPDU shall be an individual address
associated with the MSAP at which the request is made.

Table 3—MSPDU group destination address

Address assignment Address value

IEEE Std 802.1X PAE group address* 01-80-C2-00-00-03

*This addresses was originally assigned by IEEE Std 802.1X-2001, and was identified as an S-VLAN
component Reserved Address (IEEE Std 802.1Q Table 8-2) by the IEEE Std 802.1ad amendment to IEEE
Std 802.1Q-2005. This standard further identifies it as the ‘nearest non-TPMR bridge address’, to be filtered
by all relay functions above the sub-layer specified for TPMRs.
Revision 2.0 December 7th, 2007 Mick Seaman 12

MAC Status Propagation
2.13.3 Priority

The priority associated with each MAC Service request
should be the default associated with the MSAP.
Transmitted MSPDUs are not Virtual LAN (VLAN) tagged
or priority tagged. All TPMRs and other bridges shall be
capable of receiving MSPDUs that are untagged, priority
tagged, S-VLAN tagged, or C-VLAN tagged. The VID of a
tagged frame is ignored on receipt.

NOTE—While a TPMR transmits frames without a VLAN tag,
this standard specifies that a TPMR be capable of receiving a
tagged frame in order to ease participation in the protocol by end
stations.

2.13.4 Ethertype use and encoding

All MSPDUs are identified by the Ethertype specified in
Table 4.

Where an individual LAN MAC supports direct encoding of
Ethertypes (as does IEEE Std 802.3-2002, for example) the
LLC entity shall encode the MSP Ethertype as the first two
octets of the MPDU. Otherwise (for IEEE Std 802.5, for
example) the MSP Ethertype shall be encoded in the initial
octets of the MPDU according to the procedures specified in
IEEE Std 802-2001 for Subnetwork Access Protocols
(SNAP).

NOTE —The SNAP discriminator comprises the octets AA-AA-
03-00-00-00 prepended to the PAE Ethertype.

2.14 Representation and encoding of octets

All MSPDUs consist of an integral number of octets,
numbered starting from 1 and increasing in the order that
they are put into a MAC frame. The bits in each octet are
numbered from 1 to 8, where 1 is the low-order bit. When
consecutive octets are used to encode a binary number, the
lower numbered octet contains the more significant bits of
the binary number.

When the encoding of (an element of) an EAPOL PDU is
represented using a diagram in this clause, the following
representations are used:

a) Octet 1 is shown toward the top of the page, higher
numbered octets being toward the bottom.

b) Where more than one octet appears on a given line,
octets are shown with the lowest numbered octet to
the left, higher numbered octets being to the right.

c) Within an octet, bits are shown with bit 8 to the left
and bit 1 to the right.

2.15 MSPDU structure

The MSPDU comprises the octets following the MSP
Ethertype. All MSPDUs comprise a Protocol Version
(2.15.1) and a Packet Type (2.15.2).

2.15.1 Protocol Version

The MSP Protocol Version is encoded in all MSPDUs as a
single octet, representing an unsigned binary number. Its
value identifies the version of MSP supported by originator
of the MSPDU. An implementation conforming to this
specification shall encode the value 0000 0000 in this field.
All other values are reserved.

NOTE—For TPMRs modeled by this clause’s state machine specification
in this clause, the originator is the TPMR port that acts on the txAdd,

txLoss, txAck, txAddConfirm, or txLossConfirm variables that prompted
transmission of the MSPDU. TPMRs that relay an MSPDU do not change
its Protocol Version.

2.15.2 Packet Type

The MSP Packet Type is encoded as a single octet,
representing an unsigned binary number. Table 5 lists the
Packet Types specified by this standard, and the state
machine variables set to indicate reception and transmission

Table 4—MSP Ethernet Type assignment

Assignment Value

MAC Status Protocol Ethernet Type wx-yz*

*The Ethertype value denoted by wx-yz in this table will be assigned at Sponsor ballot.

Octet number

Protocol Version (2.15.1) 1

Packet Type (2.15.2) 2

Figure 12—MSPDU structure
Revision 2.0 December 7th, 2007 Mick Seaman 13

MAC Status Propagation
of MSPDUs of that type. All other possible values of the
Packet Type field are reserved and shall not be used.

2.16 Validation of received MSPDUs

To ensure that backward compatibility is maintained for
future versions of this protocol, the validation and protocol
version handling for all MSPDUs, follows general rules
developed for this and other protocols. A received MSPDU
shall be processed as specified by Table 5 if and only if:

a) The destination MAC address is the group address
specified (2.13.1); and

b) The MSPDU is identified by the MSP Ethernet
Type encoded as specified in 2.13.4; and

c) The received MSPDU contains at least two octets,
i.e. at least the Protocol Version and Packet Type;
and

d) The Packet Type is one of the values specified in
Table 5.

Otherwise the received EAPOL PDU shall be discarded. No
other checks shall be applied to received MSPDUs, in
particular the value of the Protocol Version is not checked
and MSPDUs of length greater than the minimum of two
octets are accepted as valid.

2.17 Other MSP participants

An end station or non-TPMR bridge attached to the end of a
TPMR link can participate in link status notification,
avoiding the need for the last TPMR in the chain to use
MAC status notification and thus speeding the transition of
the link to an operational state. Such a participant receives
MSPDUs, but acts only on a received loss or add, notifying
its protocol clients of the change in connectivity, and
responding immediately by transmitting an add confirm or
loss confirm as appropriate. There is no need for such a
participant to transmit an add, loss, or ack, or act upon a
received ack, add confirm or loss confirm, or to initiate
MAC status notification.

Table 5—MSP Packet Types

Packet Type Value Transmission Reception

MSP-Add 0 txAdd (2.6.15) rxAdd (2.6.10)

MSP-Loss 1 txLoss (2.6.17) rxLoss (2.6.12)

MSP-Add Confirmed 2 txAddConfirm (2.6.16) rxAddConfirm (2.6.11)

MSP-Loss Confirmed 3 txLossConfirm (2.6.18) rxLossConfirm (2.6.13)

MSP-Ack 4 txAck (2.6.14) rxAck (2.6.9)
Revision 2.0 December 7th, 2007 Mick Seaman 14

MAC Status Propagation
3. Suggested changes

The suggested replacement text in Section 2 of this note
incorporates many detailed changes, both technical and
editorial. Some are aimed at making future development
easier (if, for example, we feel the need for a formal
Protocol Design Requirements and Protocol Support
requirements subclauses as was done for MSTP they can be
added as 23.1 and 23.2 without reworking the proposed
changes). The following covers some of the more
significant points.
The proposed text is meant to be stylistically and
organizationally compatible with the rest of 802.1Q, taking
the existing clause 13 as a model.
The acronyms for the protocol entities, the protocol itself,
and for the PDUs sent have been changed (back) to MSPE,
MSP, and MSPDU respectively. These acronyms do not
clash with any others that are in widespread use in this
technical area (and avoid ‘MSPP’ deliberately). They are
consistent with the fact that this amendment does not (and
should not) change earlier clauses of the document to
replace the term ‘MAC status parameters’ with anything
else (this term is used outside 802.1D/802.1Q).
The protocol overview has been improved to make the
interactions with each port’s MSS and with the underlying
MAC explicit. The overview is explained in terms of the
existing MAC status parameters—MAC_Operational and
MAC_Enabled for each of these interface stack
components.
The number of cooperating state machines has been
reduced, mainly as a consequence of Panos’ earlier ballot
comment which showed that two of the signal variables
needed to be set by two machines. So machines have been
multiplied out, which actually had the effect of reducing the
total number of states and transitions (albeit very slightly)
which is a good test of whether that multiplication should
have been done. Some undesirable behavior has been
removed (in the case when the two ports of the TPMR come
up together). The kludge of distinguishing variables by
quoting them, as in ‘Add’ has been removed, I don’t believe
that is portable C.
The control variables for the status notification behavior
have been separated for the timer values, and ranges
suggested for the latter.
Management statistics have been added.
The PDU formats now deal properly with LANs that have
to use LLC SNAP to convey an Ethertype, and contains a
proper set of validation rules.

4. Alternatives and futures

The original note on this subject aj-seaman-status-
propagation-0806-01.pdf considered a number of different
signaling methods for the protocol including extension to
CFM or the use of MAC specific methods. The description
of the protocol provided the flexibility to accommodate
these, and a wider ranging of timing expectations for
signaling notifications, acknowledgements, and
confirmations, possibly using different mechanisms for
each. This note is specific about one approach, but that does
not mean that a relay at the level of a TPMR could not use
different methods for different media, though there are
advantages to having the notifications and confirmations
continue to follow the specific form proposed in Section 2
—to provide the widest interoperability.
The original note also discussed the idea of applying status
propagation to virtual links, even to multi-point links. While

that idea remains valid (and could be part of providing a
proper connection oriented service) it should not be allowed
to interfere with or miscellaneously extend the P802.1aj
project. How and when to revert to lower layer signaling
when communicating a connection break or ‘reset’ on a
virtual link is a rather different subject from using MAC
status notification, and the presentation in Section 2 makes
full use of being in a two port rather than a multi-port
environment. Before any work on extensions were to take
place there would have to be a proper problem statement
and the details of the state machines would have to change
to fit that problem statement. Similarly there is much
additional work to be done if loss signaling were to be
combined with repair. While that could be interesting work
it goes some way beyond Section 2, and needs someone
with a lot of time to produce a convincing proposal (if there
is a case to be made) including detailed protocol and state
machines.
Revision 2.0 December 7th, 2007 Mick Seaman 15

	MAC Status Propagation
	1. Organization of this note
	2. MAC status propagation
	Figure 1- TPMR connecting two Bridge Ports
	Figure 2- TPMR chain connecting Bridge Ports
	2.1 Model of operation
	Figure 3- MAC Status Shims and the MAC Status Propagation Entity

	2.2 MAC status protocol (MSP) overview
	Figure 4- Adding connectivity
	Figure 5- Losing connectivity
	Figure 6- TPMR recovery
	Figure 7- Notification from one end of the link to the other
	Figure 8- Immediate MAC status notification at the end of a link

	2.3 MAC status protocol state machines
	Figure 9- MSPE machine overview

	2.4 State machine timers
	2.4.1 linkNotifyWhen
	2.4.2 linkNotifyWhile
	2.4.3 macNotifyWhile
	2.4.4 macRecoverWhile

	2.5 MSP performance parameters
	2.5.1 LinkNotify
	2.5.2 LinkNotifyWait
	2.5.3 LinkNotifyRetry
	2.5.4 MACNotify
	2.5.5 MACNotifyTime
	2.5.6 MACRecoverTime

	2.6 State machine variables
	2.6.1 BEGIN
	2.6.2 addConfirmed
	2.6.3 disableMAC
	2.6.4 disabledMAC
	2.6.5 lossConfirmed
	2.6.6 macOperational
	2.6.7 mssOperational
	2.6.8 prop
	2.6.9 rxAck
	2.6.10 rxAdd
	2.6.11 rxAddConfirm
	2.6.12 rxLoss
	2.6.13 rxLossConfirm
	2.6.14 txAck
	2.6.15 txAdd
	2.6.16 txAddConfirm
	2.6.17 txLoss
	2.6.18 txLossConfirm

	2.7 State machine procedures
	2.8 Status Transition state machine
	Figure 10- Status Transition state machine

	2.9 Status Notification state machine
	Figure 11- Status Notification state machine

	2.10 Receive Process
	2.11 Transmit Process
	2.12 Management of MSP
	2.13 MSPDU transmission, addressing, and protocol identification
	2.13.1 Destination MAC Address
	2.13.2 Source MAC Address
	2.13.3 Priority
	2.13.4 Ethertype use and encoding

	2.14 Representation and encoding of octets
	2.15 MSPDU structure
	Figure 12- MSPDU structure
	2.15.1 Protocol Version
	2.15.2 Packet Type

	2.16 Validation of received MSPDUs
	2.17 Other MSP participants

	3. Suggested changes
	4. Alternatives and futures

