JggDvj20050416
2007-05-30
(May 30, 2007)

DVJ Perspective on:

Timing and synchronization for
time-sensitive applications in bridges
local area networks

Draft 0.710

Contributors:
See page xx.

Abstract: This working paper provides background and introduces possible higher level concepts
for the development of Audio/Video bridges (AVB).
Keywords: audio, visual, bridge, Ethernet, time-sensitive

Contribution from: dvi@alum.mit.edu.

This is an unapproved working paper, subject to change. 1

CO~NO O WN P

OO0 NO Ul WN -

Moo oAb BEBAADEDDEDEDEDWWWWWWWWWWNDNNDNNNMNNNNREPRPRRPERPRPERPERRRPRE
P OLONPODOONOUURAARWNPOOO~NOOPRRWNPOOO~NOUIARWNPOOO~NOOLWNEO

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of
the IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus
development process, approved by the American National Standards Institute, which brings together volunteers repre-
senting varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Insti-
tute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness
in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of
the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other
damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly
resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims
any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or
that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied
“ASIS.”

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase, mar-
ket, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed
at the time a standard is approved and issued is subject to change brought about through developments in the state of the
art and comments received from users of the standard. Every IEEE Standard is subjected to review at least every five
years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is rea-
sonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users
are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other services
for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other person or
entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon the advice of a
competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to spe-
cific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate action
to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is important to
ensure that any interpretation has also received the concurrence of a balance of interests. For this reason, IEEE and the
members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpre-
tation requests except in those cases where the matter has previously received formal consideration.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with
appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE-SA Standards Board
445 Hoes Lane

P.0O. Box 1331

Piscataway, NJ 08855-1331

USA.

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence or validity
of any patent rights in connection therewith. The IEEE shall not be responsible for identifying patents for which a
license may be required by an IEEE standard or for conducting inquiries into the legal validity or scope of those
patents that are brought to its attention.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of
Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To
arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood
Drive, Danvers, MA 01923 USA; (978) 750-8400. Permission to photocopy portions of any individual standard for
educational classroom use can also be obtained through the Copyright Clearance Center.

Contribution from: dvi@alum.mit.edu.
2 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

Editors’ Foreword

Comments on this draft are encouraged. PLEASE NOTE: All issues related to IEEE standards presen-
tation style, formatting, spelling, etc. should be addressed, as their presence can often obfuscate
relevant technical details.

By fixing these errors in early drafts, readers can devote their valuable time and energy to comments that
materially affect either the technical content of the document or the clarity of that technical content.
Comments should not simply state what is wrong, but also what might be done to fix the problem.

Information on 802.1 activities, working papers, and email distribution lists etc. can be found on the 802.1
Website:

http://ieee802.0rg/1/

Use of the email distribution list is not presently restricted to 802.1 members, and the working group has had
a policy of considering ballot comments from all who are interested and willing to contribute to the devel-
opment of the draft. Individuals not attending meetings have helped to identify sources of misunderstanding
and ambiguity in past projects. Non-members are advised that the email lists exist primarily to allow the
members of the working group to develop standards, and are not a general forum.

Comments on this document may be sent to the 802.1 email reflector, to the editors, or to the Chairs of the
802.1 Working Group and Interworking Task Group.

This draft was prepared by:

David V James

JGG

3180 South Court

Palo Alto, CA 94306
+1.650.494.0926 (Tel)
+1.650.954.6906 (Mobile)
Email: dvj@alum.mit.edu

Chairs of the 802.1 Working Group and Audio/Video Bridging Task Group:.

Michael Johas Teener Tony Jeffree

Chair, 802.1 Audio/Video Bridging Task Group Chair, 802.1 Working Group
Broadcom Corporation 11A Poplar Grove

3151 Zanker Road Sale

San Jose, CA Cheshire

95134-1933 M33 3AX

USA UK

+1 408 922 7542 (Tel) +44 161 973 4278 (Tel)

+1 831 247 9666 (Mobile) +44 161 973 6534 (Fax)
Email:mikejt@broadcom.com Email: tony@jeffree.co.uk

Contribution from: dvi@alum.mit.edu.

This is an unapproved working paper, subject to change. 3

O ~NO OB~ WN P

OO0 NO Ul WN -

Moo oAb BEBAADEDDEDEDEDWWWWWWWWWWNDNNDNNNMNNNNREPRPRRPERPRPERPERRRPRE
P OLONPODOONOUURAARWNPOOO~NOOPRRWNPOOO~NOUIARWNPOOO~NOOLWNEO

JggDvj20050416/D0.710

2007-05-30

WHITE PAPER CONTRIBUTION TO

Introduction to IEEE Std 802.1AS™

(This introduction is not part of P802.1AS, IEEE Standard for Local and metropolitan area networks—

Timing and synchronization for time-sensitive applications in bridged local area networks.)

This standard specifies the protocol and procedures used to ensure that the synchronization requirements are
met for time sensitive applications, such as audio and video, across bridged and virtual bridged local area
networks consisting of LAN media where the transmission delays are fixed and symmetrical; for example,
IEEE 802.3 full duplex links. This includes the maintenance of synchronized time during normal operation
and following addition, removal, or failure of network components and network reconfiguration. The design
is based on concepts developed within the IEEE Std 1588, and is applicable in the context of IEEE Std

802.1D and IEEE Std 802.1Q.

Synchronization to an externally provided timing signal (e.g., a recognized timing standard such as UTC or

TAI) is not part of this standard but is not precluded.

Version history

Version Date Edits by Comments
0.082 2005-04-28 DVIJ Updates based on 2005Apr27 meeting discussions
0.085 2005-05-11 DVJ — Updated list-of-contributors, page numbering, editorial fixes.
0.088 2005-06-03 DVJ — Application latency scenarios clarified.
0.090 2005-06-06 DVJ — Misc. editorials in bursting and bunching annex.
0.092 2005-06-10 DVJ — Extensive cleanup of Clause 5 subscription protocols.
0.121 2005-06-24 DVJ — Extensive cleanup of clock-synchronization protocols.
0.127 2005-07-04 DVJ — Pacing descriptions greatly enhanced.
0.200 2007-01-23 DVJ Removal of non time-sync related information, initial layering proposal.
0.207 2007-02-01 DVJ Updates based on feedback from Monterey 802.1 meeting.
— Common entity terminology; Ethernet type code expanded.
0.216 2007-02-17 DVJ Updates based on feedback from Chuck Harrison:
— linkDelay based only on syntonization to one’s neighbor.
— Time adjustments based on observed grandMaster rate differences.
0.224 2007-03-03 DVJ Updates for whiplash free PLL cascading.
0.230 2007-03-05 DVJ Major changes:
— simplified back-interpolation
— first iteration on an Ethernet-PON interface
— client-level clock-master and clock-slave interfaces defined
0.243 2007-04-20 DVJ — Revised GrandSync entity illustrations
— General cleanup
0.708 2007-05-30 DVJ — Simulation results provided within an annex
— Extensive code revisions for simplicity & clarity.
— Interpolation better described.
— TBD — —

Contribution from: dvi@alum.mit.edu.

This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

Formats

In many cases, readers may elect to provide contributions in the form of exact text replacements and/or
additions. To simplify document maintenance, contributors are requested to use the standard formats and
provide checklist reviews before submission. Relevant URLSs are listed below:
General: http://grouper.ieee.org/groups/msc/WordProcessors.html
Templates: http://grouper.ieee.org/groups/msc/Template Tools/FrameMaker/
Checklist: http://grouper.ieee.org/groups/msc/TemplateTools/Checks20040ct18.pdf

TBDs

Further definitions are needed in the following areas:

a) Should low-rate leapSeconds occupy space in timeSync frames, if this information rarely changes?
b) What other (than leapSeconds) low-rate information should be transferred between stations?
c) When the grand-master changes, how should the new grand-master affect change:

1) Transition immediately to the rate of its reference clock.
2) Transition slowly (perhaps 1ppm/s) between previous and reference clock rates.

Contribution from: dvi@alum.mit.edu.

This is an unapproved working paper, subject to change. 5

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

Contents
TS) T [0SR 9
IS 0 7= o =T 11
IR @ 1T A 1= 13
0 T o - TS 13
O 0o £SO P 13
IR 1010 T [N T2 1o o T 13
R =] T (oL 15
3. Terms, definitions, AN NOTALIONciviiii it e st s sbe s se e e be s sbessbee s sre e 16
IR A O o) (0T =T Lo (L= £ 16
I =T 40 TSV (o o) T L 16
IR II) £= (e 1 (o] T[T 17
3.4 Arithmetic and 10giCal OPEIALOrSccevveieeeeeisire et re e re e seenes 19
KT N [V T o L =T o= =T 0] e LA o] o 19
I ST 1 [T =L [T 20
3.7 Bit nUMDBEriNG and OFEIING......ccviiiiriirieiee e et se e e e e e eneereneeneenes 21
3.8 Byte sequENtial FOrMALScccviiiiecc e 22
3.9 Ordering of MUItIDYLE fIlAScoivieiecce e 22
I (O Y AN O o [0 [T 0] 1 1T L R 23
T80 T 101 0T 0 = YL (0] (T 24
3.12 Conventions for C code used in State MACNINEScccoviiiiiiiiiii e 24
4. Abbreviations and GCIONYIMScciviiiireiereee et se e e e e e e re e stesrestesaeseeneeseeseasearesaeseesreseseenes 25
B ATCHITECIUIE OVEIVIBW 1.vvviiiii ettt ettt ettt sb et e e b s s bt e e be s sbe s s be s sbessateesbessaeesnbessbessnesssteeas 27
TR A AN o] o] FTor= L oL JEST =] - U T S 27
ST B =1 T | T 111 T To [o] [0 Y 2SS 28
I €1 1T B =TSy (e Y=Y [T £ o] o 29
5.4 Synchronized-time diStriDULIONccoiiiieccs e 31
5.5 Cascaded ClOCK tOPOIOGIESc..cviieieiiiererc e et sn e ens 34
5.6 Time-affiliation adjUSIMENTScvciiiiirieeee e er e eenes 36
5.7 Sampling offset/rate CONVEISIONcvcviieiiiieic e et nn e neens 37
5.8 Distinctions from IEEE St 1588ociiiiiiiiiiiie ettt sttt st sre s bes e sreas 40
T T 1T K3 Y/ gLl] o 1=1 =11 [0 oS 41
ST @ AT Y/ 1= 41
6.2 SEervice INterface PriMITIVES ..o ii i sttt sr e e eenes 43
6.3 GrandSync State MACKINEccccviiiiriiicee e et se e e reene e e e e seenes 48
7. ClockMaster/ClockSIave State MACNINES..........viiveiiiieitie ittt sbes st sressee s sbe s sreeebee e 51
A8 R O V=T Y/ 1= 51
7.2 ClOCKMASLEr SEIVICE INTEITACES.veiiveiiite ittt sb e s sabe e sb e s sbaeebessreas 52
7.3 ClOCKMASLEr StAtE MACHINE. .. .eiiviiivieceei ettt ettt sb e er e e b e s b e e sbe s sab e s sbessbte s sbessbaeesbessreas 53
7.4 ClOCKSIAVE SEIVICE INTEITACES......iiiviiieiiicti ettt ettt sb et e st e s s be s sab e s sbessbte e b e s sreeeabessreas 55

Contribution from: dvi@alum.mit.edu.
6 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710

2007-05-30

7.5 ClockSIave State MACKINE.........ooiiiiiieeiee bbbttt 56

8. Ethernet full duplex (EFDX) State MaChINES.........ccccoveieiieeieiiese e 59
8L OVEIVIBW ...ttt etttk h bbb bbbt h bbb e b bt S b e b e e e R e e et e st e st e bt eb e b e ne e e b e enes 59

8.2 timeSYNCEFUX frame FOrMaLccociiiiie e 62

8.3 TimeSYNCRXEFAX State MACHINEccviiiieicicc e e e 64

8.4 TimeSynCTXEFAX State MACKINE........cc.ciiiiicicc et re e 67

9. WIreleSs STAtE MACKINESoouiiiitiitiite ettt bbb ettt e b e b e sr b e 71
0.1 OVEIVIBW ...ttt etttk b bbb bbb s b bbb e bt e b e b e bR et et e st e neeneeb e e b neenn e r e enes 71

9.2 Service interface defiNItiONSccoiiiiiiiiie b 73

9.3 TimeSYNCRXRLLV State MACKINEcceveeiiiieiciee et e re e sre e e 76

9.4 TimeSYNnCTXRILV State MACKhINE.......cvciiiiici e e 79

10. Ethernet passive optical network (EPON) state Machingsccccvvieveiiiniesie e 83
L0.1 OVEIVIBW ..ttt ettt ettt bbb e s s s bbbt bt e b ekt sb e e b e e e e e a b e b e e bt e bt eb e ebenbesb et e b e e ene e 83
10.2 timeSyNCEPON frame FOIMAL........cc.viieie it e e nee e 84
10.3 TimeSyncRXEpon service interface PrimitiVeS........ccccviveii i 85
10.4 TimeSYNCRXEPON State MaChINE........ccveieiiiiiie ettt 86
10.5 TimeSyncTXEpon service interface PrimitiVESc.ccviiveiiiieiie e 89
10.6 TimeSYyNCTXEPON State MACKINEceeuiiieieciece e 90
Annex A (informative) BiblIOgraphycvociieiiie et 93
Annex B (informative) Time-Scale CONVEISIONSc.cccciieieiieie et 94
B.1 OVEIVIBW ...ttt bbbt ettt b e bbbt bt e bt bt bt e s e b e st bt e bt e bt bt eb e b e nr e ene s 94
B.2 TALGNA UTC ..ottt bbbtttk bkttt bbb e e ans 94
B.3 INTP AN GPS ...ttt et ettt sttt sttt bbbt et et e sb e e et e s e be e ebereebe e e 95
B.4 TimME-SCAIE CONVEISIONSeitiitiitiite ittt bbb bbbttt ettt b e bbb sb b b nn s 96
B.5 TimMe ZONES ANG GIMT ...ttt bbbttt ettt b e bbb nn e 97
Annex C (informative) Simulation results (reliminary)........ccccceeivereeierisieese e 98
C.1 Simulation ENVIFONIMENTcooiiiiiieii ittt bbb ettt ettt besn e s 98
C.2 INItIAHZAION TFANSTENTS .. .eviieieii ettt bbb e e e ettt eb et e enes 99
C.3 Steady-state iNtErPOIAtION BITOIS.......cciiieie ettt e et e st e te e b e sreeneesreeneeareas 100
C.4 Steady-state eXtrapolation BITOIScciiierecee e et e e e sre e ebeeneeneeaneas 101
Annex D (informative) Bridging to IEEE Std 1394.........ccociiieice e 102
D.1 Hybrid NEetWOrk tOPOIOGIEScveiieeiiiieie sttt et s te e be e nneens 102
Annex E (informative) Time-of-day format considerations...........c.cccocvviveieniieni i 104
E.1 Possible time-0f-day fOrmMatS........cccouiiieie i e s 104
Annex F (informative) C-code HTUSIIAtiONS..........c.oiiiiiiie it 107

Contribution from: dvi@alum.mit.edu.

This is an unapproved working paper, subject to change. 7

O ~NO OB~ WN P

AVB BRIDGING

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

JggDvj20050416/D0.710
2007-05-30

O ~NO OB~ WN P

AVB BRIDGING JggDvj20050416/D0.710

2007-05-30
List of figures
Figure 1.1—Topology and CONNECTIVITYeiiiiiiieieie ettt e 14
Figure 3.1—Bit NUMbBEring and OFAEIINGccviivieririiieeee e ne st e e eneens 21
Figure 3.2—Byte sequential field format ilIUSrations ... 22
Figure 3.3—Multibyte field IHUSIFAtIONSccvciviiiiiese e e 22
Figure 3.4—Illustration of fairn@ss-frame StIUCLUIEooiiiiiiiii e 23
Figure 3.5—MAC address FOMALccvciiiiiiieiiieie et sr e aesre e e e sesresnennens 23
Figure 3.6—48-bit MAC address fOMAL.........oiiiiiiieie bbb e 24
FIgure 5.1—Garage JAM SESSIONcuuvueruerreriesiesiesiereeseesessessessessesseseessessesesseasessesseseessessessessessesessessessensessensens 27
Figure 5.2—P0ossible 100piNg tOPOIOGYcc.oiiiiiiiiieie ettt b bbb e 28
Figure 5.3—Timing information flOWScccciiieiiiccce e e 29
Figure 5.4—Grand-master precedence FIOWSc.ociiiiiiiiiie e 30
Figure 5.5—Grand-master PrefErENCEoicviiiiierieiece et ne st e e e 30
Figure 5.6—HiIerarchiCal FIOWS ... e bbb 31
Figure 5.7—Time-synchronization fIOWSccoceiiriiioiiiecce e 32
Figure 5.8—Intermediate-bridge reSponSIDIlITIES........coooviiiiiii e 32
Figure 5.9—Cumulative sync-interval BUNChING ..o 34
Figure 5.10—Cumulative sync-interval BUNCNINGccocooiiiiiiii e 35
Figure 5.11—Mixed SYyNC-iNterval SYSIEMS.........cveiiieiericeieee st ens 35
Figure 5.12—Receive/transmit @djUSTMENTScoiiiiiriiiiieec e e 36
Figure 5.13—EXtrapolation for grandTime.........cccviieierieieeiese e et ens 37
Figure 5.14—Extrapolation for grandTime...... ... e 37
Figure 5.15—Interpolation for grandTimeAccvieieieceese e ns 38
Figure 5.16—Interpolation Of eXtraTimeD ...t 39
Figure 6.1—GrandSync interface MOGEL...........covviiiieiericceree et 41
Figure 6.2—GrandSync service-interface CoMPONENTS.........cuoiiiiiiiiieieie e e 42
Figure 6.3—Global-time subfield FOrmat...........ccoco i 44
Figure 6.4—precedence SUDTIEIUS.ooiiiiiie bbbt 45
Figure 6.5—ClOCKID FOIMAL..........ccoi it r e be e e sae s e e sre e e e nre e 45
Figure 6.6—Global-time Subfield FOrMat ..o 46
Figure 6.7—exXtraTime fOMMAL.......cc.oiiiiicce et b e e sae e e saenreeee e 46
Figure 6.8—SNapTime FOMMAL.........coiiiiiiie bbbttt sttt 46
Figure 7.1—ClockMaster interface MOUELc.cciiieieiiiie e e 51
Figure 8.1—EFDX-link interface MOdel ..o 59
Figure 8.2—Contents of rxSYNc/tXSYNC INAICALIONScc.eiveiiiieie e 59
Figure 8.3—Link-delay COMPENSALIONoiitiiriiiiieiites ettt bbbttt 60
Figure 8.4—timeSyncEfdX frame fOrmat ... 62
Figure 9.1—R11V Iinterface MOGELcoueiriiiiiiee bbb 71
Figure 9.2—Formats of wireless-dependent tIMES..........coveiiiiieiiiieie e 71
Figure 9.3—802.11v time-synchronization iNtErfacescccveriiniiiiie e 72
Figure 10.1—PON interface MOUEL.........ccveiiiiiiicese ettt reesae e e ee e 83
Figure 10.2—Format of PON-dependent tIMeSccoeiiieiiiiiniieee e 83

Contribution from: dvi@alum.mit.edu.

This is an unapproved working paper, subject to change. 9

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

Figure 10.3—timeSyNnCEPON frame fOrMALccoo i e 84
Figure 10.4—tickTime FOMMAL........co.oiiiiii bbbt 85
Figure C.1—Time-synchronization fIOWSccoiiiiiii i 98
Figure C.2—Startup transients With 8 StAtIONScceciriiiiiiiiie e 99
Figure C.3—Startup transients With 64 StatiONScccoiviieiiiiiieiisese e 99
Figure C.4—Time interpolation With 8 StAtiONSccvueiriiiiiirise e 100
Figure C.5—Time interpolation With 64 StAtiONScccveieiiiiiese e 100
Figure C.6—Time extrapolation With 8 SLatiONSccoeiriiiiiiiise e 101
Figure C.7—Time extrapolation With 64 StatiONSccveieiiiieiie e 101
Figure D.1—IEEE 1394 1eaf OMEINS.........cctiiiiiirieiiieeinieene ettt 102
Figure D.2—IEEE 802.3 1eaf dOMAINS........ccceiiiiiie e nn e sne s 102
Figure D.3—Time-of-day fOrmat CONVEISIONSciriiiriiirieirieiire et 103
Figure D.4—Grand-master precedenCe MAaPPINGccvveverreererrerieseaieeseeseeseessesaestesseessesssessesseessessesseessees 103
Figure E.1—Global-time subfield fFOrmMat............ccoiiiiiiii e 104
Figure E.2—IEEE 1394 tiMer fOrMAL..........ccoiiiiiiie ettt ne e nne s 104
Figure E.3—IEEE 1588 tIMer FOrMAL..........coiiiiiiiiiieiieeet st 105
Figure E.4—EPON timer FOIMAL......ccviiiiiiee ettt et ne e nne s 105

Contribution from: dvi@alum.mit.edu.
10 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710

2007-05-30
List of tables
Table 3.1—State table NOtAtioN EXAMPIEoiviiiiiiieee bbb e 18
Table 3.2—Special Symbols and OPErators..........cccvveieeeieeeese e sr e neenes 19
Table 3.3—Names of fields and SUD-FIEIUSccoiiiiiiii s 20
Table 3.4—Wrap FIeld VAIUESc..cov i ae e e e snenes 21
Table 6.1—GrandSyNC SLALE tADIEc.oiiiiiieie e bbb 50
Table 7.1—ClockMaster state Maching table ..o 54
Table 7.2—Cl0CKSIAVE State taDIE..........oieiieeiiciee e ettt 58
Table 8.1—Clock-synchronization INTEIVALScceoerueieieiece et 63
Table 8.2—TimeSyncRXEfdx state maching table...........ccoviiiiii s 66
Table 8.3—TimeSyncTxXEfdx state Maching tableccvveiiiiiiis s 70
Table 9.1—TimeSyncRXR11v state Maching table...........cooiiiiiiiii s 78
Table 9.2—TimeSYNCTXRLILV State table.......cccvviiiicecce e 81
Table 10.1—TimeSyncRxEpon state maching table ... 88
Table 10.2—TimeSyncTXEpon state Maching tableccooviv i s 92
Table B.1—Time-SCale PArAMELETSc.ooviiieiieiiii ettt ettt bbb ettt be et st seesn e e nnenes 94
Table B.2—Time-SCalE CONVEISIONS.........ciiieiiiieiiieiiieesiee sttt ettt b et sttt sb s e ebe e e 96

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 11

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710
2007-05-30

12

WHITE PAPER CONTRIBUTION TO

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

DVJ Perspective on: Timing and
synchronization for time-sensitive
applications in bridges local area
networks

1. Overview

1.1 Scope

This draft specifies the protocol and procedures used to ensure that the synchronization requirements are met
for time sensitive applications, such as audio and video, across bridged and virtual bridged local area
networks consisting of LAN media where the transmission delays are fixed and symmetrical; for example,
IEEE 802.3 full duplex links. This includes the maintenance of synchronized time during normal operation
and following addition, removal, or failure of network components and network reconfiguration. It specifies
the use of IEEE 1588 specifications where applicable in the context of IEEE Std 802.1D and IEEE Std
802.1Q. Synchronization to an externally provided timing signal (e.g., a recognized timing standard such as
UTC or TAI) is not part of this standard but is not precluded.

1.2 Purpose

This draft enables stations attached to bridged LANs to meet the respective jitter, wander, and time
synchronization requirements for time-sensitive applications. This includes applications that involve
multiple streams delivered to multiple endpoints. To facilitate the widespread use of bridged LANs for these
applications, synchronization information is one of the components needed at each network element where
time-sensitive application data are mapped or demapped or a time sensitive function is performed. This
standard leverages the work of the IEEE 1588 WG by developing the additional specifications needed to
address these requirements.

1.3 Introduction
1.3.1 Background

Ethernet has successfully propagated from the data center to the home, becoming the wired home computer
interconnect of choice. However, insufficient support of real-time services has limited Ethernet’s success as
a consumer audio-video interconnects, where IEEE Std 1394 Serial Bus and Universal Serial Bus (USB)
have dominated the marketplace. Success in this arena requires solutions to multiple topics:

a) Discovery. A controller discovers the proper devices and related streamlID/bandwidth parameters to
allow the listener to subscribe to the desired talker-sourced stream.

b) Subscription. The controller commands the listener to establish a path from the talker.
Subscription may pass or fail, based on availability of routing-table and link-bandwidth resources.

c) Synchronization. The distributed clocks in talkers and listeners are accurately synchronized.
Synchronized clocks avoid cycle slips and playback-phase distortions.

d) Pacing. The transmitted classA traffic is paced to avoid other classA traffic disruptions.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 13

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

This draft covers the “Synchronization” component, assuming solutions for the other topics will be devel-
oped within other drafts or forums.

1.3.2 Interoperability

AVB time synchronization interoperates with existing Ethernet, but the scope of time-synchronization is
limited to the AVB cloud, as illustrated in Figure 1.1; less-precise time-synchronization services are
available everywhere else. The scope of the AVB cloud is limited by a non-AVB capable bridge or a
half-duplex link, neither of which can support AVB services.

Peer device is
not AVB capable

Half-duplex link
can't do AVB

Figure 1.1—Topology and connectivity

Separation of AVB devices is driven by the requirements of AVB bridges to support subscription (bandwidth
allocation) and pacing of time-sensitive transmissions, as well as time-of-day clock-synchronization.

1.3.3 Document structure
The clauses and annexes of this working paper are listed below.

— Clause 1: Overview

— Clause 2: References

— Clause 3: Terms, definitions, and notation

— Clause 4: Abbreviations and acronyms

— Clause 5: Architecture overview

— Clause 8: Ethernet full duplex (EFDX) state machines
— Annex A: Bibliography

— Annex D: Bridging to IEEE Std 1394

— Annex E: Time-of-day format considerations

— Annex F: C-code illustrations

Contribution from: dvi@alum.mit.edu.
14 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

2. References

The following documents contain provisions that, through reference in this working paper, constitute provi-
sions of this working paper. All the standards listed are normative references. Informative references are
given in Annex A. At the time of publication, the editions indicated were valid. All standards are subject to
revision, and parties to agreements based on this working paper are encouraged to investigate the possibility
of applying the most recent editions of the standards indicated below.

ANSI/ISO 9899-1990, Programming Language-C.l*2

IEEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access Control
(MAC) Bridges.

'Replaces ANSI X3.159-1989

21SO documents are available from ISO Central Secretariat, 1 Rue de Varembe, Case Postale 56, CH-1211, Geneve 20, Switzer-
land/Suisse; and from the Sales Department, American National Standards Institute, 11 West 42 Street, 13th Floor, New York, NY
10036-8002, USA

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 15

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

3. Terms, definitions, and notation

3.1 Conformance levels

Several key words are used to differentiate between different levels of requirements and options, as
described in this subclause.

3.1.1 may: Indicates a course of action permissible within the limits of the standard with no implied
preference (“may” means “is permitted to”).

3.1.2 shall: Indicates mandatory requirements to be strictly followed in order to conform to the standard and
from which no deviation is permitted (“shall” means “is required to”).

3.1.3 should: An indication that among several possibilities, one is recommended as particularly suitable,
without mentioning or excluding others; or that a certain course of action is preferred but not necessarily

required; or that (in the negative form) a certain course of action is deprecated but not prohibited (“should”
means “is recommended t0”).

3.2 Terms and definitions

For the purposes of this working paper, the following terms and definitions apply. The Authoritative
Dictionary of IEEE Standards Terms [B2] should be referenced for terms not defined in the clause.

3.2.1 bridge: A functional unit interconnecting two or more networks at the data link layer of the OSI
reference model.

3.2.2 clock master: A bridge or end station that provides the link clock reference.
3.2.3 clock slave: A bridge or end station that tracks the link clock reference provided by the clock master.

3.2.4 cyclic redundancy check (CRC): A specific type of frame check sequence computed using a
generator polynomial.

3.2.5 grand clock master: The clock master selected to provide the network time reference.

3.2.6 link: A unidirectional channel connecting adjacent stations (half of a span).

3.2.7 listener: A sink of a stream, such as a television or acoustic speaker.

3.2.8 local area network (LAN): A communications network designed for a small geographic area,
typically not exceeding a few kilometers in extent, and characterized by moderate to high data transmission
rates, low delay, and low bit error rates.

3.2.9 MAC client: The layer entity that invokes the MAC service interface.

3.2.10 medium (plural: media): The material on which information signals are carried; e.g., optical fiber,
coaxial cable, and twisted-wire pairs.

3.2.11 medium access control (MAC) sublayer: The portion of the data link layer that controls and
mediates the access to the network medium. In this working paper, the MAC sublayer comprises the MAC
datapath sublayer and the MAC control sublayer.

Contribution from: dvi@alum.mit.edu.
16 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

3.2.12 network: A set of communicating stations and the media and equipment providing connectivity
among the stations.

3.2.13 plug-and-play: The requirement that a station perform classA transfers without operator intervention
(except for any intervention needed for connection to the cable).

3.2.14 protocol implementation conformance statement (PICS): A statement of which capabilities and
options have been implemented for a given Open Systems Interconnection (OSI) protocol.

3.2.15 span: A bidirectional channel connecting adjacent stations (two links).

3.2.16 station: A device attached to a network for the purpose of transmitting and receiving information on
that network.

3.2.17 topology: The arrangement of links and stations forming a network, together with information on
station attributes.

3.2.18 transmit (transmission): The action of a station placing a frame on the medium.

3.2.19 unicast: The act of sending a frame addressed to a single station.

3.3 State machines
3.3.1 State machine behavior

The operation of a protocol can be described by subdividing the protocol into a number of interrelated
functions. The operation of the functions can be described by state machines. Each state machine represents
the domain of a function and consists of a group of connected, mutually exclusive states. Only one state of a
function is active at any given time. A transition from one state to another is assumed to take place in zero
time (i.e., no time period is associated with the execution of a state), based on some condition of the inputs to
the state machine.

The state machines contain the authoritative statement of the functions they depict. When apparent conflicts
between descriptive text and state machines arise, the order of precedence shall be formal state tables first,
followed by the descriptive text, over any explanatory figures. This does not override, however, any explicit
description in the text that has no parallel in the state tables.

The models presented by state machines are intended as the primary specifications of the functions to be
provided. It is important to distinguish, however, between a model and a real implementation. The models
are optimized for simplicity and clarity of presentation, while any realistic implementation might place
heavier emphasis on efficiency and suitability to a particular implementation technology. It is the functional
behavior of any unit that has to match the standard, not its internal structure. The internal details of the
model are useful only to the extent that they specify the external behavior clearly and precisely.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 17

O© O ~NO O WN P

OO0 NO Ul WN -

Moo oAb BEBAADEDDEDEDEDWWWWWWWWWWNDNNDNNNMNNNNREPRPRRPERPRPERPERRRPRE
P OLONPODOONOUURAARWNPOOO~NOOPRRWNPOOO~NOUIARWNPOOO~NOOLWNEO

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

3.3.2 State table notation

NOTE—The following state machine notation was used within 802.17, due to the exactness of C-code
conditions and the simplicity of updating table entries (as opposed to 2-dimensional graphics).
Early state table descriptions can be converted (if necessary) into other formats before publication.

Each row of the table is preferably provided with a brief description of the condition and/or action for that
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric
tags.

State machines may be represented in tabular form. The table is organized into two columns: a left hand side
representing all of the possible states of the state machine and all of the possible conditions that cause transi-
tions out of each state, and the right hand side giving all of the permissible next states of the state machine as
well as all of the actions to be performed in the various states, as illustrated in Table 3.1. The syntax of the
expressions follows standard C notation (see 3.12). No time period is associated with the transition from one
state to the next.

Table 3.1—State table notation example

Current > Next
[e]
" 14 .
state condition action state
START | sizeOfMacControl > spacelnQueue 1| — START
passM == 0 2
— 3 | TransmitFromControlQueue(); FINAL
FINAL SelectedTransferCompletes() 4 | — START
— 5 | — FINAL

Row 3.1-1: Do nothing if the size of the queued MAC control frame is larger than the PTQ space.
Row 3.1-2: Do nothing in the absence of MAC control transmission credits.
Row 3.1-3: Otherwise, transmit a MAC control frame.

Row 3.1-4: When the transmission completes, start over from the initial state (i.e., START).
Row 3.1-5: Until the transmission completes, remain in this state.

Each combination of current state, next state, and transition condition linking the two is assigned to a
different row of the table. Each row of the table, read left to right, provides: the name of the current state; a
condition causing a transition out of the current state; an action to perform (if the condition is satisfied); and,
finally, the next state to which the state machine transitions, but only if the condition is satisfied. The symbol
“—" signifies the default condition (i.e., operative when no other condition is active) when placed in the
condition column, and signifies that no action is to be performed when placed in the action column.
Conditions are evaluated in order, top to bottom, and the first condition that evaluates to a result of TRUE is
used to determine the transition to the next state. If no condition evaluates to a result of TRUE, then the state
machine remains in the current state. The starting or initialization state of a state machine is always labeled
“START” in the table (though it need not be the first state in the table). Every state table has such a labeled
state.

Contribution from: dvi@alum.mit.edu.
18 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

Each row of the table is preferably provided with a brief description of the condition and/or action for that
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric
tags.

3.4 Arithmetic and logical operators
In addition to commonly accepted notation for mathematical operators, Table 3.2 summarizes the symbols

used to represent arithmetic and logical (boolean) operations. Note that the syntax of operators follows
standard C notation (see 3.12).

Table 3.2—Special symbols and operators

Printed character Meaning

&& Boolean AND

I Boolean OR

! Boolean NOT (negation)

& Bitwise AND

| Bitwise OR

A Bitwise XOR
<= Less than or equal to
>= Greater than or equal to
== Equal to

1= Not equal to

= Assignment operator

// Comment delimiter

3.5 Numerical representation

NOTE—The following notation was taken from 802.17, where it was found to have benefits:
— The subscript notation is consistent with common mathematical/logic equations.
— The subscript notation can be used consistently for all possible radix values.

Decimal, hexadecimal, and binary numbers are used within this working paper. For clarity, decimal numbers
are generally used to represent counts, hexadecimal numbers are used to represent addresses, and binary
numbers are used to describe bit patterns within binary fields.

Decimal numbers are represented in their usual 0, 1, 2, ... format. Hexadecimal numbers are represented by
a string of one or more hexadecimal (0-9,A-F) digits followed by the subscript 16, except in C-code
contexts, where they are written as Ox123EF2 etc. Binary numbers are represented by a string of one or
more binary (0,1) digits, followed by the subscript 2. Thus the decimal number “26”” may also be represented
as “1Aqg” or “110107”.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 19

O© O ~NO O WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

MAC addresses and OUI/EUI values are represented as strings of 8-bit hexadecimal numbers separated by
hyphens and without a subscript, as for example “01-80-C2-00-00-15" or “AA-55-11".

3.6 Field notations
3.6.1 Use of italics

All field names or variable names (such as level or myMacAddress), and sub-fields within variables (such as
thisState.level) are italicized within text, figures and tables, to avoid confusion between such names and
similarly spelled words without special meanings. A variable or field name that is used in a subclause
heading or a figure or table caption is also italicized. Variable or field names are not italicized within C code,
however, since their special meaning is implied by their context. Names used as nouns (e.g., subclassAQ) are
also not italicized.

3.6.2 Field conventions

This working paper describes fields within packets or included in state-machine state. To avoid confusion
with English names, such fields have an italics font, as illustrated in Table 3.3.

Table 3.3—Names of fields and sub-fields

Name Description
newCRC Field within a register or frame
thisState.level Sub-field within field thisState

thatState.rateC[n].c | Sub-field within array element rateC[n]

Run-together names (e.g., thisState) are used for fields because of their compactness when compared to
equivalent underscore-separated names (e.g., this_state). The use of multiword names with spaces (e.g.,
“This State”) is avoided, to avoid confusion between commonly used capitalized key words and the
capitalized word used at the start of each sentence.

A sub-field of a field is referenced by suffixing the field name with the sub-field name, separated by a
period. For example, thisState.level refers to the sub-field level of the field thisState. This notation can be
continued in order to represent sub-fields of sub-fields (e.g., thisState.level.next is interpreted to mean the
sub-field next of the sub-field level of the field thisState).

Two special field names are defined for use throughout this working paper. The name frame is used to
denote the data structure comprising the complete MAC sublayer PDU. Any valid element of the MAC
sublayer PDU, can be referenced using the notation frame.xx (where xx denotes the specific element); thus,
for instance, frame.serviceDataUnit is used to indicate the serviceDataUnit element of a frame.

Unless specifically specified otherwise, reserved fields are reserved for the purpose of allowing extended
features to be defined in future revisions of this working paper. For devices conforming to this version of
this working paper, nonzero reserved fields are not generated; values within reserved fields (whether zero or
nonzero) are to be ignored.

Contribution from: dvi@alum.mit.edu.
20 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

3.6.3 Field value conventions

This working paper describes values of fields. For clarity, names can be associated with each of these
defined values, as illustrated in Table 3.4. A symbolic name, consisting of upper case letters with underscore
separators, allows other portions of this working paper to reference the value by its symbolic name, rather
than a numerical value.

Table 3.4—wrap field values

Value Name Description
0 STANDARD Standard processing selected
1 SPECIAL Special processing selected
2,3 — Reserved

Unless otherwise specified, reserved values allow extended features to be defined in future revisions of this
working paper. Devices conforming to this version of this working paper do not generate nonzero reserved
values, and process reserved fields as though their values were zero.

A field value of TRUE shall always be interpreted as being equivalent to a numeric value of 1 (one), unless
otherwise indicated. A field value of FALSE shall always be interpreted as being equivalent to a numeric
value of 0 (zero), unless otherwise indicated.

3.7 Bit numbering and ordering

Data transfer sequences normally involve one or more cycles, where the number of bytes transmitted in each
cycle depends on the number of byte lanes within the interconnecting link. Data byte sequences are shown in
figures using the conventions illustrated by Figure 3.1, which represents a link with four byte lanes. For
multi-byte objects, the first (left-most) data byte is the most significant, and the last (right-most) data byte is
the least significant.

bit bit
0 31

data[n+0] data[n+1] data[n+2] data[n+3]

data[n+4] data[n+5] data[n+6] data[n+7]

1 1

Figure 3.1—Bit numbering and ordering

Figures are drawn such that the counting order of data bytes is from left to right within each cycle, and from
top to bottom between cycles. For consistency, bits and bytes are numbered in the same fashion.

NOTE—The transmission ordering of data bits and data bytes is not necessarily the same as their counting order; the
translation between the counting order and the transmission order is specified by the appropriate reconciliation sublayer.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 21

O© O ~NO O WN P

OO0 NO Ul WN -

Moo oAb BEBAADEDDEDEDEDWWWWWWWWWWNDNNDNNNMNNNNREPRPRRPERPRPERPERRRPRE
P OLONPODOONOUURAARWNPOOO~NOOPRRWNPOOO~NOUIARWNPOOO~NOOLWNEO

JggDvj20050416/D0.710
2007-05-30

WHITE PAPER CONTRIBUTION TO

3.8 Byte sequential formats

Figure 3.2 provides an illustrative example of the conventions to be used for drawing frame formats and
other byte sequential representations. These representations are drawn as fields (of arbitrary size) ordered
along a vertical axis, with numbers along the left sides of the fields indicating the field sizes in bytes. Fields
are drawn contiguously such that the transmission order across fields is from top to bottom. The example
shows that fieldl, field2, and field3 are 1-, 1- and 6-byte fields, respectively, transmitted in order starting
with the fieldl field first. As illustrated on the right hand side of Figure 3.2, a multi-byte field represents a
sequence of ordered bytes, where the first through last bytes correspond to the most significant through least
significant portions of the multi-byte field, and the MSB of each byte is drawn to be on the left hand side.

1 field1 - byte[0]
1 field2 . — - tl)ytle[ll.] -
6 field3 - t|>ytle[2|]| I
6 field4 ™~ byte[3]

~ 1 1 1 1 1 1 1
2 fields T~ el
2 fielde Transmission h o, el

order

n field7
4 fields \

Figure 3.2—Byte sequential field format illustrations

NOTE—Only the left-hand diagram in Figure 3.2 is required for representation of byte-sequential formats. The
right-hand diagram is provided in this description for explanatory purposes only, for illustrating how a multi-byte field
within a byte sequential representation is expected to be ordered. The tag “Transmission order” and the associated
arrows are not required to be replicated in the figures.

3.9 Ordering of multibyte fields

In many cases, bit fields within byte or multibyte objects are expanded in a horizontal fashion, as illustrated
in the right side of Figure 3.3. The fields within these objects are illustrated as follows: left-to-right is the
byte transmission order; the left-through-right bits are the most significant through least significant bits
respectively.

22

field representation

byte[4]

byte[5]

byte representation

byte[0] MSB LSB
L1l | fourBylteFieId |

b t 1 | | | | | |
L)./?[.]. ! field representation

byte[2

|)./ | [|]| byte[0] byte[1] byte[2] byte[3]

| N I | | N | | N I | | N I |
.b)./t?[.g]. byte representation
byte4] MSB LSB
twoByteField
Ib)lltle[IS]l I O | Iy | N I |

Figure 3.3—Multibyte field illustrations

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710

2007-05-30

The first fourByteField can be illustrated as a single entity or a 4-byte multibyte entity. Similarly, the second
twoByteField can be illustrated as a single entity or a 2-byte multibyte entity.

NOTE—The following text was taken from 802.17, where it was found to have benefits:
The details should, however, be revised to illustrate fields within an AVB frame header serviceDataUnit.

To minimize potential for confusion, four equivalent methods for illustrating frame contents are illustrated in
Figure 3.4. Binary, hex, and decimal values are always shown with a left-to-right significance order,
regardless of their bit-transmission order.

da_hi
6 da | T | I | | l_ | | I | |
da_lo sa_hi
6 sa N T T T | T_l | I T T T | N T T | T_l | I T T T |
2 protocolType sa_lo
bT | T | I | | | | | |
1 SubType protocolType subType | hopCount
1 hopcount AR R A R A A I S S A A A S A N A N A A A
()

a) Sequential-byte format b) Field names

AC DE 48 234 1010 1100 1101 1110 0100 1000 0010 0011,

| | | | | | | | | | | T | | | | | | |
45 67,4 AC DE 4 0100 0101 0110 0111, | 1010 1100 1101 1110,

N T T T e | | N T T T e | N T T T e | | N T T T e | N T T T | N T T | N T T | | N T T |
4876 54 324 0100 1000 0111 0110 0101 0100 0011 0010,

| | | | | | | | | | T | | | | | | |
FA CEqq 0146 0356 1111 1010 1100 1110, | 0000 0001, [0000 0011,

N T T T e | N T T T e | N T T T e | N T T T e | N T T T T | | N T T T T | | N T T T T | | N T T T T |

c) Hexadecimal values d) Binary values

Figure 3.4—lllustration of fairness-frame structure

3.10 MAC address formats

The format of MAC address fields within frames is illustrated in Figure 3.5.

MSB LSB

| oui dependentiD |

'Legend: !
) I: locallyAdministered '
! (called the ‘U/L address bit’ or ‘universally or locally administered bit in IEEE 802) X
! g: groupAddress '
X (called the ‘I/G address bit’ or ‘individual/group bit’ in IEEE 802) X

Figure 3.5—MAC address format

3.10.1 oui: A 24-bit organizationally unique identifier (QUI) field supplied by the IEEE/RAC for the
purpose of identifying the organization supplying the (unique within the organization, for this specific
context) 24-bit dependentID. (For clarity, the locallyAdministered and groupAddress bits are illustrated by
the shaded bit locations.)

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 23

O© O ~NO O WN P

CoO~NO O WN B

JggDvj20050416/D0.710
2007-05-30

WHITE PAPER CONTRIBUTION TO

3.10.2 dependentID: An 24-bit field supplied by the oui-specified organization. The concatenation of the
oui and dependentID provide a unique (within this context) identifier.

To reduce the likelihood of error, the mapping of OUI values to the oui/dependentID fields are illustrated in
Figure 3.6. For the purposes of illustration, specific OUI and dependentlD example values have been
assumed. The two shaded bits correspond to the locallyAdministered and groupAddress bit positions illus-
trated in Figure 3.5.

OUI value: AC-DE-48
Organization assigned extension: 23-45-67

MSB LSB
6 ACyq DEjs 4816 2315 456 6716

) Y I S A A o |
byte transmission order >

Figure 3.6—48-bit MAC address format

3.11 Informative notes

Informative notes are used in this working paper to provide guidance to implementers and also to supply
useful background material. Such notes never contain normative information, and implementers are not
required to adhere to any of their provisions. An example of such a note follows.

NOTE—This is an example of an informative note.

3.12 Conventions for C code used in state machines

Many of the state machines contained in this working paper utilize C code functions, operators, expressions
and structures for the description of their functionality. Conventions for such C code can be found in
Annex F.

Contribution from: dvi@alum.mit.edu.
24 This is an unapproved working paper, subject to change.

AVB BRIDGING

4. Abbreviations and acronyms

This working paper contains the following abbreviations and acronyms:

AP
AV
AVB
AVB network
BER
BMC
BMCA
CRC
EFDX
EPON
FIFO
IEC
IEEE
IETF
ISO
ITU
LAN
LSB
MAC
MAN
MSB
osl
PDU
PHY
PLL
PTP
R11V
RFC
RPR
VOIP

access point

audio/video

audio/video bridging

audio/video bridged network

bit error ratio

best master clock

best master clock algorithm

cyclic redundancy check

Ethernet full duplex

Ethernet passive optical network

first in first out

International Electrotechnical Commission
Institute of Electrical and Electronics Engineers
Internet Engineering Task Force
International Organization for Standardization
International Telecommunication Union
local area network

least significant bit

medium access control

metropolitan area network

most significant bit

open systems interconnect

protocol data unit

physical layer

phase-locked loop

Precision Time Protocol

radio 802.11v

request for comment

resilient packet ring

voice over internet protocol

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

JggDvj20050416/D0.710
2007-05-30

25

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710
2007-05-30

26

WHITE PAPER CONTRIBUTION TO

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

5. Architecture overview

5.1 Application scenarios
5.1.1 Garage jam session
As an illustrative example, consider AVB usage for a garage jam session, as illustrated in Figure 5.1. The

audio inputs (microphone and guitar) are converted, passed through a guitar effects processor, two bridges,
mixed within an audio console, return through two bridges, and return to the ear through headphones.

t3=1ms
processing
delay

t10=T
t0=1ms
A/D conversion
delay

112 =6 ms t7=2ms
- (air c_ielay for t11=1 ms processing
6’ distance) D/A conversion delay
| ———— delay

Figure 5.1—Garage jam session

Using Ethernet within such systems has multiple challenges: low-latency and tight time-synchronization.
Tight time synchronization is necessary to avoid cycle slips when passing through multiple processing
components and (ultimately) to avoid under-run/over-run at the final D/A converter’s FIFO. The challenge
of low-latency transfers is being addressed in other forums and is outside the scope of this draft.

Contribution from: dvi@alum.mit.edu.

This is an unapproved working paper, subject to change. 27

O ~NO O WN B

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

5.1.2 Looping topologies

Bridged Ethernet networks currently have no loops, but bridging extensions are contemplating looping
topologies. To ensure longevity of this standard, the time-synchronization protocols are tolerant of looping
topologies that could occur (for example) if the dotted-line link were to be connected in Figure 5.2.

Peer device is
not AVB capable

Half-duplex link
can't do AVB

Figure 5.2—Possible looping topology

Separation of AVB devices is driven by the requirements of AVB bridges to support subscription (bandwidth
allocation) and pacing of time-sensitive transmissions, as well as time-of-day clock-synchronization.

5.2 Design methodology
5.2.1 Assumptions

This working paper specifies a protocol to synchronize independent timers running on separate stations of a
distributed networked system, based on concepts specified within IEEE Std 1588-2002. Although a high
degree of accuracy and precision is specified, the technology is applicable to low-cost consumer devices.
The protocols are based on the following design assumptions:

a) Each end station and intermediate bridges provide independent clocks.
b) All clocks are accurate, typically to within £100PPM.
c) Details of the best time-synchronization protocols are physical-layer dependent.

5.2.2 Objectives

With these assumptions in mind, the time synchronization objectives include the following:
a) Precise. Multiple timers can be synchronized to within 10’s of nanoseconds.

b) Inexpensive. For consumer AVB devices, the costs of synchronized timers are minimal.
(GPS, atomic clocks, or 1PPM clock accuracies would be inconsistent with this criteria.)

c) Scalable. The protocol is independent of the networking technology. In particular:

1) Cyclical physical topologies are supported.
2) Long distance links (up to 2 kM) are allowed.

d) Plug-and-play. The system topology is self-configuring; no system administrator is required.

Contribution from: dvi@alum.mit.edu.
28 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

5.2.3 Strategies

Strategies used to meet these objectives include the following:
a) Precision is achieved by calibrating and adjusting grandTime clocks.
1) Offsets. Offset value adjustments eliminate immediate clock-value errors.
2) Rates. Rate value adjustments reduce long-term clock-drift errors.
b) Simplicity is achieved by the following:
1) Concurrence. Most configuration and adjustment operations are performed concurrently.

2) Feed-forward. PLLs are unnecessary within bridges, but possible within applications.
3) Frequent. Frequent (nominally 100 Hz) interchanges reduces needs for overly precise clocks.

5.3 Grand-master selection
5.3.1 Grand-master overview

Clock synchronization involves streaming of timing information from a grand-master timer to one or more
slave timers. Although primarily intended for non-cyclical physical topologies (see Figure 5.3a), the
synchronization protocols also function correctly on cyclical physical topologies (see Figure 5.3b), by
activating only a non-cyclical subset of the physical topology.

' Legend: ' ' Legend: '
grand master [] other slave | X grand master [] other slave |
— established synchronization flow ' = established synchronization flow
a) Non-cyclical grand-master topologies a) Cyclical grand-master topologies

Figure 5.3—Timing information flows

In concept, the clock-synchronization protocol starts with the selection of the reference-timer station, called
a grand-master station (oftentimes abbreviated as grand-master). Every AVB-capable station is grand-master
capable, but only one is selected to become the grand-master station within each network. To assist in the
grand-master selection, each station is associated with a distinct preference value; the grand-master is the
station with the “best” preference values. Thus, time-synchronization services involve two subservices, as
listed below and described in the following subclauses.

a) Selection. Looping topologies are isolated (from a time-synchronization perspective) into a
spanning tree. The root of the tree, which provides the time reference to others, is the grand master.

b) Distribution. Synchronized time is distributed through the grand-master’s spanning tree.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 29

O© O ~NO O WN P

OO0 NO Ul WN -

QU AapbbbdbPArDDPEAEEDMEPREDDOWWWWWWWWWWNDNDNDNNMNNDNNNNRERPRERRERPREPERPERRERPREPRPRE
NP OOOO~NODUTAARWNPOOO~NOOGPRRWNMNPOOO~NOUOUPRRWNPOOO~NOUOGEAAWDNEO

53

ol
S

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

5.3.2 Grand-master selection

As part of the grand-master selection process, stations forward the best of their observed preference values
to neighbor stations, allowing the overall best-preference value to be ultimately selected and known by all.
The station whose preference value matches the overall best-preference value ultimately becomes the
grand-master.

The grand-master station observes that its precedence is better than values received from its neighbors, as
illustrated in Figure 5.4a. A slave stations observes its precedence to be worse than one of its neighbors and
forwards the best-neighbor precedence value to adjacent stations, as illustrated in Figure 5.4b. To avoid
cyclical behaviors, a hopCount value is associated with preference values and is incremented before the
best-precedence value is communicated to others.

| thisPrecedence | (hopCount +=n | thisPrecedence | (hopCount +=n
MinimumValue [MinimumValue
A A A A A A A
y y i i i i i i
a) Grand-master station flows b) Clock-slave station flows

Figure 5.4—Grand-master precedence flows

When stabilized, the value of n equals one and the hopCount value reflects the distance between this station
and its grand master, in units of hops-between-bridges. Other values are used to quickly stabilize systems
with rogue frames, as summarized in Equation 5.1.

#define HOPS 255 (5.1)
n = (frame._hopCount > hopCount) ? (HOPS - frame.hopCount) /7 2 : 1;

NOTE—A rogue frame circulates at a high precedence, in a looping manner, where the source stations is no longer
present (or no longer active) and therefore cannot remove the circulating frame. The super-linear increase in n is
intended to quickly scrub rogue frames, when the circulation loop consists of less than HOPS stations.

5.3.3 Grand-master preference

Grand-master preference is based on the concatenation of multiple fields, as illustrated in Figure 5.5. The
port value is used within bridges, but is not transmitted between stations.

MSB LSB
priorityl| class | clock variance priorily2| clockiD hop port
b e e e e e e] e e e]
- precedence T tie-breaker
~ preference >
' Legend: clock: clockAccuracy hop: hopCount '

'

Figure 5.5—Grand-master preference

This format is similar to the format of the spanning-tree precedence value, but a wider clockID is provided
for compatibility with interconnects based on 64-bit station identifiers.

Contribution from: dvi@alum.mit.edu.
30 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

5.4 Synchronized-time distribution
5.4.1 Hierarchical grand masters

Clock-synchronization information conceptually flows from a grand-master station to clock-slave stations,
as illustrated in Figure 5.6a. A more detailed illustration shows pairs of synchronized clock-master and
clock-slave components, as illustrated in Figure 5.6b. The active clock agents are illustrated as
black-and-white components; the passive clock agents are illustrated as grey-and-white components.

cO cl c2 c3
(P A Cprp (o
b0] v | e0 e0
— [i i
b1} GJLs el el
S |= ™ S (Lo f2
b2y y e2 e2
S = = S (Co™0 f3
b3 e3 e3
‘Legend: .+ | iLegend: .
' grand-master clock slave : . @ grand master O slave station
= streaming data ' ' @ master agent © slave agent
""""""""""""""" = internal coupling —» clock-synch flow
a) Clock synchronization flow b) Agents along the synchronization path

Figure 5.6—Hierarchical flows

Internal communications distribute synchronized time from clock-slave agents b1, c1, and el to the other
clock-master agents on bridgeB, bridgeC, and bridgeE respectively. Within a clock-slave, precise time
synchronization involves adjustments of timer value and rate-of-change values.

Time synchronization yields distributed but closely-matched grandTime values within stations and bridges.
No attempt is made to eliminate intermediate jitter with bridge-resident jitter-reducing phase-lock loops
(PLLs) but application-level phase locked loops (not illustrated) are expected to filter high-frequency jitter
from the supplied grandTime values.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 31

O© O ~NO O WN P

O~NO O~ WN P

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

5.4.2 Time-synchronization flows

Time-reference information is created at a ClockSource entity, flows through multiple intermediate entities,
and is consumed at one or more ClockSink entities, as illustrated in Figure 5.7. Within this illustration, the
clock-master station (containing the ClockSource entity) and the clock-slave station (containing the
ClockSink entity) are illustrated as multipurpose bridges. Either of the ClockMaster and ClockSlave stations
could also be end stations (not illustrated), wherein no MAC-relay functionality is required.

ClockSource, (_ClockSink) client ClockSink

(CIockMaster) (GrandSync) (CIockSIave) lower-levels CIockSIave
Y|
¥

.

TS},),
£ LL LLC|4 L(LLC . L} LLC LLC|=
l MAC relay I | MAC relay I | MAC relay I
s (mac) (wac ! AC_J|
A PHY PHY A PHY) (PHY) PHY PHY]
h (J (J
a) Clock master b) Clock bridge c) Clock slave

Figure 5.7—Time-synchronization flows

Entities within the intermediate bridge (see Figure 5.7b) are responsible for performing three distinct (and
largely decoupled) functions, as illustrated in Figure 5.8. A clock-slave port (see Figure 5.8a) is responsible
for compensating for time-reference transmission delays between this station and its neighbor. The
GrandSync entity (see Figure 5.8b) is responsible for selecting the timeSync PDUs from the grand-master
station; only thus selected PDUs are forwarded to transmitter ports.

b) Grand-master selection

a) Link-delay compensation c) Offset & rate conversion

Figure 5.8—Intermediate-bridge responsibilities

The clock-master port (see Figure 5.8c) is responsible for revising the GrandSync-supplied timeSync PDUs
to supply the appropriate media-dependent service-interface parameters and/or frames. Since the trans-
mission times and rates may differ from those on the clock-slave port, the clock-master port is responsible
for interpolating/extrapolating between previously received time samples to generate parameters corre-
sponding to the recently observed transmit-snapshot.

Contribution from: dvi@alum.mit.edu.
32 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

5.4.2.1 Clock-master flows

Referring now to the clock-master (Figure 5.7-a) station. This clock-master station comprises client-level
ClockSink as well as ClockSource entities. The ClockSink entity is provided so that the client-clock can be
synchronized to the network clock, whenever another station is selected to become that grand-master. (The
ClockSource entity on the grand-master station provides the network-synchronized time reference.)

The ClockSource time-reference interfaces indirectly to the GrandSync entity via a ClockMaster entity. The
ClockMaster entity supplements the clock-synchronization provided by the ClockSource entity with
additional information (such as the grand-master precedence) that is needed by the GrandSync entity.

The GrandSync entity is responsible for selecting the preferred time-reference port from among the possible
direct-attached ClockSource and bus-bridge-port entities. The selection is based on user-preference,
clock-property, topology, and unigue-clock-identifier information.

The GrandSync entity echoes the time-synchronization information from (what it determines to be) the
preferred port. Information from lower-preference ports is continuously monitored to detect preference
changes (typically due to attach or detach of clock-master capable stations). In the absence of such changes,
time-reference information in PDUs from lower-preference ports is ignored.

The GrandSync entity’s echoed time-reference information is observed by the directly-attached ClockSlave
and bridge-port entities. The information forms the basis for the time-synchronization information
forwarded to other indirectly-attached ClockSlave entities through this station’s bus-bridge ports

5.4.2.2 Bus-bridge flows

Referring now to the bus-bridge (Figure 5.7-b) station. This bus-bridge station comprises port and
GrandSync entities. Both ports are responsible for forwarding their received time-reference information to
the GransSync entity.

The bus bridge’s GrandSync entity is responsible for selecting the preferred time-reference port. The selec-
tion is based on user-preference, clock-property, topology, and unique-clock-identifier information provided
indirectly by remote ClockSource entities.

The GrandSync entity echoes the time-synchronization information from (what it determines to be) the
preferred port. Information from lower-preference ports is continuously monitored to detect preference
changes (typically due to attach or detach of clock-master capable stations). In the absence of such changes,
time-reference information in PDUs from lower-preference ports is ignored.

The GrandSync entity’s echoed time-reference information is observed by all bridge-port entities (including
the source port). The information forms the basis for the time-synchronization information forwarded to
other indirectly-attached ClockSlave entities through this station’s bus-bridge ports.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 33

O ~NO OB~ WN P

OO0 NO Ul WN -

Moo oAb BEBAADEDDEDEDEDWWWWWWWWWWNDNNDNNNMNNNNREPRPRRPERPRPERPERRRPRE
P OLONPODOONOUURAARWNPOOO~NOOPRRWNPOOO~NOUIARWNPOOO~NOOLWNEO

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

5.4.2.3 Clock-slave flows

Referring now to the clock-slave (Figure 5.7-c) station. This clock-slave station comprises port, GrandSync,
and ClockSlave entities, as well as a client-level ClockSink entity. All ports are responsible for forwarding
their received time-reference information to the GransSync entity.

As always, the GrandSync entity is responsible for selecting the preferred time-reference port from among
the possible direct-attached ClockSource and bus-bridge-port entities. The GrandSync entity echoes the
time-synchronization information from (what it determines to be) the preferred port.

The GrandSync entity’s echoed time-reference information is observed by the station-local ClockSlave
entity. The ClockSlave entity removes the extraneous grand-master preference information and re-times its
transmissions to match the client’s time-request rate. The time-reference information is then passed to the
ClockSink client.

5.4.2.4 Time-stamp flows

Referring now to the hashed PHY-to-TS lines within Figure 5.7 stations. Maintaining an accurate time
reference relies on the presence of accurate time-stamp hardware capabilities in or near the media-dependent
PHY. A bypass path is thus required at the receiver, so that the time-stamp can be affiliated with the arriving
timeSync information, before the SDU or service-interface parameters are processed by the
time-synchronization (TS) entity above the MAC.

A similar bypass path is also required at the transmitter, so that the time-stamp of a transmitted frame can
become known to the time-synchronization (TS) entity above the MAC. For simplicity and convenience,
this time-stamp information is not placed into the transmitted frame, but (via processing by the
time-synchronization entity) can be placed within later transmissions.

5.5 Cascaded clock topologies
5.5.1 Cascaded clocking limitations

The naive approach towards forwarding time-synchronization information is to quickly propagate
time-reference snapshots through successive stations. Unfortunately, relatively small (%2 interval)
worst-case residence-time delays in each station can cause significant bunching on relevant topologies, as
illustrated in Figure 5.9.

10 ms 0.0-2.5 ms degraded
intervals ...delays... intervals

-—@-)r L - L - -@-)r b - b - ér

75-125ms j 0.0-27.5ms

intervals intervals

Figure 5.9—Cumulative sync-interval bunching

Techniques for avoiding such bunching are well known and practiced in the form of reclocked synchronous
circuits. For example, Ethernet stations accept (baud-rate) information at a closely matched input clock rate,
reclock the data with a local clock reference, and then forward the reclocked information without degrading
data-jitter performance.

Contribution from: dvi@alum.mit.edu.
34 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

Applying these techniques to clock-sync transmission is straightforward. Rather than quickly forwarding
these frames, their information is saved. That saved information is then forwarded in the same periodic
fashion, based on local-station timing, as illustrated in Figure 5.10. While such reclocked systems more
susceptible to gain-peaking/whiplash effects, their inherent design and verification simplicities favor their
use.

10 ms degraded
intervals intervals

-6 - -] - -] ©> L - L - ©>

75-125ms 75-125ms

intervals intervals

Figure 5.10—Cumulative sync-interval bunching
5.5.2 Mixed sync-interval systems

The reclocked sync-interval strategy is compatible with bridged mixed-media systems. The persistent or
transient sync-interval rate of an intermediate (perhaps longer or more power sensitive) link could be less
than the rate assumed for the clock-master, as illustrated in the center of Figure 5.11. Similarly, wireless
links could base their timing events on triggers initiated by the clock-slave station, as illustrated in the right
side of Figure 5.11.

10 ms degraded
intervals intervals

e T T B

75-125ms 37.5-425ms 75-125ms

master intervals long intervals slave intervals

Y

>

Figure 5.11—Mixed sync-interval systems

Other flow-through clocking designs would require special “boundary clock” architectures to support such
mixed systems. With the interval retiming strategy, the additional (specification and implementation)
complexities of such boundary-clock architectures are easily avoided.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 35

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

36

5.6 Time-affiliation adjustments
5.6.1 Distinct receive/transmit adjustments
Distinct forms of time-delay adjustments occur at the receive (clock-slave) and transmit (clock-master)

ports, as illustrated in Figure 5.12. The details of these time-delay adjustments are media-dependent, but the
high-level concepts are the same.
(GrandSync]

* {grandTimeB, rxTimeC}

{grandTimeB, rxTimeC} s:;\lslis

grandTimeB - - 4 - - - — - . R A - = grandTimeA
rxSnap : adjust] [resample txSnap

Figure 5.12—Receive/transmit adjustments

When a frame with the clock-master sourced grandTimeB is received, a snapshot of the station-local time is
taken; that snapshot is called rxSnap. A more accurate rxTimeC snap-shot value is formed by compensating
by the relatively-constant precomputed linkDelay value, as follows:

rxTimeC = rxSnap - linkDelay

The delay-compensated {grandTimeB, rxTimeC} affiliation parameters are passed to the GrandSync entity.
That GrandSync entity ignores PDUs from lower-precedence stations, echoing only PDUs from the
(perceived to be) grand-master station.

The echoed delay-compensated {grandTimeB, rxTimeC} affiliation parameters are saved in storage at each
of the clock-master ports (this is an architectural model; implementations need not replicate physical stor-
age). The forwarded grandTimeA value (which is renamed grandTimeB when received at the next station) is
derived by interpolating between (or extrapolating from) previously saved samples.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

5.7 Sampling offset/rate conversion

Each clock-master port is responsible for using its received {grandTimeB, stationTimeB} and converting
them into the distinct {grandTimeA, stationTimeA} affiliations that are transmitted to its neighbor. Since the
values of stationTimeB and stationTimeA are (by convention) coupled to the receive and transmit times, this
update involves computation of grandTimeA values based on observed {grandTimeA, stationTimeB} values.

5.7.1 Forward interpolation inaccuracies

A typical design approach (and that used by IEEE Std 1588) views the received {grandTime, stationTime}
affiliations as points on a curve, sampled at received-snapshot times rx[n]. The objective is to generate the
distinct set of {grandTime, tx[m]} affiliations by extrapolating from a distinct set of receive-snapshot times
rx[n], as illustrated in Figure 5.13.

A -
grandTime -
rx[n-N] [N XM stationTime
/

Figure 5.13—Extrapolation for grandTime

Extrapolation techniques exhibit gain peaking at frequencies whose wavelength is twice the {rx[n-N],rx[n]}
slope-averaging interval, because the extrapolated value can exceed what would have been the sampled time
value. A cascade of multiple stations emphasizes the gain-peaking inaccuracies, allowing errors to
accumulate in an O(NZ) fashion.

5.7.2 Forward interpolation inaccuracies

To reduce gain-peaking effects, the resampling computation can be migrated to a safe-interpolation domain.
This involves subtracting a backTime constant from tx[m], yielding a new time tb[m], for which a less
gain-peaking sensitive interpolation is viable, as illustrated in Figure 5.14. In concept, the stale (but
{grandTime[m], tb[m]} affiliations could be passed to the terminal clock-slave stations, wherein a single
extrapolation-to-the-future accumulation could be performed. A preferred technique is to compensate the
interpolation result on an per-station basis as the time-reference flows towards the clock-slave station, as
discussed in the following subclauses.

A _
grandTime -

safe interpolation domain

backTime

rx[n-N] th[m] X[l tx[m] stationTime

Figure 5.14—Extrapolation for grandTime

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 37

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710
2007-05-30

WHITE PAPER CONTRIBUTION TO

Extrapolation techniques exhibit gain peaking at frequencies whose wavelength is twice the {rx[n-N],rx[n]}
slope-averaging interval, because the extrapolated value can exceed what would have been the sampled time
value. A cascade of multiple stations emphasizes the gain-peaking inaccuracies, allowing errors to
accumulate in an O(NZ) fashion.

5.7.3 Backward interpolation

5.7.3.1 Interpolation of grandTime

A more-scalable backward-interpolation approach also views the received {grandTimeB, stationTimeB}
affiliations as points on a curve, sampled at received-snapshot times rx[n]. However, the objective is to

generate the distinct set of {grandTimeA, tx[m]} affiliations by interpolating within a distinct set of
receive-snapshot affiliations {grandTimeB[n], rx[n]), as illustrated in Figure 5.15.

extraTimeC
grandTime /
==) } *compTime= *
il backTime
<«backTime
=N t[m]] oM stationTime
Figure 5.15—Interpolation for grandTimeA
grandTimeA[m] = grandTimeB[m] + rxSlope * ((tx[m] — backTime) — rx[n]) + backTime; (5.2)

grandTimeO[m] is the value for the to-be-transmitted {grandTimeO[m], tx[m]} affiliation.
backTime is a constant (sync-interval dependent) value.
rxSlope is the value of slope of previously sampled values, specified by Equation 5.3.

rxSlope = (grandTimeB[n] — grandTimeB[n-N]) / (rx[n] — rx[n-N]) (5.3)
Where:
grandTimeB[n] is the value from the previously received {grandTimeB|[n], rx[n]} affiliation.

extraTimeC[m] = (rxSlope — ONE) * backTime; (5.4)

The advantage of this technique is the separation of grandTime[m] and extra[m] components. The
interpolation process eliminates gain-peaking for the grandTime[m] value, thus reducing error effects when
passing through multiple bridges. The sideband extraTime signal remains significant, and is therefore carried
through bridges, so that the cumulative grandTimed[m]+extraTime[m] value can be passed to the end-point
application.

From an intuitive perspective, the whiplash-free nature of the back-in-time interpolation is attributed to the
use of interpolation (as opposed to extrapolation) protocols. Interpolation between input values never
produces a larger output value, as would be implied by a gain-peaking (larger-than-unity gain) algorithm. A
disadvantage of back-in-time interpolation is the requirement for a side-band extraTime communication
channel, over which the difference between nominal and rate-normalized backTime values can be
transmitted.

Contribution from: dvi@alum.mit.edu.
38 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

5.7.3.2 Averaging of extraTime

An averaging (rather than backward-interpolation) approach is applied to the received
{extraTimeB, stationTime} affiliations as points on a curve, sampled at received-snapshot times rx[n]. The
{extraTimeD, tx[m]} affiliations are produced by averaging recently observed extraTimeB values, as
illustrated in Figure 5.16.

extraTimeB A
[extraTimeD =
\\ averageValue;
~ N values
rx[n-N] XNl XM stationTime
Figure 5.16—Interpolation of extraTimeD
extraTimeD[m] = (extraTime[n-N] + ... extraTime[n]) / N (5.5)
extraTimeA[m] = extraTimeC[m]+ extraTimeD[m]; (5.6)

The to-be-transmitted value of extraTimeA[m] consists of a contribution errorTimeC (coming from this
station’s grandTime interpolation) and a contribution extraTimeD (accumulated from previous stations’s
grandTime interpolations). Note that the averaging of extraB values is effectively a low-pass filtering
process that removes noise without causing a gain-peaking frequency response.

NOTE—For simplicity and scalability, the computed extraTimeC time is based on n, a fixed number of samples, where n
is a convenient power-of-two in size.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 39

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

5.8 Distinctions from IEEE Std 1588

Advantageous properties of this protocol that distinguish it from other protocols (including portions of
IEEE Std 1588) include the following:

40

a)

b)

c)
d)
e)

9)

Synchronization between grand-master and local clocks occurs at each station:

1) All bridges have a lightly filtered synchronized image of the grand-master time.
2) End-point stations have a heavily filtered synchronized image of the grand-master time.

Time is uniformly represented as scaled integers, wherein 40-bits represent fractions-of-a-second.

1) Grand-master time specifies seconds within a more-significant 40-bit field.
2) Local time specifies seconds within a more-significant 8-bit field.

Locally media-dependent synchronized networks don’t require extra time-snapshot hardware.
Error magnitudes are linear with hop distances; PLL-whiplash and O(nz) errors are avoided.
Multicast (one-to-many) services are not required; only nearest-neighbor addressing is assumed.
A relatively frequent 100 Hz (as compared to 1 Hz) update frequency is assumed:

1) This rate can be readily implemented (in today’s technology) for minimal cost.
2) The more-frequent rate improves accuracy and reduces transient-recovery delays.
3) The more-frequent rate reduces transient-recovery delays.

Only one frame type simplifies the protocols and reduces transient-recovery times. Specifically:

1) Cable delay is computed at a fast rate, allowing clock-slave errors to be better averaged.
2) Rogue frames are quickly scrubbed (2.6 seconds maximum, for 256 stations).
3) Drift-induced errors are greatly reduced.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

6. GrandSync operation

6.1 Overview
6.1.1 GrandSync behavior

This clause specifies the state machines that specify GrandSync-entity processing. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the primitives and formal procedures and the
interfaces in any particular implementation.

The GrandSync entity is responsible for observing time-sync related MS_UNITDATA.indication service
primitives, selectively echoing these service-primitive parameters in associated MS_UNITDATA.request
parameters, as follows:

a) When a preferred time-sync related MS_UNITDATA.indication arrives:

1) The grand-master preference and port-timeout parameters are saved.
2) MS_UNITDATA.indication parameters are echoed in MS_UNITDATA.request parameters.
3) The arrival time is recorded, for the purpose of monitoring port timeouts.

b) Arriving non-preferred MS_UNITDATA.indications are discarded.
The intent is to echo only PDUs from the currently selected grand-master port.

c) |If the preferred-port timeout is exceeded, the preferred-port parameters are reset.
The intent is to restart grand-master selection based on the remaining candidate ports.

6.1.2 GrandSync interface model
The time-synchronization service model assumes the presence of one or more time-synchronized AVB ports

communicating with a MAC relay, as illustrated in Figure 6.1. All components are assumed to have access
to a common free-running (not adjustable) localTime value.

<

S

(=

GrandSync
A

A

NITDATA.request
_UNITDATA.indication

mk2

TS

LLC
MS

N0

~localTime~

MAC relay

ISS
802.n MAC

ISS
802.n MAC

e e e e e - — — -

Figure 6.1—GrandSync interface model

Contribution from: dvi@alum.mit.edu.
41 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

A received MAC frame is associated with link-dependent timing information, processed within the
TimeSync (TS) state machine, and passed to the GrandSync protocol entity. The GrandSync state machine
(illustrated with a darker boundary) is responsible for saving time parameters from observed
MS_UNITDATA .indication parameters and generating MS_UNITDATA.request parameters for delivery to
other ports.

The preference of the time-sync PDUs determines whether the PDU content is ignored by the GrandSync
protocol entity or modified and redistributed to the attached TS state machines. The sequencing of this state
machine is specified by Table 6.1; details of the computations are specified by the C-code of Annex F.

Information exchanged with the GrandSync entity includes a source-port identifier, hops&precedence
information for grand-master selection, a globally synchronized grandTime, a station-local snapTime, and a
cumulative extraTime, as illustrated in Figure 6.2. A clock-slave end-point can filter the sum of grandTime
and extraTime values, thereby yielding its image of the globally synchronized grandTime value.

MS_UNITDATA.request.service_data_unit and port

MS_UNITDATA.indication.service_data_unit components: source
distance
priorityl| class ’accuracy‘ variance priorityz‘ clockiD ‘ precedence
NN NN NN NN IIIIIII|IIIIIII NN IIIIIII|IIIIIII|IIIIIII|IIIIIII|IIIIIII|IIIIIII|IIIIIII|IIIIIII
‘ seconds ‘ fraction ‘ grandTime
IIIIIII|IIIIIII|IIIIIII|IIIIIII|IIIIIII IIIIIII|IIIIIII|IIIIIII|IIIIIII|IIIIIII
seconds fraction ‘ snapTime
NN IIIIIII|IIIIIII|IIIIIII|IIIIIII|IIIIIII|IIIIIII
‘ subfraction ‘ extraTime
IIIIIII|IIIIIII|IIIIIII|IIIIIII
seconds| fraction | syncl nterval
INENEEN IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Figure 6.2—GrandSync service-interface components

NOTE—The synclnterval value is relative static and could (if desired) be communicated by access to port-specific
resources. If this alternative configuration mechanism is preferred, this content will be removed from the service
interface contents.

NOTE—The snapTime value has additional precision, when compared to the similar externally visible localTime value,
to minimize the effects of numerical rounding when transferring values between computational entities within the
bridge.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 42

O© O ~NO O WN P

GO OO DDADDADLNDDADRNWWWWWWWWWWNRNRNNMNNNNNNNRERERERRERERERR R
EAONPOOOVNOUTRNOMNPOOONNOBRERROMNPRPOOONOWUDRWNRPOOOMNDUDWNRO

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

6.2 Service interface primitives

6.2.1 MS_UNITDATA.indication

6.2.1.1 Function

Provides the GrandSync protocol entity with clock-synchronization parameters derived from activities on
the attached media-dependent ports. The information is sufficient to identify a single clock-slave port (typi-
cally the closest-to-grand-master port) and to disseminate grand-master supplied clock-synchronization
information to other ports.

6.2.1.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MS_UNITDATA.indication {

destination_address, /I Destination address

source_address, I/ Optional

priority, /I Forwarding priority

service_data_unit, /Il Delivered content

{ /I Contents of the service_data_unit
protocol Type, /I Distinguishes AVB frames from others
function, /I Distinguishes between timeSync and other AVB frames
version, /I Distinguishes between timeSync frame versions
precedence, /I Precedence for grand-master selection
grandTime, /I Global-time snapshot (1-cycle delayed)
extraTime, /I Accumulated grandTime error
sourcePort, /I 1dentifies the source port
hopCount, /I Distance from the grand-master station
snapTime, /I Local-time snapshot (1-cycle delayed)
syncinterval /I Nominal timeSync transmission interval

}

}

NOTE—The grandTime field has a range of approximately 36,000 years, far exceeding expected equipment life-spans.
The localTime and linkTime fields have a range of 256 seconds, far exceeding the expected timeSync frame transmission
interval. These fields have a 1 pico-second resolution, more precise than the expected hardware snapshot capabilities.
Future time-field extensions are therefore unlikely to be necessary in the future.

The parameters of the MA_DATA.indication are described as follows:

6.2.1.2.1 destination_address: A 48-bit field that allows the frame to be conveniently stripped by its
downstream neighbor. The destination_address field contains an otherwise-reserved group 48-bit MAC
address (TBD).

6.2.1.2.2 source_address: A 48-bit field that specifies the local station sending the frame. The
source_address field contains an individual 48-bit MAC address (see 3.10), as specified in 9.2 of IEEE Std
802-2001.

6.2.1.2.3 priority: Specifies the priority associated with content delivery.

6.2.1.2.4 service_data_unit: A multi-byte field that provides information content.

Contribution from: dvi@alum.mit.edu.
43 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

For GrandSync-entity time-sync interchanges, the service_data_unit consists of the following subfields:

6.2.1.2.5 protocol Type: A 16-bit field contained within the payload that identifies the format and function of
the following fields.

6.2.1.2.6 function: An 8-bit field that distinguishes the timeSync frame from other AVB frame type.

6.2.1.2.7 version: An 8-bit field that identifies the version number associated with of the following fields.
TBD—A more exact definition of version is needed.

6.2.1.2.8 precedence: A 14-byte field that specifies grand-master selection precedence (see 6.2.1.4).
6.2.1.2.9 grandTime: An 80-bit field that specifies a grand-master synchronized time (see 6.2.1.6).

6.2.1.2.10 extraTime: A 32-bit field that specifies the cumulative grand-master synchronized-time error.
(Propagating extraTime and grandTime separately eliminates whiplash associated with cascaded PLLs.)

6.2.1.2.11 sourcePort: An 8-bit field that identifies the port that sourced the encapsulating content.

6.2.1.2.12 hopCount: An 8-bit field that identifies the maximum number of hops between the talker and
associated listeners.

6.2.1.2.13 snapTime: A 56-bit field that specifies the local free-running time within this station, when the
previous timeSync frame was received (see 6.2.1.8).

6.2.1.2.14 synclnterval: A 48-bit field that specifies the nominal period between timeSync frame transmis-
sions.

NOTE—The syncinterval value is a port-specific constant value which (for apparent simplicity) has been illustrated as a
relayed frame parameter. Other abstract communication techniques (such as access to shared design constants) might be
selected to communicate this information, if requested by reviewers for consistency with existing specification
methodologies.

6.2.1.3 Version format

For compatibility with existing 1588 time-snapshot, a single bit within the version field is constrained to be
zero, as illustrated in Figure 6.3. The remaining versionHi and versionLo fields shall have the values of 0
and 1 respectively.

MSB LSB
. versilonHi . - vgrsionll_o
8 bits

Figure 6.3—Global-time subfield format

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 44

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

6.2.1.4 precedence subfields

The precedence field includes the concatenation of multiple fields that are used to establish precedence
between grand-master candidates, as illustrated in Figure 6.4.

MSB LSB
priorityl| class | clock variance priorityzl clockID
IIIIIIIIIIIIIIIIIIIIIIIIIIII|IIIIIIIIIIIIIIIIIIIII|IIIIIII|IIIIIII|IIIIIII|IIIIIII|IIIIIIIIIIIIII|IIIIIII
" Legend: clock: clockAccuracy hop: hopCount '

Figure 6.4—precedence subfields

6.2.1.4.1 priorityl: An 8-bit field that can be configured by the user and overrides the remaining
precedence-resident precedence fields.

6.2.1.4.2 class: An 8-bit precedence-selection field defined by the like-named IEEE-1588 field.
6.2.1.4.3 clockAccuracy: An 8-bit precedence-selection field defined by the like-named IEEE-1588 field.
6.2.1.4.4 variance: A 16-bit precedence-selection field defined by the like-named IEEE-1588 field.

6.2.1.4.5 priority2: A 8-bit field that can be configured by the user and overrides the remaining
precedence-resident clockID field.

6.2.1.4.6 clocklD: A 64-bit globally-unique field that ensures a unique precedence value for each potential
grand master, when {priorityl, class, clockAccuracy, variance, priority2} fields happen to have the same
value (see 6.2.1.5).

6.2.1.5 clockID subfields

The 64-bit clockID field is a unique identifier. For stations that have a uniquely assigned 48-bit macAddress,
the 64-bit clockID field is derived from the 48-bit MAC address, as illustrated in Figure 6.5.

MSB macAddress LSB
‘ oui ‘ ouiDependent ‘
) I | |) I | |) I |) I O | | I | | I |
l FF;ElG [—‘
‘ oui I extension ‘ ouiDependent

Figure 6.5—clockID format
6.2.1.5.1 oui: A 24-bit field assigned by the IEEE/RAC (see 3.10.1).
6.2.1.5.2 extension: A 16-bit field assigned to encapsulated EUI-48 values.

6.2.1.5.3 ouiDependent: A 24-bit field assigned by the owner of the oui field (see 3.10.2).

Contribution from: dvi@alum.mit.edu.
45 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

6.2.1.6 Global-time subfield formats

Time-of-day values within a frame are based on seconds and fractions-of-second values, consistent with
IETF specified NTP[B7] and SNTP[B8] protocols, as illustrated in Figure 6.6.

MSB LSB

seconds fraction
III|IIIIIII|IIIIIIIIIIIIII
0 bits 40 bits

Figure 6.6—Global-time subfield format
6.2.1.6.1 seconds: A 40-bit signed field that specifies time in seconds.

6.2.1.6.2 fraction: A 40-bit unsigned field that specifies a time offset within each second, in units of 240
second.

The concatenation of these fields specifies a 96-bit grandTime value, as specified by Equation 6.1.
grandTime = seconds + (fraction / 249) (6.1)

6.2.1.7 extraTime

The error-time values within a frame are based on a selected portion of a fractions-of-second value, as
illustrated in Figure 6.7. The 40-bit signed fraction field specifies the time offset within a second, in units of
2740 second.

MSB LSB

subFraction
| | | | | | | |
2 bits

Figure 6.7—extraTime format
6.2.1.8 snapTime formats

The snapTime value within a frame is based on seconds and fractions-of-second field values, as illustrated in

Figure 6.8. The 48-hit fraction field specifies the time offset within the second, in units of 28 second.
MSB LSB
‘ seconds \ fracltion
8 bits 48 bits

Figure 6.8—snapTime format
6.2.1.9 When generated
The time-sync related MS_UNITDATA.indication service primitive is generated when new time-sync
information is available. Such information could change the selection of the grand-master or could provide a
more-recent {grandTime, stationTime} time affiliation necessary for maintaining accurate grand-master
synchronized time references.

6.2.1.10 Effect of receipt

Receipt of the service primitive by the GrandSync entity triggers an update of the grand-master selection
information. If the grand-master selection determines the source-port to be the preferred port, its provided

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 46

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

{grandTime, stationTime} time affiliation is also echoed to the attached entities, via invocation of the
MS_UNITDATA request service primitive.

6.2.2 MS_UNITDATA.request

6.2.2.1 Function

Communicates GrandSync protocol-entity supplied information to attached media-dependent ports. The
information is sufficient for attached ports to update/propagate grand-master clock-synchronization
parameters.

6.2.2.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MA_UNITDATA.request

{
destination_address, /I Destination address
source_address, // Optional
priority, /I Forwarding priority
service_data_unit, /I Delivered content
{ /I Contents of the service_data_unit
protocol Type, /I Distinguishes AVB frames from others
function, /I Distinguishes between timeSync and other frames
version, /I Distinguishes between timeSync frame versions
precedence, /I Precedence for grand-master selection
grandTime, /I Global-time snapshot (1-cycle delayed)
extraTime, /I Accumulated grandTime error
sourcePort, /I ldentifies the source port
hopCount, /I Distance from the grand-master station
snapTime, /I Local-time snapshot (1-cycle delayed)
syncinterval /I Nominal timeSync transmission interval
}
}

The parameters of the MA_UNITDATA.request are described in 6.2.1.2.
6.2.2.3 When generated

Generated by the GrandSync entity upon receipt of a time-sync related MS_UNITDATA.indication from a
preferred (by grand-master selection protocol) source port.

6.2.2.4 Effect of receipt
Receipt of the service primitive by a ClockSlave or TS entity updates entity storage. This storage update

allows the destination-port to provide accurate {grandTime, stationTime} affiliations during later time-sync
information transmissions.

Contribution from: dvi@alum.mit.edu.
47 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

6.3 GrandSync state machine

6.3.1 Function

The GrandSync state machine is responsible for observing MS_UNITDATA.indication parameters, selecting
PDUs with preferred time-sync content, and echoing this content in following MS_UNITDATA.request

parameters.
6.3.2 State machine definitions

AVB identifiers
Assigned constants used to specify AVB frame parameters.
AVB_FUNCTION—The function code that corresponds to a time-sync frame.
value—TBD.

AVB_MCAST—The multicast destination address corresponding to the adjacent neighbor.

value—TBD.
AVB_TYPE—The protocol Type corresponding that uniquely identifies time-sync SDUs.
value—TBD.
AVB_VERSION—The number that uniquely identifies this version of time-sync SDUSs.
value—TBD.
LAST_HOP
A constant that specifies the largest possible hopCount value.
value—255
NULL

A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

ONES
A large constant wherein all binary bits of the numerical representation are set to one.
queue values
Enumerated values used to specify shared FIFO queue structures.
Q_MS_IND—Queue identifier for MS_UNITDATA.indication transfers.
Q_MS_REQ—Queue identifier for MS_UNITDATA.request transfers.

6.3.3 State machine variables

ePtr
A pointer to entity-dependent storage, where that storage comprises the following:
lastTime—Time of the last best-preference update, used for timeout purposes.
rxSaved—A copy of the best-preference GrandSync PDU parameters.
new, old
Local variables consisting of concatenated preference, hopCount, and port parameters.
rsPtr
A pointer to the service-data-unit portion of rxInfo storage.
rxinfo

Parameters associated with an MS_UNITDATA.indication (see 6.2.1.2), comprising the following:

destination_address, source_address, service_data_unit
Where service_data_unit comprises:
extraTime, function, grandTime, hopCount, precedence,
protocolType, snapTime, syncinterval, version
rxPtr
A pointer to the rxInfo storage.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

48

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

stationTime
A shared value representing current time within each station.
Within the state machines of this standard, this is assumed to have two components, as follows:
seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 240 second.
ssPtr
A pointer to the service-data-unit portion of ePtr->rxSaved storage.
sxPtr
A pointer to the ePtr->rxSaved storage.
tsPtr
A pointer to the service-data-unit portion of txinfo storage.
txInfo
Parameters associated with an MS_UNITDATA.request (see 6.2.1.2), comprising the following:
destination_address, source_address, service_data_unit
Where service_data_unit comprises:
extraTime, function, grandTime, hopCount, precedence,
protocolType, snapTime, syncinterval, version
txPtr
A pointer to the txInfo storage.

6.3.4 State machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.
info—The next available parameters.
NULL—No parameters available.
Enqueue(queue, info)
Places the info parameters at the tail of the specified queue on all ports.
FormPreference(precedence, hops, port)

Forms a 16-byte preference by concatenating the following fields:
precedence (14 bytes)
hops (1 byte)
port (1 byte)

StationTime(ePtr)

Returns the value of the station’s shared local timer, encoded as follows:
seconds—A 16-bit unsigned value representing seconds.
fraction—A 48-bit unsigned value representing portions of a second, in units of 2740 second.

TimeSyncSdu(info)

Checks the frame contents to identify MS_DATAUNIT.indication frames.
TRUE—The frame is a timeSync frame.

FALSE—Otherwise.

6.3.5 GrandSync state table

The GrandSync state machine includes a media-dependent timeout, which effectively restarts the
grand-master selection process in the absence of received timeSync frames, as specified by Table 6.1.

Contribution from: dvi@alum.mit.edu.
49 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30
Table 6.1—GrandSync state table
Current . Next
(=]
. @ .
state condition action state
START | (rxInfo = Dequeue(Q_MS_IND)) 1 | — TEST
1= NULL
(stationTime — ePtr->timer) 2 | ePtr->lastTime = stationTime; START
> 4 * ePtr->syncinterval ssPtr->hopCount = ssPtr->sourePort =
ssPtr->precedence = ONES;
— 3 | stationTime = StationTime();
TEST TimeSyncSdu(rsPtr) && 4 | test = FormPreference(rsPtr->precedence, SERVE
rsPtr->hopCount != LAST_HOP rsPtr->hopCount, rsPtr->port);
best = FormPreference(ssPtr->precedence,
ssPtr->hopCount, ePtr->sourcePort);
— 5 | — START
SERVE | rsPtr->port == ePtr->rxSourcePort 6 | ePtr->lastTime = stationTime; HOPS
*ssPtr = *tsPtr = *rsPtr;
test <= best 7
— 8 | — START
HOPS | rsPtr->hopCount > 9 | tsPtr->hopCount = Min(LAST_HOP, LAST
ssPtr->hopcount 1+ (LAST_HOP + rsPtr->hopCount) / 2);
— 10 | tsPtr->hopCount = rsPtr->hopCount + 1;

LAST | — 11 | txPtr->destination_address = AVB_MCAST; START
txPtr->source_address = MacAddress(ePtr);
tsPtr->protocol Type = AVB_TYPE;
tsPtr->function = AVB_FUNCTION;
tsPtr->version = AVB_VERSION;

Enqueue(Q_MS_REQ), txPtr);
Row 6.1-1: Available indication parameters are processed.
Row 6.1-2: The absence of indications forces a timeout, after a entity-dependent delay
Row 6.1-3: Wait for changes of conditions.
Row 6.1-4: Still-active time-sync PDUs are processed further, based on grand-master preferences.

The new and old preference values consist of precedence, hopCount, and port components.
Row 6.1-5: Other PDUs and over-aged indications are discarded.

Row 6.1-6: Same-port indications always have preference.
Row 6.1-7: Preferred preference-level indications are accepted.

Row 6.1-8: Other indications are discarded.

Row 6.1-9: Increasing hopCount values are indicative of a rogue frame and are therefore quickly quashed.
Row 6.1-10: Non-increasing hopCount values are incremented and are thus aged slowly.

Row 6.1-11: Reset the timeout timer; broadcast saved parameters to all ports (including the source).

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

50

O© O ~NO O WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

7. ClockMaster/ClockSlave state machines

7.1 Overview
7.1.1 ClockMaster/ClockSlave behaviors

This clause specifies the state machines that specify ClockMaster and ClockSlave entity processing. The
operations are described in an abstract way and do not imply any particular implementations or any exposed
interfaces. There is not necessarily a one-to-one correspondence between the primitives and formal proce-
dures and the interfaces in any particular implementation.

The ClockMaster entity is responsible for forwarding the grand-master time supplied by the ClockSource
via the masterSync service primitive, as follows:

a) A count value (this is normally incremented in sequential masterSync PDUS) is checked.

b) Grand-master time from masterSync[n+1] is associated with the masterSync[n] invocation time.

c) The masterSync parameters are supplemented and passed to the GrandSync entity.

The ClockSlave entity is responsible for extracting the grand-master time delivered by the GrandSync entity
and supplying the current value to the ClockSink entity through the slavePoke service interface, as follows:

a) Grand-master time samples are extracted from GrandSync-supplied MS_UNITDATA-requests, and
saved as inputs for computing grand-master times in following slaveSync PDUs.

b) When triggered by a slavePoke indication, a slaveSync PDU is delivered to the ClockSink.
That PDU supplies the grand-master time associated with the slavePoke invocation time.

7.1.2 ClockMaster/ClockSlave interface model

The time-synchronization service model assumes the presence of one or more grand-master capable entities
communicating with a MAC relay, as illustrated on the left side of Figure 7.1. A grand-master capable port
is also expected to provide clock-slave functionality, so that any non-selected grand-master-capable station
can synchronize to the selected grand-master station.

ClockSource ClockSink
client ~— masterSync A [slavePoke
lower levels Y slaveSync~| y
(ClockMaster) [GrandSync] (' Clockslave)

AL }

N

. TS |
y ~localTime~

L | A

MS— |

|

MAC relay :

|

|

ISS I

802.n MAC I

|

1

Figure 7.1—ClockMaster interface model

Contribution from: dvi@alum.mit.edu.
51 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

The clock-master ClockMaster state machine (illustrated with an italics name and darker boundary) is
responsible for monitoring its port’s masterSync requests and sending MAC-relay frames. The sequencing
of this state machine is specified by Table 7.1; details of the computations are specified by the C-code of
Annex F.

The time-synchronization service model assumes the presence of one or more clock-slave capable time-sync
entities communicating with a GrandSync protocol entity, as illustrated on the top-side of Figure 7.1. A
non-talker clock-slave capable entity is not required to be grand-master capable.

The ClockSlave state machine (illustrated with an italics name and darker boundary) is responsible for
saving time parameters from relayed timedSync frames and servicing time-sync requests from the attached

clock-slave interface. The sequencing of this state machine is specified by Table 7.2; details of the computa-
tions are specified by the C-code of Annex F.

7.2 ClockMaster service interfaces
7.2.1 Shared service interfaces

The ClockMaster entity is coupled to the bridge ports TS entities via the defined time-sync related
MS_UNITDATA.indication service interface (see 6.2.1).

7.2.2 masterSync service interface
7.2.2.1 Function
Provides the ClockMaster entity with clock-synchronization parameters derived from the reference clock.
The information is sufficient to provide the ClockMaster with accurate {grandTime, localTime}
associations. The ClockSource entity supplies the reference time for service-interface invocation n within
the parameters of the next service-interface invocation n+1.
7.2.2.2 Semantics of the service primitive
The semantics of the primitives are as follows:

masterSync {

frameCount, /I An integrity-check that is incremented each invocation
grandTime, /I Global-time snapshot (1-cycle delayed)

}

The parameters of the masterSync service-interface primitive are described as follows:
7.2.2.2.1 frameCount: An 8-bit field that is incremented on each service-interface invocation.

7.2.2.2.2 grandTime: An 80-bit field that specifies the grand-master synchronized time within the source
station, when the previous timeSync frame was transmitted (see 6.2.1.6).

7.2.2.3 When generated

The masterSync service primitive is invoked by a client-resident ClockSource entity. The intent is to provide
the ClockMaster with continuous/accurate updates from a ClockSource-resident clock reference.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 52

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

7.2.2.4 Effect of receipt

Upon receipt by the ClockMaster entity, the encapsulated grandTime value is affiliated with the stationTime
snapshot from the previous invocation; the resulting {grandTime, stationTime} affiliation is passed to the
GrandSync entity for redistribution to other ClockSlave and TS entities.

7.3 ClockMaster state machine
7.3.1 State machine definitions

AVB identifiers
Assigned constants used to specify AVB frame parameters (see 6.3.2).
AVB_FUNCTION, AVB_MCAST, AVB_TYPE, AVB_VERSION
NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.
COUNT
A numerical constant equal to the range of the info.frameCount field value.
queue values
Enumerated values used to specify shared FIFO queue structures.
Q_CM_SET—The queue identifier associated with received clock-master sync frames.
Q_MS_IND—A GrandSync queue identifier (see 6.3.2).

7.3.2 State machine variables

count
A transient value representing the expected value of the next rxInfo.frameCount field value.
ePtr
A pointer to an entity data structure with information comprising the following:
precedence—A 14-byte field that specifies the grand-master selection precedence.
rxSaved—Saved parameters from a received masterSync primitive.
snapShot0—The info.snapShot field value from the last receive-port poke indication.
snapShot1—The value of the ePtr->snapShot0 field saved from the last poke indication.
syncinterval—The expected rate of clockMaster service-interface invocations.

rxinfo
A contents of a higher-level supplied time-synchronization request, including the following:
frameCount—A value that increments on each masterSync frame transmission.
grandTime—The value of grand-master time, when the previous masterSync frame was sent.
rxPtr
A pointer to rxInfo storage.
stationTime
See 6.3.3.
SXPtr
A pointer to the ePtr->rxSaved storage.
tsPtr
A pointer to the service-data-unit portion of txInfo storage.
txInfo
Storage for to-be-transmitted MS_UNITDATA . .request parameters (see 6.2.2.2), comprising:
destination_address, source_address, service_data_unit
Where service_data_unit comprises:
extraTime, function, grandTime, hopCount, precedence,
protocolType, snapTime, sourcePort, syncinterval, version

Contribution from: dvi@alum.mit.edu.
53 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

txPtr
A pointer to txInfo storage.

7.3.3 State machine routines

Dequeue(queue)

Enqueue(gqueue, info)

SourcePort(entity)

StationTime(entity)

TimeSyncSdu(info)
See 6.3.4.

7.3.4 ClockMaster state table

The ClockMaster state table encapsulates clock-provided sync information into a MAC-relay frame, as
illustrated in Table 7.1.

Table 7.1—ClockMaster state machine table

Current > Next
[e]
" 14 .
state condition action state
START | (rxInfo = Dequeue(Q_CM_SET)) 1 | ePtr->snapShotl = ePtr->snapShot0; SEND
1= NULL ePtr->snapShot0 = stationTime;

count = (sxPtr->frameCount + 1) % COUNT;
grandTime = rxPtr->grandTime;
*sxPtr = rxInfo;

— 2 | stationTime = StationTime(ePtr); START

SEND | count == sxPtr->frameCount 3 | txPtr->destination_address = AVB_MCAST; START
txPtr->source_address = MacAddress(ePtr);
tsPtr->prototol Type = AVB_TYPE;
tsPtr->function = AVB_FUNCTION;
tsPtr->version = AVB_VERSION;
tsPtr->precedence = ePtr->precedence;
tsPtr->hopCount = 0;

tsPtr->sourcePort = SourcePort(ePtr);
tsPtr->grandTime = grandTime;
tsPtr->extraTime = 0;

tsPtr->snapTime = ePtr->snapShot1,;
tsPtr->synclinterval = ePtr->syncinterval;
Enqueue(Q_MS_IND, txInfo);

_ 4 | —

Row 7.1-1: Update snapshot values on masterSync request arrival.
Row 7.1-2: Wait for the next change of state.

Row 7.1-3: Sequential requests are forwarded as a MA_UNITDATA.request to the GrandSync entity.
Row 7.1-4: Nonsequential requests are discarded.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 54

O© O ~NO O WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

7.4 ClockSlave service interfaces
7.4.1 Shared service interfaces

The ClockSlave entity is coupled to the GrandSync entity, via the defined MS_SYNC.request service
interface (see 6.2.2).

7.4.2 slavePoke service interface
7.4.2.1 Function

Triggers the ClockSlave entity to provide a {grandTime, localTime} association that is synchronized with
the grand-master clock.

7.4.2.2 Semantics of the service primitive
The semantics of the primitives are as follows:

slavePoke {
frameCount /I An integrity-check that is incremented each invocation

}

The parameters of the masterSync service-interface primitive are described as follows:

7.4.2.2.1 frameCount: An 8-bit field that is incremented on each service-interface invocation.

7.4.2.3 When generated

The slavePoke service primitive is invoked by a client-resident ClockSink entity. The intent is to trigger the
ClockSlave’s invocation of a following slaveSync primitive, thus providing the ClockSink entity with a
recent {grandTime,stationTime} affiliation.

7.4.2.4 Effect of receipt

Upon receipt by a ClockSlave entity, a copy of the current stationTime value is saved and an invocation of a
following slaveSync primitive is triggered.

Contribution from: dvi@alum.mit.edu.
55 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

7.4.3 slaveSync service interface

7.4.3.1 Function

Provides the ClockSync entity with clock-synchronization parameters derived from the reference clock. The
information comprises {frameCount, grandTime} associations: frameCount is supplied by the previous
slavePoke invocation; grandTime represents the invocation time of that preceding slavePoke service primi-
tive.

7.4.3.2 Semantics of the service primitive

The semantics of the primitives are as follows:

slaveSync {
frameCount, /I ldentifies the previous slavePoke invocation
grandTime, /I Grand-master synchronized snapshot.

}

The parameters of the slaveSync service-interface primitive are described as follows:

7.4.3.2.1 frameCount: An 8-bit field that copied from the like-named field of the previous slavePoke
service-interface invocation.

7.4.3.2.2 grandTime: An 80-bit field that specifies the grand-master synchronized time within the
ClockSlave entity, when the previous slavePoke service-interface was invoked.

7.4.3.3 When generated

The invocation of the slaveSync service primitive is invoked by the receipt of a ClockSink supplied
slavePoke PDU. The intent is to provide the ClockSink entity with a recent {grandTime,stationTime} affilia-
tion.

7.4.3.4 Effect of receipt

Upon receipt by a ClockSink entity, the {grandTime,stationTime} affiliation is expected to be saved and
(along with previously saved copies) used to adjust the rate of the grand-master synchronized
ClockSink-resident clock.

7.5 ClockSlave state machine
7.5.1 Function
7.5.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.
queue values
Enumerated values used to specify shared FIFO queue structures.
Q_MS_REQ—A GrandSync queue identifier (see 6.3.2).
Q_CS_REQ—The queue identifier associated with slavePoke requests.
Q_CS_IND—The queue identifier associated with slaveSync indications.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 56

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

7.5.3 State machine variables

ePtr
A pointer to entity-dependent information, including the following:
rxSaved—A copy of the GrandSync supplied MA_DATAUNIT.request value.
syncinterval—The expected service rate of slavePoke services.
baseTimer—Recently saved time events, each consisting of the following:
index—Index into the timed[] array, where last times were stored.
range—Number of entries within the timed[] array
timed[range]—Recently saved time events, each consisting of the following:
grandTime—A previously sampled grand-master synchronized time.
extraTime—The residual error associated with the sampled grandTime value.
stationTime—The station-local time affiliated with the sampled grandTime value.
cxInfo
A contents of a higher-level supplied time-synchronization request, including the following:
frameCount—A value that increments on each masterSync PDU transfer.
nextTime
Storage representing grandTime and extraTime values returned from call to NextTimed().
rsPtr
A pointer to the service-data-unit portion of rxinfo.
rxinfo
A contents of a GrandSync supplied MA_UNITDATA . .request (see 6.2.2), including the following:
destination_address, source_address, service_data_unit
Where service_data_unit comprises:
extraTime, function, grandTime, protocolType, snapTime, version
rxPtr
A pointer to rxInfo.
rxSyncinterval
The synchronization interval of this station’s GrandSync-selected clock-slave port.
stationTime
See 6.3.3.
ssPtr
A pointer to the service-data-unit portion of the ePtr->rxSaved storage
SxPtr
A pointer to the ePtr->rxSaved storage
timePtr
A pointer to the ePtr->timed[] array storage
txInfo
A contents of a ClockSlave supplied slaveSync (see 6.2.2), comprising the following:
frameCount—The saved value of the like named field from the previous slavePoke PDU.
grandTime—The grand-master synchronized time sampled during the slavePoke transfer.
txPtr
A pointer to txInfo storage.
txSynclinterval
The synchronization interval of this ClockSlave entity.

7.5.4 State machine routines

Dequeue(queue)

Enqueue(gqueue, info)
See 6.3.4.

NextSaved(btPtr, ratelnterval, grandTime, extaTime, thisTime)
Saves grandTime, extraTime values associated with a snapshot taken at thisTime, with the saved
values spanning a ratelnterval specified interval.

Contribution from: dvi@alum.mit.edu.
57 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

NextTimed(btPtr, stationTime, backInterval)
Returns grandTime and extraTime values associated with a snapshot taken at stationTime,
back-interpolated by a backlInterval time, based on previous received-time information saved in the
btPtr referenced data structure.

StationTime(entity)
See 6.3.4.

TimeSyncSdu(info)
See 7.3.3.

7.5.5 ClockSlave state table

The ClockSlave state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received timeSync frames, as illustrated in Table 7.2.

Table 7.2—ClockSlave state table

Current > Next
[=]
. 4 .
state condition action state

START | (rxInfo = Dequeue(Q_MS_REQ)) 1| — TEST

I= NULL

((cxInfo = 2 | rxSyncinterval = ssPtr->syncinterval; START

Dequeue(Q_CS_REQ)) != NULL txSyncinterval = ePtr->syncinterval;

backlInterval =

(3 * rxSynclnterval + txSynclnterval) / 2;
nextTimes =

NextTimed(btPtr, stationTime, backInterval);
txPtr->count = cxInfo.count;
txPtr->grandTime =

nextTimes.grandTime + nextTimes.extraTime;
Enqueue(Q_CS_IND, txInfo);

— 3 | stationTime = StationTime(ePtr);

TEST | TimeSyncSdu(rsPtr) 4 | *sxPtr = *rxPtr; START
NextSaved(btPtr, ratelnterval, rsPtr->grandTime;
rsPtr->extraTime, rsPtr->snapTime);

— 5 | —

Row 7.2-1: The received MS_UNITDATA.request parameters are dequeued for checking.

Row 7.2-2: A clock-slave request generates an affiliated information-providing indication.

The affiliated indication has the sequence-count information provided by the request.

The delivered end-point grandTime value is the sum of delivered grandTime and extraTime values.
The requested content is queued for delivery to the higher-level client.

Row 7.2-3: Wait for the next change-of-conditions.

Row 7.2-4: Validated GrandSync entity requests are accepted; its time parameters are saved.

The back-interpolation time is estimated from the syncinterval times of the source and clock slave.
(This back-interpolation time is used by NextTimed(), which provides transmission-time estimates.)
Row 7.2-5: Wait for the next change-of-conditions.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 58

O© O ~NO O WN P

GO OO DDADDADLNDDADRNWWWWWWWWWWNRNRNNMNNNNNNNRERERERRERERERR R
EAONPOOOVNOUTRNOMNPOOONNOBRERROMNPRPOOONOWUDRWNRPOOOMNDUDWNRO

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

8. Ethernet full duplex (EFDX) state machines

8.1 Overview

This clause specifies the state machines that support 802.3 Ethernet full duplex (EFDX) bridges. The
operations are described in an abstract way and do not imply any particular implementations or any exposed
interfaces. There is not necessarily a one-to-one correspondence between the formal specification and the
interfaces in any particular implementation.

8.1.1 EFDX link indications
The duplex-link TimeSyncRxEfdx state machines are provided with snapshots of timeSync-frame reception

and transmission times, as illustrated by the ports within Figure 8.1. These link-dependent indications can be
different for bridge ports attached to alternative media.

GrandSync MS_UNITDATA.request

i MS_UNITDATA.indication
/
1y
TS TimeSyncRxEfdx * ‘ * TimeSyncTxEfdx
A ~localTime~

LLC A A
MS

MAC relay rxSync ~_J txSynce~_J

ISS ISS
802.3 MAC 802.3 MAC
T PHY
/LAN/

Figure 8.1—EFDX-link interface model

The rxSync and txSync indications provide a tag (to reliably associate them with MAC-supplied timeSync
frames) and a localTime stamp indicating when the associated timeSync frame was received, as illustrated
within Figure 8.2.

seconds| fraction

count
INNNEEN] IIIIIII|IIIIIII|IIIIIII|IIIIIII INNNEEN]

tag snapTime

Figure 8.2—Contents of rxSync/txSync indications

Contribution from: dvi@alum.mit.edu.
59 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

8.1.2 Link-delay compensation

Synchronization accuracies are affected by the transmission delays associated with transmissions over links
between bridges. To compensate for these transmission delays, the receive port is responsible for
compensating {grandTime, stationTime} affiliations by the (assumed to be constant) frame-transmission
delay.

The clock-slave entity uses the computed cable-delay measurement and is therefore (in concept) responsible
for initiating such measurements. Cable-delay measurements begin with the transmission of frame F1
between the clock-slave and clock-master stations and conclude with the a clock-master response, a
transmission of frame F2 between the clock-master to clock-slave stations, as illustrated in Figure 8.3.

Clock-master Clock-slave
responder requester

. S — thatTxTime a) frame.localTime = txSnapShot;

b) thisTxTime = frame.localTime; xonap '
) thisRxTime = rxSnapShot; « —F1— | txSnapShot = stationTime;

rxSnapShot = stationTime; thatRxTime

turnRound roundTrip

c) frame.localTime = txSnapShot ;]]
frame.thatTxTime = thisTxTime; thisTxTime

frame.thatRxTime = thisRxTime; [F2— d) thisTxTime = frame.localTime;
txSnapShot = stationTime; thisRxTime thisRxTime = rxSnapShot;
thatTxTime = frame.thatTxTime;
increasing thatRxTime = frame.thatRxTime;
v time v rxSnapShot = stationTime;

Figure 8.3—Link-delay compensation

The cable-delay computations are performed in multiple steps, as follows:
a) The F1-frame transmission involves multiple steps:

1) The txSnapShot value (time of the last F1 transmission) is copied to frame.localTime storage.
2) Remaining fields are copied into frame storage; the frame-storage content is transmitted.
3) The txSnapShot value is set to the frame-F1 transmission time, for next step (a) usage.

b) The F1-frame reception involves multiple steps:

1) The frame.localTime value is copied to a port-local thisTxTime field, for next step (c) usage.
2) The rxSnapShot value (time of the last F1 reception) is copied to a port-local thisRxTime field.
3) The rxSnapShot value is set to the F1-frame reception time, for next step (b) usage.

c) The F2-frame transmission involves multiple steps:

1) The txSnapShot value (time of the last F1 transmission) is copied to frame.localTime storage.
2) The receive-port thisTxTime value is copied to frame.thatTxTime storage.

3) The receive-port thisRxTime value is copied to frame.thatRxTime storage.

4) Remaining fields are copied into frame storage; the frame-storage content is transmitted.

5) The txSnapShot value is set to the frame-F2 transmission time, for next step (c) usage.

d) The F2-frame reception involves multiple steps:

1) The frame.localTime value is copied to a port-local thisTxTime field.

2) The rxSnapShot value (time of the last F2 reception) is copied to a port-local thisRxTime field.
3) The frame.thatTxTime value is copied to a port-local thatTxTime field.

4) The frame.thatRxTime value is copied to a port-local thatRxTime field.

5) The rxSnapShot value is set to the F2-frame reception time, for next step (d) usage.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 60

O© O ~NO O WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

At the conclusion of these steps, the values returned to the clock-slave requester include the values below.
(Within Figure 8.3, these values are also illustrated in the center, at their source, using a distinct italic font.)
— thatTxTime. The clock-slave transmit time.
— thatRxTime. The clock-master receipt time.
— thisTxTime. The clock-master transmit time.
— thisRxTime. The clock-slave receipt time.

Based on the preceding listed values, Equation 8.1 defines the computations for computing linkDelay.
Although not explicitly stated, the best accuracy can be achieved by performing these computation every
cycle.

linkDelay = (roundTrip — turnRound) / 2; (8.1)
roundTrip = thisRxTime — thatTxTime;

turnRound = (thisTxTime — thatRxTime) * ratesRatio;
Where:
ratesRatio = (deltaRxTime / deltaTxTime);

The value of ratesRatio is necessary to maintain tight accuracies in the presence of significant (+200 PPM)
differences in clock-master/clock-slave timing references and significant (multiple milliseconds) turnRound
delays. This value is also readily computed from the preceding listed values, as specified by Equation 8.2.

ratesRatio[n] = (thisRxTime[n] — thisRxTime[n-N]) / (thisTxTime[n] — thisTxTime[n-N]); (8.2)

NOTE—For 802.3 and other inexpensive interconnects, the processing of slow-rate PDUs is oftentimes performed by
firmware and (due to interrupt and processing delays) the turn-around delays can be much larger than the packet-trans-
mission times.

The cable-delay computations assume the transmission delays associated with frame F1 and frame F2 are
equal and constant. If the duplex links within a span have different propagation delays, these linkDelay
calculations do not correspond to the different propagation delays, but represent the average of the two link
delays. Implementers have the option of manually specifying the link-delay differences via MIB-accessible
parameters, within tightly-synchronized systems where this inaccuracy might be undesirable.

This cable-delay calculation does not rely on the particular timings of F1 and F2 frame transmissions. These
transmissions can be triggered independently (as opposed to one triggered by the other) and could occur at
different rates (although the accuracies are limited by the slower rate). As a direct benefit of these
independence properties, distinct interlocks or timeouts for expected-but-corrupted-and-not-delivered trans-
missions are unnecessary.

Furthermore, there is no need to transport F1 and F2 content in distinct frames. The contents of clock-slave
affiliated F1 and clock-master affiliated F2 frames can be merged and transported within the same frame.
Thus, distinct frame types and/or transmission timings are unnecessary; the link-delay calibration protocols
do nothing to prevent the same frame from communicating master-to-slave and slave-to-master link delays,
in addition to the baseline grand-master timing and selection parameters.

Contribution from: dvi@alum.mit.edu.
61 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

8.2 timeSyncEfdx frame format
8.2.1 timeSyncEfdx fields

EFDX time-synchronization (timeSyncEfdx) frames facilitate the synchronization of neighboring
clock-master and clock-slave stations. The frame, which is normally sent at 10ms intervals, includes
time-snapshot information and the identity of the network’s clock master, as illustrated in Figure 8.4. The
gray boxes represent physical layer encapsulation fields that are common across Ethernet frames.

6 da — Destination MAC address
6 sa — Source MAC address
2 protocolType — Distinguishes AVB frames from others
1 function — Distinguishes timeSync from other AVB frames
1 version — Distinguishes between timeSync frame versions
14 precedence — Precedence for grand-master selection
10 grandTime — Transmitter grand-time snapshot (1 cycle delayed)
4 extraTime — Back-prediction error for grandTime computation
1 frameCount — A (sequence number) count of time-sync frames
1 hopCount — Hop count from the grand master
6 localTime — Transmitter local-time snapshot (1 cycle delayed)
6 thatTxTime — Opposing link’s frame transmission time
6 thatRxTime — Opposing link’s frame reception time
4 fcs — Frame check sequence

68 bytes total

Figure 8.4—timeSyncEfdx frame format

NOTE— Existing 1588 time-snapshot hardware captures the values between byte-offset 34 and 45 (inclusive). The
location of the frameCount field (byte-offset 44) has been adjusted to ensure this field can be similarly captured for the
purpose of unambiguously associating timeSync-packet snapshots (that bypass the MAC) and timeSync-packet contents
(that pass through the MAC).

The 48-bit da (destination address), 48-bit sa (source address) field, 16-bit protocolType, 8-bit function,
8-bit version, 14-byte precedence, 80-bit grandTime, 32-bit extraTime, 8-bit hopCount, and 6-byte
localTime field are specified in 6.2.1.2.

8.2.1.1 frameCount: An 8-bit field that is incremented by one between successive timeSync frame
transmission.

8.2.1.2 thatTxTime: A 48-bit field that specifies the local free-running time within the source station, when
the previous timeSync frame was transmitted on the opposing link (see 6.2.1.8).

8.2.1.3 thatRxTime: A 48-bit field that specifies the local free-running time within the target station, when
the previous timeSync frame was received on the opposing link (see 6.2.1.8).

8.2.1.4 fcs: A 32-bit (frame check sequence) field that is a cyclic redundancy check (CRC) of the frame.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 62

O© O ~NO O WN P

OO0 NO Ul WN -

Moo oAb BEBAADEDDEDEDEDWWWWWWWWWWNDNNDNNNMNNNNREPRPRRPERPRPERPERRRPRE
P OLONPODOONOUURAARWNPOOO~NOOPRRWNPOOO~NOUIARWNPOOO~NOOLWNEO

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

8.2.2 Clock-synchronization intervals

Clock synchronization involves synchronizing the clock-slave clocks to the reference provided by the grand
clock master. Tight accuracy is possible with matched-length duplex links, since bidirectional frame
transmissions can cancel the cable-delay effects.

Clock synchronization involves the processing of periodic events. Multiple time periods are involved, as

listed in Table 8.1. The clock-period events trigger the update of free-running timer values; the period affects
the timer-synchronization accuracy and is therefore constrained to be small.

Table 8.1—Clock-synchronization intervals

Name Time Description

clock-period <20ns Resolution of timer-register value updates

send-period 10 ms Time between sending of periodic timeSync frames between adjacent stations

slow-period 100 ms Time between computation of clock-master/clock-slave rate differences

The send-period events trigger the interchange of timeSync frames between adjacent stations. While a
smaller period (1 ms or 100 us) could improve accuracies, the larger value is intended to reduce costs by
allowing computations to be executed by inexpensive (but possibly slow) bridge-resident firmware.

The slow-period events trigger the computation of timer-rate differences. The timer-rate differences are
computed over two slow-period intervals, but recomputed every slow-period interval. The larger 100 ms (as
opposed to 10 ms) computation interval is intended to reduce errors associated with sampling of
clock-period-quantized slow-period-sized time intervals.

Contribution from: dvi@alum.mit.edu.
63 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

8.3 TimeSyncRxEfdx state machine
8.3.1 Function

The TimeSyncRxEfdx state machine is responsible for monitoring its port’s rxSync indications, receiving
MAC-supplied frames, and sending MAC-relay frames. The sequencing of this state machine is specified by
Table 8.2; details of the computations are specified by the C-code of Annex F.

8.3.2 State machine definitions

LAST_HOP
A constant representing the largest-possible frame.hopCount value.
value—255.
NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.
queue values
Enumerated values used to specify shared FIFO queue structures.
Q_MS_IND—The queue identifier associated with MAC frames sent into GrandSync.
Q_ES_IND—The queue identifier associated with the received MAC frames.
Q_RX_SYNC—The queue identifier associated with rxSync, sent from the lower levels.

8.3.3 State machine variables

cableDelay
Values (possibly scaled integers) representing cable-delay times.
count
A transient value representing the expected value of the next rxInfo.frameCount value.
cxInfo
A contents of a lower-level supplied time-synchronization poke indication, including the following:
frameCount—The value of the like-named field within the last timeSync packet arrival.
snapTime—The value of stationTime associated with the last timeSync packet arrival.
cxPtr
A pointer to cxInfo storage.
ePtr
A pointer to a data structure that contains port-specific information comprising the following:
frameCount—The value of frameCount within the last received frame.
rated—The ratio of the local-station and remote-station local-timer rates.
snapCount—The value of frameCount saved from the last snapshot indication.
snapShot0—The info.snapShot field value from the last receive-port snapshot indication.
snapShotl—The value of the ePtr->snapShot0 field at the snapshot indication.
times[N]—An array of time groups, where each array elements consists of:
thisTime—The local receive time associated with received time-sync frames.
thatTime—The remote transmit time associated with received time-sync frames.
ratesRatio
A variable representing the ratio of this station’s timer to this port’s neighbor timer.
roundTrip
A variable representing the time between transmit-to-neighbor and receive-from-neighbor events.
rsPtr
A pointer to the service-data-unit portion of rxInfo storage.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 64

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

rxinfo
Storage for received time-sync PDUs, comprising:
destination_address, source_address, service_data_unit
Where service_data_unit comprises:
extraTime, frameCount, function, grandTime, hopCount, localTime,
protocolType, precedence, thatTxTime, thatRxTime, version
rxPtr
A pointer to the rxInfo storage.
stationTime
See 6.3.3.
thisDelay, thatDelay, thatDelay, thisDelta, thisTime, thatTime, tockTime
Values (possibly scaled integers) representing intermediate local-time values.
tsPtr
A pointer to service-data-unit portion of txInfo storage.
turnRound
A variable representing the time between receive-at-neighbor and transmit-from-neighbor events.
txInfo
Storage for information sent to the GrandSync entity, comprising:
destination_address, source_address, service_data_unit
Where service_data_unit comprises:
extraTime, sourcePort, function, grandTime, hopCount,
localTime, protocolType, precedence, syncinterval, version
txPtr
A pointer to txInfo storage.

8.3.4 State machine routines

Dequeue(queue)
Enqueue(queue, info)
See 6.3.4.
Min(x, y)
Returns the minimum of x and y values.
RemoteRate(times)
The ratio of local-to-remote localTime rates is computed from samples within the of times array.
Each times-array element contains two times:
thisTime - the receive time of the frame.
thatTime - the transmit time of the frame.
SourcePort(entity)
See 7.3.3.
StationTime(entity)
TimeSyncSdu(info)
See 6.3.4.

Contribution from: dvi@alum.mit.edu.
65 This is an unapproved working paper, subject to change.

AVB BRIDGING

8.3.5 TimeSyncRxEfdx state machine table

JggDvj20050416/D0.710

2007-05-30

The TimeSyncRxEfdx state machine associates PHY-provided sync information with arriving timeSync
frames and forwards adjusted frames to the MAC-relay function, as illustrated in Table 8.2.

Table 8.2—TimeSyncRxEfdx state machine table

Current

Next

state

condition

Row

action

state

START

(cxInfo =Dequeue(Q_RX_SYNC))
I= NULL

ePtr->snapShotl = ePtr->snapShot0;
ePtr->snapShot0 = cxPtr->local Time;
ePtr->snapCount = cxPtr->frameCount;

match= (rxPtr->frameCount==ePtr->snapCount);

START

(rxInfo=Dequeue(Q_ES_IND))
I= NULL

count = (ePtr->rxFrameCount + 1) % COUNT;
ePtr->rxFrameCount = rxPtr->frameCount;

TEST

match

PAIR

stationTime = StationTime(ePtr);

START

TEST

ITimeSyncSdu(rsPtr)

Enqueue(Q_CS_IND, rxPtr);

START

rxPtr->hopCount == LAST_HOP

count !'= rxPtr->frameCount

match= (rxPtr->frameCount==ePtr->snapCount);

PAIR

© | 0o | N || 0| | W

ePtr->times[0].thisTime = ePtr->snapShot1;
ePtr->times[1].thatTime = rsPtr->localTime;
ratesRatio = RemoteRate(ePtr->times);
roundTrip = localTime — ePtr->thatTxTime;
turnRound =

rsPtr->localTime — rsPtr->thatRxTime;
cableDelay =

Min(0, roundTrip — (turnRound * ratesRatio));
txPtr->destination_address =

rxPtr->destination_address;
txPtr->source_address = rxPtr->source_address;
tsPtr->protocol Type = rsPtr->protocol Type;
tsPtr->function = rsPtr->function;
tsPtr->version = rsPtr->version;
tsPtr->grandTime = rsPtr->grandTime;
tsPtr->extraTime = rsPtr->extraTime;
tsPtr->snapTime = ePtr->snapShot1 — cableDelay;
tsPtr->sourcePort = SourcePort(ePtr);
tsPtr->hopCount = rsPtr->hopCount;
tsPtr->syncinterval = ePtr->syncinterval;
Enqueue(Q_MR_HOP, relayFrame);

START

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

66

O© O ~NO O WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

Row 8.2-1: Update snapshot values on timeSync frame arrival.

Row 8.2-2: Initiate inspection of frames received from the lower-level MAC.

Row 8.2-3: Generate a GrandSync PDUs using matching snapshot and frame information.
Row 8.2-4: Wait for the next change-of-state.

Row 8.2-5: The non-timeSync frames are passed through.

Row 8.2-6: Over-aged timeSync frames are discarded.

Row 8.2-7: Non-sequential timeSync frames are ignored.

Row 8.2-8: Associated snapshot and frame information trigger a GrandSync indication generation.

Row 8.2-9: Generate a time-sync GrandSync indication from saved snapshot and frame information.

8.4 TimeSyncTxEfdx state machine
8.4.1 Function

The TimeSyncTxEfdx state machine is responsible for saving time parameters from relayed timedSync
frames and forming timeSync frames for transmission over the attached link.

8.4.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.
queue values
Enumerated values used to specify shared FIFO queue structures.
Q_MR_HOP—The queue identifier associated with frames sent from the relay.
Q_ES_REQ—The queue identifier associated with frames sent to the MAC.
Q_TX_SYNC—The queue identifier associated with txSync, sent from the lower levels.
T10ms
A constant the represents a 10 ms value.

8.4.3 State machine variables

backinterval
A variable that represents the back-interpolation interval for transmit-time affiliations.
cxInfo
A contents of a lower-level supplied time-synchronization poke indication, including the following:
snapCount—The value of the like-named field within the last timeSync packet arrival.
snapTime—The value of stationTime associated with the last timeSync packet arrival.
dPtr
A pointer this port’s associated TimeSyncRxEfdx-entity storage.

Contribution from: dvi@alum.mit.edu.
67 This is an unapproved working paper, subject to change.

AVB BRID

ePtr

GING JggDvj20050416/D0.710
2007-05-30

A pointer to a data structure that contains port-specific information comprising the following:
baseTimer—Recently saved time events, each consisting of the following:
index—Index into the timed[] array, where last times were stored.
range—Number of entries within the timed[] array
timed[range]—Recently saved time events, each consisting of the following:
grandTime—A previously sampled grand-master synchronized time.
extraTime—The residual error associated with the sampled grandTime value.
stationTime—The station-local time affiliated with the sampled grandTime value.
frameCount—A consistency-check identifier that is incremented on each transmission.
lastTime—The last transmit time, saved for timeout purposes.
rxSaved—A copy of the last received GrandSync parameters.
syncinterval—The expected interval between successive time-sync transmissions.
txSnapCount—The frameCount value associated with the last transmission.
txSnapTime—The stationTime value associated with the last transmission.

rsPtr

A pointer to service-data-unit portion of rxInfo storage.

rxinfo

rxPt

Storage for received time-sync PDUs from the GrandSync entity, comprising:
destination_address, source_address, service_data_unit

Where service_data_unit comprises:
extraTime, function, grandTime, hopCount,
precedence, protocolType, snapTime, syncinterval, version

r

A pointer to rxInfo storage.

rxSyncinterval

A variable that represents the sync-interval associated with this station’s clock-slave port.

stationTime

See 6.3.3.

ssPtr

sxPt

A pointer to the service-data-unit portion of the ePtr->rxSaved storage
r
A pointer to the ePtr->rxSaved storage.

tsPtr

A pointer to service-data-unit portion of txInfo storage.

txInfo

Storage for to-be-transmitted time-sync PDUs, comprising:
destination_address, source_address, service_data_unit

Where service_data_unit comprises:
extraTime, function, frameCount, grandTime, hopCount, localTime,
precedence, protocolType, thatRxTime, thatTxTime, version

txPtr

A pointer to txInfo storage.

txSynclinterval

A variable that represents the sync-interval associated with this clock-master port.

8.4.4 State machine routines

Dequeue(queue)
Enqueue(queue, info)

See 6.3.4.

NextSaved(btPtr, ratelnterval, grandTime, extaTime, thisTime)
NextTimed(btPtr, stationTime, backInterval)

See 7.5.4.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

68

O© O ~NO O WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

StationTime(entity)
See 7.3.3.
TimeSyncSdu(info)
See 6.3.4.

8.4.5 TimeSyncTxEfdx state machine table

The TimeSyncTxEfdx state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received timeSync frames, as illustrated in Table 8.3.

Contribution from: dvi@alum.mit.edu.
69 This is an unapproved working paper, subject to change.

AVB BRIDGING

JggDvj20050416/D0.710

Table 8.3—TimeSyncTxEfdx state machine table

2007-05-30

Current

Next

state

condition

Row

action

state

START

(rxInfo = Dequeue(Q_MS_REQ))
I= NULL

TEST

(stationTime — ePtr->lastTime)
> T10ms

ePtr->lastTime = stationTime;

SEND

(cxInfo = Dequeue(Q_TX_SYNC))
1= NULL

ePtr->txSnapTime = cxPtr->snapTime;
ePtr->txSnapCount = cxPtr->frameCount;

stationTime = StationTime(ePtr);
rxSynclinterval = ssPtr->syncinterval;
txSynclnterval = ePtr->syncinterval;
backInterval =

(3 * rxSynclnterval + txSynclnterval) / 2;
ratelnterval =

backinterval + (3 * txSyncinterval) / 2;

START

TEST

TimeSyncSdu(rsPtr)

ePtr->rxSaved = rxInfo;
NextSaved(btPtr, ratelnterval,rsPtr->grandTime,
rsPtr->extraTime, rsPtr->snapTime);

Enqueue(Q_ES_REQ), rxPtr);

START

SEND

dPtr = PortPair(ePtr);
nextTimes =
NextTimed(btPtr, stationTime, backinterval);
ePtr->synclinterval, ePtr->timed);
ePtr->txFrameCount =
(ePtr->txSnapCount + 1) % COUNT;
txPtr->destination_address =
sxPtr->destination_address;
txPtr->source_address = sxPtr->source_address;
tsPtr->protocolID = ssPtr->protocolID;
tsPtr->function = ssPtr->function;
tsPtr->version = ssPtr->version;
tsPtr->hopCount = ssPtr->hopCount;
tsPtr->frameCount = ssPtr->frameCount;
tsPtr->grandTime = nextTimes.grandTime;
tsPtr->extraTime = nextTimes.extraTime;
tsPtr->local Time = ePtr->txSnapTime;
tsPtr->thatTxTime = dPtr->thisTxTime;
tsPtr->thatRxTime = dPtr->thisRxTime;
Enqueue(Q_ES_REQ), txPtr);

START

Row 8.3-1:
Row 8.3-2:
Row 8.3-3:
Row 8.3-4:

Row 8.3-5:
Row 8.3-6:

Row 8.3-7:

Relayed frames are further checked before being processed.
Transmit periodic timeSync frames.
Update snapshot values on timeSync frame departure.

Wait for the next change-of-state.

The timeSync PDUs are checked further.
The non-timeSync PDUs are passed through.

Active timeSync frames are cable-delay compensated and passed through.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

70

O© O ~NO O WN P

OO0 NO Ul WN -

Moo oAb BEBAADEDDEDEDEDWWWWWWWWWWNDNNDNNNMNNNNREPRPRRPERPRPERPERRRPRE
P OLONPODOONOUURAARWNPOOO~NOOPRRWNPOOO~NOUIARWNPOOO~NOOLWNEO

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

9. Wireless state machines

EDITOR DVJ NOTE—This clause is based on indirect knowledge of the 802.11v specifications, as interpreted by the
author, and have not been reviewed by the 802.1 or 802.11v WGs. The intent was to provide a forum for evaluation of
the media-independent MAC-relay interface, while also triggering discussion of 802.11v design details. As such, this
clause is highly preliminary and subject to change.

Specifically, we have not resolved the grouping of information that is transferred through the service interfaces
(currently written as all) and the information that would be transferred through standard MAC frames (currently written
as none).

9.1 Overview

This clause specifies the state machines that support wireless 802.11v-based bridges. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the formal specification and the interfaces in
any particular implementation.

9.1.1 Link-dependent indications
The wireless 802.11v TimeSyncR11v state machines are provided with MAC service-interface parameters,

as illustrated within Figure 9.1. These link-dependent indications can be different for bridge ports attached
to alternative media.

GrandSync MS_UNITDATA.request

S_UNITDATA.indication
A L
Ty
)
TS
A ~localTime~ c A
MS MS H
MAC relay ”&/ service interfaces
ISS ISS
802.3 MAC 802.3 MAC
— /

Figure 9.1—R11v interface model

The rxSync and txSync indications are localized communications between the MAC-and-PHY and are not
directly visible to the a TimeSync state machines. Client-level interface parameters include the timing
information, based on the formats illustrated within Figure 9.2.

seconds nanoSeconds | ticks
IIIIIIIIIIIIIIIIIIIII|IIIIIII|IIIIIII|II!IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII .
grandeTime fastTime

Figure 9.2—Formats of wireless-dependent times

Contribution from: dvi@alum.mit.edu.
71 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

9.1.2 Service interface overview

A sequence of 802.11v TimeSync service interface actions is illustrated in Figure 9.3 and summarized
below:

a) A periodic clock-slave trigger initiates the initial MLME_PRESENCE_REQUEST.request action.

b) The clock-master gets an MLME_PRESENCE_REQUEST.indication upon request receipt.
The clock-slave gets an MLME_PRESENCE_REQUEST.confirm when the ack is returned.

c) The clock-master processes the MLME_PRESENCE_REQUEST.indication parameters, returning
them in MLME_PRESENCE_RESPONSE.request parameters for the clock-slave station.

d) The clock-slave gets an MLME_PRESENCE_RESPONSE.indication upon response receipt.
The clock- master gets an MLME_PRESENCE_RESPONSE.confirm when the ack is returned.

Clock-master Clock-slave
responder requester
request tl |« — - MLME_PRESENCE_REQUEST.request
2 @ |
la—
MLME_PRESENCE_REQUEST.indication -« — {75~ (b)
Provides: t2 and t3 B Ak T s
: : t4 | — = MLME_PRESENCE_REQUEST.confirm
' Provides: t1 and t4.
|
MLME_PRESENCE_RESPONSE.request - — »&ponse
Supplied: t2, t3—-t2 and grandeTime. C
PP g ()\>. — » MLME_PRESENCE_RESPONSE.indication
4/(d)/ Provides: t2, t3—t2 and grandeTime.
MLME_PRESENCE_RESPONSE.confirm -e — - ack
increasing
v time v

Figure 9.3—802.11v time-synchronization interfaces
The properties of these service interfaces are summarized below:

MLME_PRESENCE_REQUEST.request

Generated periodically by the clock-slave entity.

Triggers a (Figure 9.3a) request to fetch clock-master resident timing parameters.
MLME_PRESENCE_REQUEST.indication

Generated after receiving a (Figure 9.3a) request.

Provides t2 and t3 timing information to the clock-master entity.
MLME_PRESENCE_REQUEST.confirm

Generated after the (Figure 9.3b) request-ack is returned.

Provides timel and time4 timing information to the clock-slave entity.

Confirms completion of the request transmission.

MLME_PRESENCE_RESPONSE.request

Generated shortly after processing a received (Figure 9.3a) request

Triggers a (Figure 9.3-c) response to update clock-slave resident timing parameters.
MLME_PRESENCE_RESPONSE.indication

Generated in response to receiving a (Figure 9.3c) response.

Provides time2, time3-time2, and grandeTime information to the clock-slave entity.
MLME_PRESENCE_RESPONSE.confirm

Generated after the (Figure 9.3d) ack is returned.

Confirms completion of the response transmission.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 72

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

9.2 Service interface definitions
9.2.1 MLME_PRESENCE_REQUEST.request
9.2.1.1 Function

The service interface triggers the sending of a (Figure 9.3a) request from the clock-slave requester to the
clock-master responder. A snapshot of the transmit time is also saved for deferred transmission/processing.

9.2.1.2 Semantics of the service primitive
The semantics of the primitives are as follows:

MLME_PRESENCE_REQUEST.request {
other_arguments /I Arguments for other purposes

}

9.2.1.3 When generated
Generated periodically by a receive TS port as the first phase of a time-sync information transfer.
9.2.1.4 Effect of receipt

Upon receipt by a transmit TS port, an MLME_PRESENCE_REQUEST.indication is invoked; times of the
arriving (Figure 9.3a) request and departing (Figure 9.3b) request-ack are both passed within this indication.

9.2.2 MLME_PRESENCE_REQUEST.indication

9.2.2.1 Function

The receipt of a (Figure 9.3a) request from the clock-slave requester triggers the return of an (Figure 9.3b)
request-ack from the clock-master port. The transfer of an MLME_PRESENCE_REQUEST.indication to
the clock-master provides snapshots of the (Figure 9.3a) request-receipt time as well as the following
(Figure 9.3b) ack-transmit time.

9.2.2.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MLME_PRESENCE_REQUEST.indication {

other_arguments, /I Arguments for other purposes
time_t2, /I Arrival time of request
time_t3 /I Departure time of request-ack

}

9.2.2.3 When generated
Generated by the receipt of a (Figure 9.3a) request during the first phase of a time-sync transfer.
9.2.2.4 Effect of receipt

Upon receipt, the times of the arriving (Figure 9.3a) request and (Figure 9.3b) request-ack are both saved for
deferred processing.

Contribution from: dvi@alum.mit.edu.
73 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

9.2.3 MLME_PRESENCE_REQUEST.confirm

9.2.3.1 Function

The receipt of a (Figure 9.3b) request-ack at the clock-slave requester triggers the invocation of the
MLME_PRESENCE_REQUEST.confirm service interface. The transmit time of the original (Figure 9.3a)
request and the receive time of the recent (Figure 9.3b) request-ack are both provided.

9.2.3.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MLME_PRESENCE_REQUEST.indication {

other_arguments, /I Arguments for other purposes
time_t1, /I Departure time of request
time_t4 /I Arrival time of confirm

}

9.2.3.3 When generated
Generated by the receipt of a (Figure 9.3b) request-ack during the initial phases of a time-sync transfer.
9.2.3.4 Effect of receipt

Upon receipt, the transmit time of the previous (Figure 9.3a) request and receive time of the recent
(Figure 9.3b) request-ack are both saved for deferred processing.

9.2.4 MLME_PRESENCE_RESPONSE.request

9.2.4.1 Function

After the initial phases, a clock-slave requester triggers the transfer of an
MLME_PRESENCE_RESPONSE.request. The transmit time of the original (Figure 9.3a) request, the
transmit time of the recent (Figure 9.3b) request-ack, and the current time-sync related information are all
included in the service primitives.

9.2.4.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MLME_PRESENCE_RESPONSE.request {

other_arguments, /I Arguments for other purposes
time_t2 /I Arrival time of request
time_t32, /I Turn-round time

grande_time /I Current media-dependent time

}

9.2.4.3 When generated

Triggered at the clock-master by the servicing of an MLME_PRESENCE_REQUEST.indication, indicating
the completion of the initial time-sync phase.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 74

O ~NO OB~ WN P

50

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

9.2.4.4 Effect of receipt

Upon receipt, an MLME_PRESENCE_RESPONSE.indication is invoked, to provide the clock-slave with
sufficient information to send a GrandSync PDU.

9.2.5 MLME_PRESENCE_RESPONSE.indication
9.2.5.1 Function

Additional information is provided to a clock-slave port. Along with previous information (saved earlier for
deferred processing), the clock-slave has sufficient information to send a GrandSync PDU.

9.2.5.2 Semantics of the service primitive
The semantics of the primitives are as follows:

MLME_PRESENCE_RESPONSE.indication {

other_arguments, /I Arguments for other purposes
time_t2 /I Arrival time of request
time_t32, /I Turn-round time

level_time, /I Current media-dependent time

}

9.2.5.3 When generated

Triggered at the clock-slave by the receipt of a (Figure 9.3c) response, nearing the completion of the final
time-sync phases.

9.2.5.4 Effect of receipt

Upon receipt, the clock-slave is provided with sufficient information to send a GrandSync PDU.
9.2.6 MLME_PRESENCE_RESPONSE.confirm

9.2.6.1 Function

Confirmation is provided to the clock-master, confirming clock-slave has sufficient information to send a
GrandSync PDU.

9.2.6.2 Semantics of the service primitive
The semantics of the primitives are as follows:

MLME_PRESENCE_RESPONSE.confirm {
other_arguments, /I Arguments for other purposes

}

9.2.6.3 When generated

Triggered at the clock-master by the receipt of a (Figure 9.3-d) response-ack, at the completion of the final
time-sync phases.

Contribution from: dvi@alum.mit.edu.
75 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

9.2.6.4 Effect of receipt

Upon receipt, the clock-master is provided with a time-sync success status.

9.3 TimeSyncRxR11v state machine

9.3.1 Function

The TimeSyncRxR11v state machine consumes primitives provided by the MAC service interface and (in
response) generates frames for the GrandSync entity.

9.3.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.
queue values
Enumerated values used to specify shared FIFO queue structures.
Q_MS_IND—Queue identifier associated with the GrandSync receive port.
Q_S1 REQ—AQueue identifier for MLME_PRESENCE_REQUEST.request parameters.
Q_S1 CON—~Queue identifier for MLME_PRESENCE_REQUEST.confirm parameters.
Q_S2_IND—Queue identifier for MLME_PRESENCE_RESPONSE.indication parameters.

9.3.3 State machine variables

backTime
A variable representing the lapsed time since the remote request-ack transmission.
conl
A set of values returned within the MLME_PRESENCE_REQUEST.request service primitive:
time_t1—A local-timer snapshot at the (Figure 9.3a) request transmission.
time_t4—A local-timer snapshot at the (Figure 9.3b) request-ack reception.
ind2
A set of values returned within the MLME_PRESENCE_RESPONSE.indication service primitive:
grandeTime—A remote snapshot of grandTime at the request-ack transmission.
time_t2—A remote-timer snapshot at the (Figure 9.3a) request reception.
time_t3—A remote-timer snapshot at the (Figure 9.3b) request-ack transmission.
ePtr
Points to entity-specific storage, comprising the following:
lastTime—The time of the last request transmission, for pacing periodic transmissions.
roundTrip—Saved (conl.time_t4—conl.time_t4) value.
rsinfo—Saved grand-master selection values.
rxFastTimed—Saved args2.fastTimed value.
snapTime—Saved conl.time_t4 value.
syncinterval—The sync-interval associated with this clock-slave port.
grandTime
An variable representing the normalized/synchronized grand-master time.
lapseTime
An variable representing the lapsed time since the request-ack reception.
localTime
A variable representing the calibrated one-way link delay.
radioDelay
An variable representing the round-trip transmission delay.
radioTime
An variable representing the current time, in media-specific units.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 76

O© O ~NO O WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

reql
A set of values returned within the MLME_PRESENCE_REQUEST.request service primitive,
consisting of other (unrelated) parameters.
stationTime
See 6.3.3.
rsPtr
A pointer to the rsinfo portion of ePtr referenced storage.
turnRound
An variable representing the difference between local time-sync transmit and receive times.
turnStart
An variable representing the remote time-sync transmit time.
txInfo
Storage for information sent to the GrandSync entity, comprising:
destination_address, source_address, service_data_unit
Where service_data_unit comprises:
extraTime, sourcePort, function, grandTime, hopCount,
localTime, protocolType, precedence, syncinterval, version
txPtr
A pointer to txInfo storage.

9.3.4 State machine routines

Dequeue(queue)
Enqueue(gqueue, info)
See 6.3.4.
R11vTime(entity)
Returns the local media-dependent free-running timer.
SourcePort(entity)
See 7.3.3.
StationTime(entity)
TimeSyncSdu(info)
See 6.3.4.

Contribution from: dvi@alum.mit.edu.
77 This is an unapproved working paper, subject to change.

AVB BRIDGING

9.3.5 TimeSyncRxR11v state table

JggDvj20050416/D0.710
2007-05-30

The TimeSyncRxR11v state machine consumes MAC-provided service-primitive information and forwards
adjusted frames to the MAC-relay function, as illustrated in Table 9.1.

Table 9.1—TimeSyncRxR11v state machine table

Current

Next

state condition

Row

action

state

START | (stationTime — ePtr->lastTime)

> ePtr->synclinterval

ePtr->lastTime = stationTime;
reql = SetupReql();
Enqueue(Q_S1_REQ, reql);

(conl = Dequeue(Q_S1_CON))
1= NULL

ePtr->snapTime = conl.time_t4;
ePtr->roundTrip =
conl.time_t4 — conl.time_t1;

START

(ind2 = Dequeue(Q_S2_IND))
1= NULL

turnStart = rxPtr->time_t2;
turnRound = rxPtr->time_t32;

SINK

stationTime = StationTime(ePtr);
radioTime = R11vTime(ePtr);

START

SINK | —

linkDelay= (ePtr->roundTrip—turnRound) / 2;
lapseDelay= (radioTime — ePtr->snapTime);
backTime =

R11vToStation(lapseDelay + linkDelay);
grandTime =

GrandeToGrand(rxptr->grandeTime);
txPtr->destination_address = AVB_MCAST;
txPtr->source_address = TBD;
tsPtr->protocol Type = AVB_TYPE;
tsPtr->function = AVB_FUNCTION;
tsPtr->version = AVB_VERSION;
tsPtr->precedence = rsPtr->precedence;
tsPtr->sourcePort = SourcePort(ePtr);
tsPtr->hopCount = rsPtr->hopCount;
tsPtr->grandTime = grandTime;
tsPtr->extraTime = rsPtr->extraTime;
tsPtr->snapTime = stationTime — backTime;
Enqueue(Q_MS_IND, txPtr);

START

Row 9.1-1: Requests are sent at a periodic rate.

Row 9.1-2: Save the times that are available when the request-ack returns.
Row 9.1-3: Capture the parameters when the MLME_PRESENCE_RESPONSE.indication returns.
Row 9.1-4: Update times while waiting for state changes.

Row 9.1-5: Send accumulated/supplemented information to the GrandSync entity.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

78

O© O ~NO O WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

9.4 TimeSyncTxR11lv state machine
9.4.1 Function

The TimeSyncTxR11v state machine consumes GrandSync-generated frames, to maintain estimates of the
current (grandTime,stationTime} and {errorTime,stationTime} affiliations. The TimeSyncTxR1lv state
machine also provides time-synchronization information through the MAC service interface, in response to
clock-slave initiated requests.

9.4.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.
queue values
Enumerated values used to specify shared FIFO queue structures.
Q_MS_REQ—The queue identifier associated with frames sent from the GrandSync entity.
Q_S1_IND—Queue identifier for MLME_PRESENCE_REQUEST.indication parameters.
Q_S2_REQ—Queue identifier for MLME_PRESENCE_RESPONSE.request parameters.
Q_S2_ACK—~Queue identifier for MLME_PRESENCE_RESPONSE.confirm parameters.

9.4.3 State machine variables

backInterval
A variable that represents the back-interpolation interval for transmit-time affiliations.
btPtr
A pointer to the ePtr->baseTimer storage.
con2
Unrelated values returned within the MLME_PRESENCE_RESPONSE.confirm service primitive:
ePtr
A pointer to the entity-specific storage containing the following:
baseTimer—Recently saved time events, each consisting of the following:
index—Index into the timed[] array, where last times were stored.
range—Number of entries within the timed[] array
timed[range]—Recently saved time events, each consisting of the following:
grandTime—A previously sampled grand-master synchronized time.
extraTime—The residual error associated with the sampled grandTime value.
stationTime—The station-local time affiliated with the sampled grandTime value.
lastTime—The last transmit time, saved for pacing transmissions.
rxSaved—A copy of the last received GrandSync parameters.
syncinterval—The expected interval between successive time-sync transmissions.
ind1
Values returned within the MLME_PRESENCE_REQUEST.indication service primitive:
time_t2—A local snapshot at the time of (Figure 9.3a) request reception.
time_t3—A local snapshot at the time of (Figure 9.3b) request-ack transmission.
radioTime
A variable representing the media-dependent station-local time.
ratelnterval
A variable representing the time interval over which the grandTime rate is measured.
req2
Values provided to the MLME_PRESENCE_REQUEST.request service primitive:
grandeTime—A local snapshot of the grandTime as the request-ack transmission.
time_t2—Previously saved ind1.time_t2 value.
time_t32—Previously saved (ind1.time_t3-ind1.time_t2) value.

Contribution from: dvi@alum.mit.edu.
79 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710

2007-05-30

rsPtr
A pointer to service-data-unit portion of rxInfo storage.
rxinfo
Storage for received time-sync PDU from the GrandSync entity, comprising:
destination_address, source_address, service_data_unit
Where service_data_unit comprises:
extraTime, function, grandTime, hopCount,
precedence, protocolType, snapTime, syncinterval, version
rxPtr
A pointer to rxInfo storage.
rxSyncinterval
A variable that represents the sync-interval associated with this station’s clock-slave port.
ssPtr
A pointer to the service-data-unit portion of the ePtr->rxSaved storage
stationTime
A shared value representing current time. There is one instance of this variable for each station.
Within the state machines of this standard, this is assumed to have two components, as follows:
seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 240 second.

sendTime

A variable representing the local time estimate of the remote request-ack transmission time.
sxPtr

A pointer to the ePtr->rxSaved storage.
timeT2

A variable that represents the request receipt time.
timeT3

A variable that represents the request-ack transmit time.
txSyncinterval

A variable that represents the sync-interval associated with this port.

9.4.4 State machine routines

Dequeue(queue)

Enqueue(queue, info)
See 6.3.4.

NextSaved(btPtr, ratelnterval, grandTime, extaTime, thisTime)
See 7.5.4.

NextTimed(btPtr, stationTime, backInterval)
See 7.5.4.

StationTime(entity)
See 7.3.3.

TimeSyncSdu(info)
See 6.3.4.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 80

O ~NO OB~ WN P

OO0 NO Ul WN -

Moo oAb BEBAADEDDEDEDEDWWWWWWWWWWNDNNDNNNMNNNNREPRPRRPERPRPERPERRRPRE
P OLONPODOONOUURAARWNPOOO~NOOPRRWNPOOO~NOUIARWNPOOO~NOOLWNEO

JggDvj20050416/D0.710

2007-05-30

9.4.5 TimeSyncTxR11v state table

WHITE PAPER CONTRIBUTION TO

NOTE—This state machine is preliminary; sequence timeouts have not been considered.

The TimeSyncTxR11v state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received timedSync frames, as illustrated in Table 9.2.

Table 9.2—TimeSyncTxR11v state table

Current

Next

state

condition

Row

action

state

START

(rxInfo = Dequeue(Q_MS_REQ))
I= NULL

SINK

(ind1 = Dequeue(Q_S1_IND))
1= NULL

timeT2 = ind1.time_t2;
timeT3 = ind1.time_t3;

SEND

(con2 = Dequeue(Q_S2_CON))
1= NULL

START

stationTime = StationTime(ePtr);
radioTime = R11vTime(ePtr);
rxSyncinterval = ssPtr->syncinterval,
txSynclinterval = ePtr->syncinterval,
backInterval =

(3 * rxSynclnterval + txSynclinterval) / 2;
ratelnterval =

backinterval + (3 * txSyncinterval) / 2;

START

SINK

TimeSyncSdu(rsPtr)

ePtr->rxSaved = rxInfo;
NextSaved(btPtr, rateInterval, rsPtr->grandTime,
rsPtr->extraTime, stationTime);

SERVE

Enqueue(Q_ES_REQ), rxPtr);

START

SEND

sendTime = stationTime —

((radioTime — timeT2) * RADIO_TIME);
nextTimes =

NextTimed(btPtr, stationTime, backInterval);
req2.time_t2 = timeT2;

reg2.time_t32 = timeT3 — timeT2;
reg2.grandeTime =
GrandToR11v(nextTimes.grandTime);

I 1f possible for extraTime.
reg2.extraTime = nextTimes.extraTime;
Enqueue(Q_S2_REQ, req2);

WAIT2

81

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

AVB BRIDGING

Row 9.2-1:
Row 9.2-2:
Row 9.2-3:
Row 9.2-4:

Row 9.2-5:
Row 9.2-6:

Row 9.2-7:

GrandSync generated frames are further checked before being processed.
Save parameters from a service-interface primitive call.

The final acknowledge provides a completion indication.

Wait for the next change-of-state.

Parameters from timeSync PDUs are saved.
The contents of non-timeSync PDUs are passed through.

Provide parameters for the MLME_PRESENCE_RESPONSE.response interface.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

JggDvj20050416/D0.710

2007-05-30

82

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

10. Ethernet passive optical network (EPON) state machines

NOTE—This clause is based on indirect knowledge of the Ethernet-PON specifications, as interpreted by
the author, and have not been reviewed by the 802.1 or 802.3 WGs. The intent was to provide a forum for
evaluation of the GrandSync interfaces, while also triggering discussion of 802.3-PON design details. As
such, the contents are highly preliminary and subject to change.

10.1 Overview

This clause specifies the state machines that support Ethernet passive optical network (EPON) based
bridges. The operations are described in an abstract way and do not imply any particular implementations or
any exposed interfaces. There is not necessarily a one-to-one correspondence between the formal specifica-
tion and the interfaces in any particular implementation.

10.1.1 Link-dependent indications
The TimeSyncEpon state machines have knowledge of network-local synchronized ticksTime timers. With
this knowledge, the TimeSyncEpon state machines can operated on frames received from the LLC, as

illustrated in Figure 10.1. Link-dependent indications could be required for bridge ports attached to alterna-
tive media.

GrandSync MS_UNITDATA. request

i MS_UNITDATA.indication
/
N Y
TS TS TimeSyncRxEpon * ’ * TimeSyncTxEpo
~localTime~
LLC LLC
—MS MS—
MAC relay
ISS ISS
802.3(PON) MAC | ~ticksTime~| 802.3(PON) MAC

PHY
/LAN/

Figure 10.1—PON interface model

The localTime values are represented as timers that are incremented once every 16 ns interval, as illustrated
on the left side of Figure 10.2. Each synchronized local timer is roughly equivalent to a 6-bit sec (seconds)
field and a 26-bit fraction (fractions of second) field timer, as illustrated on the right side of Figure 10.2.

‘ nanoseconds16 ‘ sec fraction
IIIIIII|IIII_III|I_IIIIII|IIIIIII IIIIIIIII!IIlIIIIIIIl_IIIIIIIlI
tickTime (approximate equivalent)

Figure 10.2—Format of PON-dependent times

The Ethernet-PON MAC is supplied with frame transmit/receive snapshots, but these are transparent-to and
not-used-by the TimeSync state machine. Instead, these are used to synchronize the ticksTime values in
associated MACs and the TimeSyncEpon state machines have access to these synchronized ticksTime val-
ues.

Contribution from: dvi@alum.mit.edu.
83 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

10.1.2 Link-delay compensation

The synchronized-clock accuracies are influenced by the transmission delays between ports. To compensate
for these transmission delays, the receive port is normally responsible for compensating
{grandTime, ticksTime} affiliations by the (assumed to be constant) frame transmission delay.

The Ethernet-PON MAC provides access to a subnet-synchronized media-dependent ticksTime timer. Thus,
the {grandTime, ticksTime} affiliation specified the transmitter remains valid within the receiver and
transmission-delay compensation (in this sense) is unnecessary.

However, each time-sync related GrandSync PDU includes an {grandTime, stationTime} affiliation,
wherein stationTime represents a recent snapshot of a shared station-local clock. To provide such an
affiliation, the transmission delay (measured as a ticksTime difference) is scaled and subtracted from the
stationTime that is sampled when the conversion is performed. Thus, no additional receiver snapshot
hardware is required.

10.2 timeSyncEpon frame format

The timeSyncEpon frames facilitate the synchronization of neighboring clock-master and clock-slave sta-
tions. The frame, which is normally sent at 10 ms intervals, includes time-snapshot information and the
identity of the network’s clock master, as illustrated in Figure 10.3. The gray boxes represent physical layer
encapsulation fields that are common across Ethernet frames.

6 da — Destination MAC address
6 sa — Source MAC address
2 protocolType — Distinguishes AVB frames from others
1 function — Distinguishes timeSync from other AVB frames
1 version — Distinguishes between timeSync frame versions
14 precedence — Precedence for grand-master selection
10 grandTime — Transmitter grand-time snapshot
4 extraTime — Back-prediction error for grandTime computation
reserved
1 hopCount — Hop count from the grand master
4 ticksTime — Transmitter local-time snapshot
10 reserved — Reserved for future extensions to this standard
4 fcs — Frame check sequence

64 bytes total

Figure 10.3—timeSyncEpon frame format
The 48-bit da (destination address), 48-bit sa (source address) field, 16-bit protocolType, 8-bit function,
8-bit version, 14-byte precedence, 80-bit grandTime, 32-bit extraTime, and 8-bit hopCount fields are
specified in 6.2.1.2.

10.2.1 ticksTime: A value representing local time in units of a 16 ns timer ticks, as illustrated in Figure 10.4.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 84

O© O ~NO O WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

MSB LSB

ticks
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1

32 bits

Figure 10.4—tickTime format

10.3 TimeSyncRxEpon service interface primitives
10.3.1 ES_UNITDATA.indication
10.3.1.1 Function

Provides the TimeSyncRxEpon entity with clock-synchronization parameters derived from arriving
time-sync frames.

10.3.1.2 Semantics of the service primitive
The semantics of the primitives are as follows:

ES_UNITDATA.indication {

destination_address, /l Destination address

source_address, // Optional

priority, /I Forwarding priority

service_data_unit, Il Delivered content

{ /I Contents of the service_data_unit
protocol Type, /I Distinguishes AVB frames from others
function, /I Distinguishes between timeSync and other AVB frames
version, /I Distinguishes between timeSync frame versions
precedence, /I Precedence for grand-master selection
grandTime, /I Global-time snapshot (1-cycle delayed)
extraTime, /I Accumulated grandTime error
hopCount, /I Distance from the grand-master station
ticksTime /I Local-time snapshot (1-cycle delayed)

}

}

The parameters of the MA_DATA.indication are described as follows:
The 48-bit destination_address, 48-bit source_address, and 8-bit priority field are specified in 6.2.1.2.

The service_data_unit consists of subfields; for content exchanged with the GrandTime protocol entity,
these fields include the following.

The 16-bit protocolType, 8-bit function, 8-bit version, 14-byte precedence, 80-bit grandTime,
32-hit extraTime, and 8-bit hopCount fields are specified in 6.2.1.2.

10.3.1.2.1 frameCount: An 8-hit consistency-check field that increments on successive frames.

10.3.1.2.2 ticksTime: A 32-hit field that specifies the local free-running time within this subnet, when the
previous timeSync frame was received (see 10.2.1).

Contribution from: dvi@alum.mit.edu.
85 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

10.3.1.3 When generated

The service primitive is generated upon the receipt of a time-sync related frame delivered from the MAC.
The intent is to facilitate reformatting and snapshot-time adjustment before the content of that frame is
delivered to the ClockMaster and TS entities.

10.3.1.4 Effect of receipt

The service primitive invokes processing of time-sync related content and forwarding of unrelated content.
For time-sync related content, the processing included reformatting and compensation for receive-link
transmission delays.

10.4 TimeSyncRxEpon state machine
10.4.1 Function

The TimeSyncRxEpon state machine is responsible for receiving MAC-supplied frames, converting their
media-dependent parameters, and sending normalized MAC-relay frames. The sequencing of this state
machine is specified by Table 10.1; details of the computations are specified by the C-code of Annex F.

10.4.2 State machine definitions

NULL
A constant indicating the absence of a value that (by design) cannot be confused with a valid value.
queue values
Enumerated values used to specify shared FIFO queue structures.
Q_MS_IND—Associated with the GrandSync entity (see 6.3.2).
Q_ES_IND—The queue identifier associated with the received MAC frames.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 86

O ~NO OB~ WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

10.4.3 State machine variables

ePtr
A pointer to a entity-specific data structure comprising the following:
syncinterval—The expected interval between time-sync frame transmissions.
backTime
A value representing the time lapse between transmission of reception of the timeSync frame.
rsPtr
A pointer to the service-data-unit portion of the rxinfo storage.
rxinfo
A storage location for received service-interface parameters, comprising:
destination_address, source_address, service_data_unit
Where service_data_unit comprises:
extraTime, function, grandTime, hopCount,
precedence, protocolType, ticksTime, version
rxPtr
A pointer to the rxInfo storage location.
tsPtr
A pointer to the service-data-unit portion of the txInfo storage.
txInfo
A storage location for to-be-transmitted MS_UNITDATA.indication parameters, comprising:
destination_address, source_address, service_data_unit
Where service_data_unit comprises:
extraTime, function, grandTime, hopCount, precedence,
protocolType, snapTime, ticksTime, version
txPtr
A pointer to the txInfo storage location.

10.4.4 State machine routines

Dequeue(queue)
Enqueue(queue, info)
See 6.3.4.
SourcePort(entity)
See 7.3.3.
TicksTime(entity)
Returns the value of the station’s shared media-dependent subnet-synchronized timer.
This 32-bit timer is incremented once at the end of each 16 ns interval.
TicksToTime(ticks)
Returns the time duration of stationTime that corresponds to the time duration specified in ticks.
TimeSyncSdu(info)
See 6.3.4.

Contribution from: dvi@alum.mit.edu.
87 This is an unapproved working paper, subject to change.

AVB BRIDGING

JggDvj20050416/D0.710

10.4.5 TimeSyncRxEpon state machine table

2007-05-30

The TimeSyncRxEpon state machine associates PHY-provided sync information with arriving timeSync
frames and forwards adjusted frames to the MAC-relay function, as illustrated in Table 8.2.

Table 10.1—TimeSyncRxEpon state machine table

Current > Next
[e)
L. 14 .
state condition action state
START | (rxInfo= 1| — TEST
Dequeue(Q_RX_MAC)) != NULL
— 2 | stationTime = StationTime(ePtr); START
ticksTime = EponTime(ePtr);
TEST | TimeSyncSdu(rsPtr) 3 | *rxPtr = rxlInfo; SYNC
— 4 | Enqueue(Q_MS_IND, txInfo); START
SYNC | rsPtr->hopCount != LAST_HOP 5 | backTime = ticksTime — rsPtr->ticksTime); START
compTime =
stationTime —TicksToTime(backTime);
txPtr->destination_address =
rxPtr->destination_address;
txPtr->source_address = rxPtr->source_address;
tsPtr->protocol Type = rsPtr->protocolType;
tsPtr->function = rsPtr->function;
tsPtr->version = rsPtr->version;
tsPtr->precedence = rsPtr->precedence;
tsPtr->grandTime = rsPtr->grandTime;
tsPtr->extraTime = rsPtr->extraTime;
tsPtr->snapTime = compTime;
tsPtr->sourcePort = SourcePort(ePtr);
tsPtr->hopCount = frame.hopCount;
tsPtr->syncinterval = ePtr->synclinterval;
Enqueue(Q_MS_IND, txInfo);
— 6 | —
Row 10.1-1: Initiate inspection of frames received from the lower-level MAC.
Row 10.1-2: Wait for the next frame to arrive.
Row 10.1-3: The timeSync frames are checked further.
Row 10.1-4: The non-timeSync frames are passed through.
Row 10.1-5: Active timeSync frames are adjusted for transfer delays and passed through.
Row 10.1-6: Overly-aged timeSync frames are discarded.
Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 88

O© O ~NO O WN P

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

10.5 TimeSyncTxEpon service interface primitives
10.5.1 ES_UNITDATA.request
10.5.1.1 Function

Provides the Ethernet-PON entity with clock-synchronization parameters for constructing departing
time-sync frames.

10.5.1.2 Semantics of the service primitive
The semantics of the primitives are as follows:

ES_UNITDATA. request

{
destination_address, /I Destination address
source_address, I/ Optional
priority, /I Forwarding priority
service_data_unit, /I Delivered content
{ /I Contents of the service_data_unit
protocol Type, /I Distinguishes AVB frames from others
function, /I Distinguishes between timeSync and other frames
version, /I Distinguishes between timeSync frame versions
precedence, /I Precedence for grand-master selection
grandTime, /I Global-time snapshot (1-cycle delayed)
extraTime, /I Accumulated grandTime error
hopCount, /I Distance from the grand-master station
ticksTime /I Local-time snapshot (1-cycle delayed)
}
}

The parameters of the MA_UNITDATA.request are described in 10.3.1.2.
10.5.1.3 When generated

The service primitive is generated at a periodic rate, for the purposes of synchronizing the grandTime values
resident in other stations.

10.5.1.4 Effect of receipt

The service primitive triggers the transmission of a timeSync frame on the affiliated port.

Contribution from: dvi@alum.mit.edu.
89 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

10.6 TimeSyncTxEpon state machine

10.6.1 Function

The TimeSyncTxEpon state machine is responsible for modifying time-sync MS_UNITDATA .request

parameters to form timeSync frames for transmission over the attached link.
10.6.2 State machine definitions

NULL

A constant indicating the absence of a value that (by design) cannot be confused with a valid value.

queue values
Enumerated values used to specify shared FIFO queue structures.
Q_MS_REQ—Associated with the GrandSync entity (see 6.3.2).
Q_ES_REQ—The queue identifier associated with frames sent to the MAC.
T10ms
A constant the represents a 10 ms value.

10.6.3 State machine variables

backinterval
A variable that represents the back-interpolation interval for transmit-time affiliations.
ePtr
A pointer to a entity-specific data structure comprising the following:
baseTimer—Recently saved time events, each consisting of the following:
index—Index into the timed[] array, where last times were stored.
range—Number of entries within the timed[] array
timed[range]—Recently saved time events, each consisting of the following:
grandTime—A previously sampled grand-master synchronized time.
extraTime—The residual error associated with the sampled grandTime value.

stationTime—The station-local time affiliated with the sampled grandTime value.

lastTime—The last PDU-transmit time; used to space periodic transmissions.
rxSaved—A copy of the last received GrandSync parameters.
syncinterval—The expected interval between time-sync frame transmissions.
rsPtr
A pointer to the service-data-unit portion of rxInfo storage.
rxinfo
Storage for the contents of GrandSync PDUs, comprising:
destination_address, source_address, service_data_unit
Where service_data_unit comprises:
extraTime, function, grandTime, hopCount, precedence,
protocolType, snapTime, syncinterval, version
rxPtr
A pointer to the rxInfo storage.
rxSyncinterval
A variable that represents the sync-interval associated with this station’s clock-slave port.
stationTime
See 6.3.3.
ssPtr
A pointer to the service-data-unit portion of the ePtr->rxSaved storage
sxPtr
A pointer to the ePtr->rxSaved storage.
tsPtr
A pointer to the service-data-unit portion of txInfo storage.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

90

O ~NO OB~ WN P

OO o0, EELEDLDDDNOWWWWWWWWWWNDNMNDNNNMNMNNNNNRRRPERPRPERPERPRREO
P OWONPODOO~NOUORRWNRPOOO~NOOPRMRWNPOOO~NOORRWNREPRPOOO~NOOGPRWNEO

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

txInfo
Storage for a to-be-transmitted MAC frame, comprising:
destination_address, source_address, service_data_unit
Where service_data_unit comprises:
extraTime, function, grandTime, hopCount,
protocolType, precedence, ticksTime, version
txPtr
A pointer to the txInfo storage.
ticksTime
A 32-bit shared value representing Ethernet-PON media-dependent time; incremented every 16 ns.

10.6.4 State machine routines

Dequeue(queue)
Enqueue(gqueue, info)
See 6.3.4.
NextTimed(btPtr, stationTime, backInterval)
See 7.5.4.
SourcePort(entity)
See 7.3.3.
StationTime(entity)
See 6.3.4.
TicksTime(entity)
See 10.4.4.
TimeSyncSdu(info)
See 6.3.4.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 91

O ~NO OB~ WN P

AVB BRIDGING

JggDvj20050416/D0.710

10.6.5 TimeSyncTxEpon state machine table

2007-05-30

The TimeSyncTxEpon state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received timeSyncEpon frames, as illustrated in Table 10.2.

Table 10.2—TimeSyncTxEpon state machine table

Current > Next
[e)
L. 14 .
state condition action state
START | (rxInfo = Dequeue(Q_MS_REQ)) 1| — SINK
1= NULL
(stationTime — ePtr->lastTime) 2 | ePtr->lastTime = stationTime; SEND
> T10ms
— 3 | stationTime = StationTime(ePtr); START
ticksTime = TicksTime(ePtr);
SINK | TimeSyncSdu(rsPtr) 4 | ePtr->rxSaved = rxInfo; START
— 5 | Enqueue(Q_ES_REQ, rxPtr);
SEND | — 6 | rxSyncinterval = ssPtr->synclinterval; START
txSynclinterval = ePtr->syncinterval;
backinterval =
(3 * rxSynclinterval + txSyncinterval) / 2;
nextTimes =
NextTimed(btPtr, stationTime, backInterval);
tXPtr->destination_address =
sxPtr->destination_address;
txPtr->source_address = sxPtr->source_address;
tsPtr->protocol Type = ssPtr->protocol Type;
tsPtr->function = ssPtr->function;
tsPtr->version = ssPtr->version;
tsPtr->precedence = ssPtr->precedence;
tsPtr->hopCount = ssPtr->hopCount;
tsPtr->grandTime = nextTimes.grandTime;
tsPtr->extraTime = nextTimes.extraTime;
tsPtr->ticksTime = ticksTime;
Enqueue(Q_ES_REQ, txPtr);
Row 10.2-1: Relayed frames are further checked before being processed.
Row 10.2-2: Transmit periodic timeSync frames.
Row 10.2-3: Wait for the next change-of-state.
Row 10.2-4: The timeSync PDU is saved and processed further.
Row 10.2-5: Non-timeSync PDUs are retransmitted in the standard fashion.
Row 10.2-6: Format and transmit the media-specific timeSync frame.
Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 92

O© O ~NO O WN P

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

Annexes

Annex A
(informative)
Bibliography

[B1] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.!

[B2] IEEE Std 802-2002, IEEE Standards for Local and Metropolitan Area Networks: Overview and
Acrchitecture.

[B3] IEEE Std 801-2001, IEEE Standard for Local and Metropolitan Area Networks: Overview and
Architecture.

[B4] IEEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access
Control (MAC) Bridges.

[B5] IEEE Std 1394-1995, High performance serial bus.

[B6] IEEE Std 1588-2002, IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems.

[B7] IETF RFC 1305: Network Time Protocol (Version 3) Specification, Implementation and Analysis,
David L. Mills, March 19922

[B8] IETF RFC 2030: Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI, D. Mills,
October 1996.

LIEEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, P.O. Box 1331, Piscataway,
NJ 08855-1331, USA (http://standards.ieee.org/).

2IETF publications are available via the World Wide Web at http://www.ietf.org.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 93

O ~NO OB~ WN P

OO0 NO Ul WN -

Moo oAb BEBAADEDDEDEDEDWWWWWWWWWWNDNNDNNNMNNNNREPRPRRPERPRPERPERRRPRE
P OLONPODOONOUURAARWNPOOO~NOOPRRWNPOOO~NOUIARWNPOOO~NOOLWNEO

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

Annex B
(informative)

Time-scale conversions

B.1 Overview

For historical reasons, time is specified in a variety of ways as listed in Table B.1. GPS, PTP, and TAI times
are based on values yielded by atomic clocks and advance on each second. NTP and UTC times are similar,
but are occasionally adjusted by one leap-second, to account for differences between the atomic clocks and
the rotation time of the earth.

Table B.1—Time-scale parameters

Time scale
Parameter GPS PTP TAI NTP uUTC
approximate 1980-01-06 1970-01-01 1972-01-01* 1900-01-01 1972-01-01*
epoch 1999-08-22
representation weeks.seconds seconds YYYY-MM-DD seconds YYYY-MM-DD
hh:mm:ss hh:mm:ss
rollover (years) 19.7 8,925,513 10,000 136.19 10,000
leapSeconds no yes
Notes:

* The TAI time when TAI and UTC were first specified to deviate by only integer seconds.

(There is no true epoch for the TAl and UTC time scales.)

GPS global positioning satellite

NTP Network Time Protocol

PTP Precision Time Protocol (commonly used in POSIX)

TAI International Atomic Time (from the French term Temps Atomique International)

UTC Coordinated Universal Time (a compromise between the English and French):
English speakers wanted the initials of their language: CUT for "coordinated universal time"
French speakers wanted the initials of their language: TUC for "temps universel coordonné".

B.2 TAland UTC

TAIl and UTC are international standards for time based on the Sl second; both are expressed in days, hours,
minutes and seconds. TAI is implemented by a suite of atomic clocks and forms the timekeeping basis for
other time scales in common use. The rate at which UTC time advances is normally identical to the rate of
TAI. An exception is an occasion when UTC is modified by adding or subtracting leap seconds.

Prior to 1972-01-01, corrections to the offset between UTC and TAI were made in fractions of a second.
After 1972-01-01, leap-second corrections are applied to UTC preferably following second 23:59:59 of the
last day of June or December. As of 2006-01-01, TAIl and UTC times differed by +33 seconds.

In POSIX based computer systems, the common time conversion algorithms can produce the correct
ISO 8601-2004 printed representation format “YYYY-MM-DD hh:mm:ss” for both TAl and UTC.

Contribution from: dvi@alum.mit.edu.
94 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

The PTP epoch is set such that a direct application of the POSIX algorithm to a PTP time-scale timestamp
yields the 1SO 8601-2004 printed representation of TAI. Subtracting the current leapSeconds value from a
PTP timestamp prior to applying the POSIX algorithm yields the 1ISO 8601-2004 printed representation of
UTC. Conversely, applying the inverse POSIX algorithm and adding leapSeconds converts from the I1SO
8601-2004 printed form of UTC to the form convenient for generating a PTP timestamp.

Example: The POSIX algorithm applied to a PTP timestamp value of 8 seconds yields 1970-01-01 00:00:08
(eight seconds after midnight on 1970-01-01 TAI). At this time the value of leapSeconds was approximately
8 seconds. Subtracting this 8 seconds from this time yields 1970-01-01 00:00:00 UTC.

Example: The POSIX algorithm applied to a PTP timestamp value of 0 seconds yields 1970-01-01 00:00:00
TAI. At this time the value of leapSeconds was approximately 8 seconds. Subtracting this 8 seconds from
this time yields 1969-12-31 23:59:52 UTC.

B.3 NTP and GPS

Two standard time sources of particular interest in implementing PTP systems: NTP and GPS. Both NTP
and GPS systems are expected to provide time references for calibration of the grand-master supplied PTP
time.

NTP represents seconds as a 32 bit unsigned integer that rolls-over every 232 seconds ~ 136 years, with the
first such rollover occurring in the year 2036. The precision of NTP systems is usually in the millisecond
range.

NTP is a widely used protocol for synchronizing computer systems. NTP is based on sets of servers, to
which NTP clients synchronize. These servers themselves are synchronized to time servers that are traceable
to international standards.

NTP provides the current time. In NTP version 4, the current leapSeconds value and warning flags marking
indicating when a leapSecond will be inserted at the end of the current UTC day. The NTP clock effectively
stops for one second when the leap second is inserted.

GPS time comes from a global positioning satellite system, GPS, maintained by the U.S. Department of
Defense. The precision of GPS system is usually in the 10-100 ns range. GPS system transmissions
represent the time as {weeks, secondsinWeek}, the number of weeks since the GPS epoch and the number of
seconds since the beginning of the current week.

GPS also provides the current leapSeconds value, and warning flags marking the introduction of a leap
second correction. UTC and TAI times can be computed solely based the information contained in the GPS
transmissions.

GPS timing receivers generally manage the epoch transitions (1024-week rollovers), providing the correct
time (YYYY-MM-DD hh:mm:ss) in TAl and/or UTC time scales, and often also local time; in addition to
providing the raw GPS week, second of week, and leap second information.

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 95

O ~NO OB~ WN P

OO0 NO Ul WN -

Moo oAb BEBAADEDDEDEDEDWWWWWWWWWWNDNNDNNNMNNNNREPRPRRPERPRPERPERRRPRE
P OLONPODOONOUURAARWNPOOO~NOOPRRWNPOOO~NOUIARWNPOOO~NOOLWNEO

JggDvj20050416/D0.710

2007-05-30

B.4 Time-scale conversions

Previously discussed representations of time can be readily converted to/from PTP time based on a constant
offsets and the distributed leapSeconds value, as specified in Table B.2. Within Table B.2, all variables

WHITE PAPER CONTRIBUTION TO

represent integers; ‘/> and ‘%’ represent a integer divide and remainder operation, respectively.

Table B.2—Time-scale conversions

ta

name

format

PTP value th:

GPS

weeks:seconds

tb = ta.seconds + 315964 819 +
(gpsRollovers * 1024 + ta.weeks) * (7 * DAYSECYS);

ta.weeks = (tb — 315964 819) / (7 * DAYSECS);
ta.days = (tb — 315964 819) % (7 * DAYSECS);

TAI

date{YYYY,MM,DD}:time{hh,mm,ss}

tb = DateToDays(*“1970-01-01", ta.date) * DAYSECS +
((ta.time.hh * 24) + ta.time.mm) *60) + ta.time.ss;

secs = tb % DAYSECS;

ta.date = DaysToDate(“1970-01-01”, tb / DAYSECS);
ta.time.hh = secs / 3600;

ta.time.mm = (secs % 3600)/60;

ta.time.ss = (secs % 60);

NTP

seconds

tb = (ta +leapSeconds)—2208988800;

ta = (ta—leapSeconds) +2208988800;

uTC

date{YYYY,MM,DD}:time{hh,mm,ss}

tb = DateToDays(*1970-01-01", ta.date) * DAY SECS +
((ta.time.hh * 24) + ta.time.mm) *60) + ta.time.ss +
leapSeconds;

tc = th — leapSeconds;

secs = tc % DAYSECS;

ta.date = DaysToDate(“1970-01-01", tc/DAYSECS);
ta.time.hh = secs / 3600;

ta.time.mm = (secs % 3600)/60;

ta.time.ss = (secs % 60);

Note:

gpsRollovers Currently equals 1; changed from 0 to 1 between 1999-08-15 and 1999-08-22.
DAYSECS The number of seconds within a day: (60*60*24).

leapSeconds Extra seconds to account for variations in the earth-rotation times: 33 on 2006-01-01.

DateToDays For arguments DateToDays(past, present), returns days between past and present dates.

DaysToDate For arguments DaysToDate(past, days), returns the current date, days after the past date.

96

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

B.5 Time zones and GMT

The term Greenwich Mean Time (GMT) once referred to mean solar time at the Royal Observatory in
Greenwich, England. GMT now commonly refers to the time scale UTC; or the UK winter time zone
(Western European Time, WET). Such GMT references are strictly speaking incorrect; but nevertheless
quite common. The following representations correspond to the same instant of time:

18:07:00 (GMT), commonplace usage 13:07:00 (Eastern Standard Time, EST)
18:07:00 (UTC) 1:07 PM (Eastern Standard Time, EST)
18:07:00 (Western European Time, WET) 10:07:00 (Pacific Standard Time, PST)

6:07 PM (Western European Time, WET) 10:07 AM (Pacific Standard Time, PST)

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 97

O ~NO OB~ WN P

OO0 NO Ul WN -

Moo oAb BEBAADEDDEDEDEDWWWWWWWWWWNDNNDNNNMNNNNREPRPRRPERPRPERPERRRPRE
P OLONPODOONOUURAARWNPOOO~NOOPRRWNPOOO~NOUIARWNPOOO~NOOLWNEO

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

Annex C
(informative)

Simulation results (preliminary)

C.1 Simulation environment

This annex describes several simulations performed with the intent of comparing time-extrapolation and
time-interpolation algorithms. To reduce possibilities of code-conversion errors, the simulation model
executes the C code of Annex F. Simulation time is based on a 128-bit systemTime, represented by
64-bit seconds and fractions-of-second components, to ensure that precision and range are not constraining
factors.

The simulation consists of bridgeCount identical super-bridge components, as illustrated in Figure C.1. For
generality and uniformity, each bridge includes ClockMaster and ClockSlave entities. The smallest MAC
address is assigned to the left-most station; for other stations, the address is incremented for each sequential
right-side bridge. The simulations assumed bridgeCount values of 8 (the assumed AVB diameter) and 64
(a reasonable IEEE 802.17 ring diameter).

’4 bridgeCount = 8, 64 »‘

10ms tick 10ms samples
m CIockSlnk CIockSource CIockSlnk CIockSource CIockSink
(CIockMasteB (GrandSync) (CIockSIave) (CIockMaste) (GrandSync) (CIockSIave) (CIockMaste) (GrandSync) (CIockSIave)

) [} [[} Y|)

7 max J J
A{TS TS)>—2.5ms (TS TS), TS}
HS LLC)]z delay %[LLC LLC|2 N LLC LLC
MAC relay I MAC relay l ‘ | MAC relay
))

iy

(mac
i

[mac 40ns MAC c
| | . | |
;)) (e) J ticks (v) CeHy ¥ ‘e [))
L J L fan]
- delay = 500ns
a) Clock master b) Clock bridge... c) Clock slave

Figure C.1—Time-synchronization flows

The transmit portion of the TS component (emulated by the DuplexTxExec routine) introduces a random
delay of no more than 2.5 ms, thus emulating delays consistent with the 10 ms sync-frame transmission rate.
A 20 ns sampling clock ambiguity (corresponding to 25 MHz) is incorporated into the MAC component
(emulated by the DupMacTxEXxec routine).

The cable is modeled as a symmetric 500ns delay, corresponding to a cable length of approximately 100
meters.

Station clock accuracies are assigned randomly/uniformly within the range of the allowed +100 PPM
deviation from the simulation’s emulated/exact systemTime reference.

NOTE—PIease be tolerant of the editor of this document, who just downloaded the gnuplot application and fft4 library
today. These initial cut-and-paste of plots are primitive (to be improved, when EPS or other formats are understood) and
no noise-spectrum plots (to better illustrate gain peaking) are currently available. Improvements expected soon...

Contribution from: dvi@alum.mit.edu.
98 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710

2007-05-30

C.2 Initialization transients

C.2.1 Cascaded 8 stations

A significant expected initialization transient is observed when all stations simultaneously start operations,
as illustrated in Figure C.2. This can be contributed to inaccurate initial estimates of receiver’s link-delay
and transmitter’s rate estimations. The transient delays (although significant) are much less than expected
from designs based on many-sample grand-master rate-syntonization delays within bridges.

4e-06 ‘

"valuelnt8b" ——

306 |\ 4

206 - [| 4

1e-06 - | | B
‘

ol e e]

-le-06

2606 - ‘ i

-3e-06 L | | | | I I I

Figure C.2—Startup transients with 8 stations

C.2.2 Cascaded 64 stations
The length of the initialization transient increases when the number of bridges is increased to 64, as

illustrated in Figure C.3. The much-longer duration of such transients is perhaps tolerable, but illustrates the
desire to avoid extrapolation-based on many-sample grand-master rate-syntonization delays within bridges.

le-05

T
"valuelnt64b" ——

5e-06 |- //\ . g

-5e-06 |- / i
1e-05 |- i

/
-1.5e-05 |- \/ 4

-2e-05 ! ! ! ! ! ! !
0 0.5 1 15 2 25 3 35 4

Figure C.3—Startup transients with 64 stations

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 929

O ~NO OB~ WN P

O~NO O~ WN P

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

C.3 Steady-state interpolation errors

C.3.1 Time interpolation with 8 stations

Simulations indicate modest peak-to-peak errors for 8-bridge topologies when interpolation-based protocols
are used, as illustrated in Figure C.4.

1.5e-07

"valuelnt8b" ——

1le-07

5e-08

-5e-08

-1e-07

-1.5e-07 L L L L
50 60 70 80 90 100

Figure C.4—Time interpolation with 8 stations

C.3.2 Time interpolation with 64 stations
Simulations indicate modest peak-to-peak error increases for 64-bridge topologies (as expected to 8-bridge

topologies) when interpolation-based protocols are used, as illustrated in Figure C.5. The data is consistent
with less-than-linear expectations, due to statistical averaging and intermediate interpolation filtering.

4e-07

"valuelnt64b" ——

| | \ K *

le-07

-1e-07

-2e-07

-3e-07 L ! I I
50 60 70 80 90 100

Figure C.5—Time interpolation with 64 stations

Contribution from: dvi@alum.mit.edu.
100 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

C.4 Steady-state extrapolation errors

C.4.1 Time extrapolation with 8 stations

Simulations indicate approximately twice the errors for 8-bridge topologies when extrapolation-based
protocols (as opposed to interpolation-based protocols) are used, as illustrated in Figure C.6.

4e-07
"valueExt8b" ——

3e-07 -
2e-07

le-07

-1e-07

-2e-07

-3e-07 B

-4e-07 I I I I
50 60 70 80 90 100

Figure C.6—Time extrapolation with 8 stations

C.4.2 Time extrapolation with 64 stations
Simulations indicate significantly larger peak-to-peak errors for 64-bridge topologies when

extrapolation-based protocols (as opposed to interpolation-based protocols) are used, as illustrated in
Figure C.7.

8e-05

"valueExt64b" ——

6e-05
4e-05

2e-05 ‘

Figure C.7—Time extrapolation with 64 stations

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 101

O ~NO O WN B

CoO~NO O WN B

JggDvj20050416/D0.710 WHITE PAPER CONTRIBUTION TO
2007-05-30

Annex D
(informative)

Bridging to IEEE Std 1394

To illustrate the sufficiency and viability of the AVB time-synchronization services, the transformation of
IEEE 1394 packets is illustrated.

D.1 Hybrid network topologies

D.1.1 Supported IEEE 1394 network topologies

This annex focuses on the use of AVB to bridge between IEEE 1394 domains, as illustrated in Figure D.1.
The boundary between domains is illustrated by a dotted line, which passes through a SerialBus adapter
station.

OO 0]
— i ——t SO T
4t oo O—"
: |IEEE 1394

IEEE 1394 | IEEE 802.3

Figure D.1—IEEE 1394 |eaf domains

D.1.2 Unsupported IEEE 1394 network topologies

Another approach would be to use IEEE 1394 to bridge between IEEE 802.3 domains, as illustrated in
Figure D.2. While not explicitly prohibited, architectural features of such topologies are beyond the scope of

this working paper.
-0 |
ﬁ’ﬁ | =
|
|
] \
— % =

|
IEEE 802.3 ! IEEE 1394 : IEEE 802.3

[QQUQ]

Figure D.2—IEEE 802.3 leaf domains

Contribution from: dvi@alum.mit.edu.
102 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

D.1.3 Time-of-day format conversions

The difference between AVB and IEEE 1394 time-of-day formats is expected to require conversions within
the AVB-t0-1394 adapter. Although multiplies are involved in such conversions, multiplications by con-
stants are simpler than multiplications by variables. For example, a conversion between AVB and
IEEE 1394 involves no more than two 32-bit additions and one 16-bit addition, as illustrated in Figure D.3.

MSB LSB

seconds fraction
N T T T e | N T T T e | | N T T T e | | N T T T e | N T T T e | N T T T e | N T T T T | | N T T T T |

;\

b = (a*125)>>7;

cycles ‘ fraction ‘
|||||||||||||||||||||||||||

Notes: d = (c*3)>>6;

Two 32-bit additions for b: v
b = ((a<<7) - (a<<2) + a) >> 7, S
One 16-bit additions for d:
d=((c<<2) + ©) >> 6; |

seconds‘ cycleCount ‘ cycleOffset ‘
| | IIIIIII|IIIIIIIIIIIII

Figure D.3—Time-of-day format conversions

D.1.4 Grand-master precedence mappings

Compatible formats allow either an IEEE 1394 or IEEE 802.3 stations to become the network’s grand-mas-
ter station. While difference in format are present, each format can be readily mapped to the other, as illus-
trated in Figure D.4:

MSB LSB
| sp | systemID \ macAddressHi \ pad \ macAddressLo ‘
111 L1l | | | | | | | | | | | | | | |

| \ eui64 ‘

| | | | | | | | |
I i

| sp \ systemID \ macAddressHi \ pad \ macAddressLo ‘

Figure D.4—Grand-master precedence mapping

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 103

O ~NO OB~ WN P

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

Annex E
(informative)

Time-of-day format considerations

To better understand the rationale behind the ‘extended binary’ timer format, various possible formats are
described within this annex.

E.1 Possible time-of-day formats

E.1.1 Extended binary timer formats

The extended-binary timer format is used within this working paper and summarized herein. The 64-bit
timer value consist of two components: a 40-bit seconds and 40-bit fraction fields, as illustrated in
Figure E.1.

MSB LSB

seconds fraction
IIIIIIIIIIIIIIIIIII!IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!IIIIIIIIIIIIIIII

0 bits 40 bits

Figure E.1—Global-time subfield format

The concatenation of 40-bit seconds and 40-bit fraction field specifies an 80-bit time value, as specified by
Equation E.1.

time = seconds + (fraction / 2%0) (E.1)
Where:

seconds is the most significant component of the time value.
fraction is the less significant component of the time value.

E.1.2 IEEE 1394 timer format

An alternate “1394 timer” format consists of secondCount, cycleCount, and cycleOffset fields, as illustrated
in Figure E.2. For such fields, the 12-bit cycleOffset field is updated at a 24.576MHz rate. The cycleOffset
field goes to zero after 3071 is reached, thus cycling at an 8kHz rate. The 13-hit cycleCount field is
incremented whenever cycleOffset goes to zero. The cycleCount field goes to zero after 7999 is reached, thus
restarting at a 1Hz rate. The remaining 7-bit secondCount field is incremented whenever cycleCount goes to
Zero.

MSB LSB
secondCount cycleCount cycleOffset

1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 bits 13 bits 12 bits

Figure E.2—IEEE 1394 timer format

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 104

O ~NO OB~ WN P

AVB BRIDGING JggDvj20050416/D0.710
2007-05-30

E.1.3 IEEE 1588 timer format

IEEE Std 1588-2002 timer format consists of seconds and nanoseconds fields components, as illustrated in
Figure E.3. The nanoseconds field must be less than 10%; a distinct sign bit indicates whether the time repre-
sents before or after the epoch duration.

MSB LSB

seconds ‘SH nanoSeconds
|||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||

r— = —-=——- = - = — — — a
|

Legend: s:sign

Figure E.3—IEEE 1588 timer format

E.1.4 EPON timer format

The IEEE 802.3 EPON timer format consists of a 32-bit scaled nanosecond value, as illustrated in
Figure E.4. This clock is logically incremented once each 16 ns interval.

MSB LSB

nanoTicks
1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1

seconds = nanoTicks/62500000

Figure E.4—EPON timer format

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change. 105

O ~NO OB~ WN P

AVB BRIDGING

Contribution from: dvi@alum.mit.edu.
This is an unapproved working paper, subject to change.

JggDvj20050416/D0.710
2007-05-30

106

O ~NO OB~ WN P

JggDvj20050416/D0.710, 2007-05-30 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
Annex F

(informative)

C-code illustrations

NOTE—This annex is provided as a placeholder for illustrative C-code. Locating the C code in one loca-
tion (as opposed to distributed throughout the working paper) is intended to simplify its review, extraction,
compilation, and execution by critical reviewers.

Also, placing this code in a distinct Annex allows the code to be conveniently formatted in 132-character
landscape mode. This eliminates the need to truncate variable names and comments, so that the resulting
code can be better understood by the reader.

This Annex provides code examples that illustrate the behavior of AVB entities. The code in this Annex is purely for informational purposes, and should not be construed
as mandating any particular implementation. In the event of a conflict between the contents of this Annex and another normative portion of this standard, the other

normative portion shall take precedence.

The syntax used for the following code examples conforms to ANSI X3T9-1995.

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

107

OO ~NOoO Uk~ WN -

JggDvj20050416/D0.710, 2007-05-30 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

//
//

//
//

1 1
7

1 2 3 4 5 6 8 9 0 1 2 3
//3456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012
//

by Dr. David V James, 2007-05-18

NOTE--The following code is portable with respect to endian ordering,
but (for clarity and simplicity) assumes availability of 64-bit integers.

TBDs:
Active:
Suggested changes for clarity (anonymous reviewer 2007-05-11):
Separate partition for the bulk of header
Make TBDs explicit
Consider name change: state machines => queue service routines
Better use of spaces and comments
FFT and spectrum analysis via utilities or piped process
Completed:
Initial checks to be more descriptive, as in “GroupAsserts”
Consistent terminology: backlnterval
Sequence of tests within looks, possibly with “serviced”, as in:
for (checkForMore = TRUE; checkForMore == TRUE;) {
iT (something) {
checkForMore = TRUE;

} 7/ for(;;) ends here
Ports=>queues, from a naming perspective
Separate initialization from routines
rating => rateRatioO, etc. for similar name usage
matched to something more descriptive, as in ‘“countsAreEqual”
Ethernet-duplex, Ethernet-pon, more descriptive names to be used

#include <assert.h>
#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include “avbHead.h”

//
//

Time formats used within this simulation are listed below.

The layout is half scale; each “+” mark represents a byte boundary,
not a bit-boundary (as is true in other narrow-format conventions.
The high-level timings are based on largeTime and smallTime values.

largeTime
S S S
| seconds | fraction |
PRI Y S S S S S—

Used for: Simulation time base :
Features: Near-infinite resolution and range

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

108

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30

// :

// smallTime

// R e
// | seconds] fraction |
// [R e S S S ——
// Used for: Station-local time base

;; Features: Nearly-a-day range; near femto-second resolution
// :

// Time formats used within application-specific frames include a
// * grandTime - never-overflows globally-synchronized time
// * localTime - per-station locally-managed time

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

OO ~NOoO Uk~ WN -

WWWWWWRNRNRNNNNNNNNRPRPRPEPRRERPREPR PR
ORWONPOOO~NOURWNRPRPOOO~NO®OUIAWNERO

// * tinyTime - extra part of grandTime (a small value)

// * ticksTime - an application-specific variant of localTime

// :

// grandTime

// BT Lt it T T e Tt TP

// | seconds | fraction |

// LT T T ST e &

// Used for: Frames, grand-master time synchronization

// Features: Thousands-of-years range; pico-second resolution

// :

// localTime

// F T T s a5

// |sec] fraction |

// B it e T s

// Used for: Frames, cable-delay measurements

;; Features: Minutes of range; pico-second resolution

// : tinyTime

// + = Fem—t ettt

// | subfraction |

// + - Fee—t e+

// :

// Used for: Sideband grandTime error accumulation

// Features: Minutes of range; pico-second resolution

// :

// ticksTime

// F T T R

// | tickCounts |

// B i it T T

// Used for: Exists on 802.3-EPON, 802.l1lv-Radio

;; Features: Sufficient range; nano-second-like resolution

//

//

// Assumed integer values

//

// typedef unsigned char uint8_t; // 1-byte unsigned integer
// typedef unsigned short uintlé_t; // 2-byte unsigned integer
// typedef unsigned int uint32_t; // 4-byte unsigned integer
// typedef unsigned long long uint64_t; // 8-byte unsigned integer

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 109

w w
~N o

JggDvj20050416/D0.710, 2007-05-30

// typedef signed char int8_t
// typedef signed short intlée_t;
// typedef signed int int32_t;

// typedef signed long long inté4_t;

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

// 1-byte signed integer
// 2-byte signed integer
// 4-byte signed integer
// 8-byte signed integer

[/ FFF**xE%E Revise timeSync frame parameters as the actual values become known **x**kixxx

// Unique identifier values
#define AVB_MCAST 0
#define AVB_PROTOCOL O
#define AVB_FUNCTION O
#define AVB_VERSION 1

#define DEFAULT_DUPLEX_RX_RANGE 16
#define DEBUG O

// Generic macro definitions

#define ARRAY_SIZE(X) (S|zeof(x)/5|zeof(x[0]))
#define BITS(type) (8 * sizeof(type))
#define CLIP RATE(x y) (((X) > SMALL_ONE + (¥))

// Neighbor multicast address
// The protocolType for AVB
// The timeSync function

// The timeSync version

\
(SMALL_ONE + (¥)) : (((x) < (SMALL ONE - (y)) ? SMALL ONE - (¥) : ()))) // Clip within specified rate

#define CLIP_SIZE(x, y) ((X) > (y) ?
#define CLOCK_MASTER_PORT_ID 255
#define COUNT 256

#define EXTRA 16

#define FULL 1

#define LAST_HOP 255

#define LARGE_10ms SmallToLarge(SMALL_10ms)

#define LARGE_HALF (ONE << 63)
#define LARGE_TOCK (ONE << 62)

#define MASK(bits) ((ONE << bits) - 1)

#define MASK32 (ONES >> 32)
#define MAX(a, b) (@) > (b) ? (a)
#define MIN(a, b) ((a) > (b) ? (b)
#define MTU_SIZED 2048

#define OK O

#define ONE ((uint64_t)1)

#define ONES (~(uint64_t)0)

#define PLUS(a, b, c) (((@) + (b) + (c)) % (c))

OO <EO?2E) O // Clip within specified value

// Clock-master port identifier
// Number of frameCount values

// Queue-full error status
// Largest hop-count value

// Maximum value definition
// Minimum value definition
// Maximum-sized transfer
// Non-error status

// Wide “1” constant

// Wide “FF..FF” constant

#define PON_TICK_ TIME (DivideSmall (16 * (ONE << 32), 1000000000))

#define PPMI00 ((SMALL_ONE * 100) / 1000000) // Scaled 100PPM fraction.
#define PPM250 ((SMALL_ONE * 250) / 1000000) // Scaled 250PPM fraction.
#define RADIO_TICK_TIME DivideSmall(1 << (32 - 9), 1000000000 >> 9) // Ratio radio-ns to localTime
#define RESIDENCE_DELAY ((SMALL_ONE + RandomMagOne()) 7/ 800) // A 2.5ms max residence time

#define SMALL_10ms (SMALL_ONE /™ 100)

#define SMALL_ONE ((int64_t)(ONE << 48))
#define TESTING_OUI ((uint64_t)OXcabled << 24)

#define TLIMIT ~255

#define WIDE_MIN(a, b) (WideCompare((a), (b)) <=0 ? (a) :

// A 10ms smallTime interval
// Scaled fraction for 1.0

(C)))

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

110

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

#define CommonCheck(comPtr) (assert(comPtr != NULL), \
assert(comPtr->rootLink != NULL), assert(comPtr->pairLink != NULL))

#define SetRxQueuelPtrs(comPtr, ptr0) (CommonCheck(comPtr), \
assert(comPtr->rxPortCount == 1), ptrO = &(comPtr->rxPortPtr[0]))
#define SetRxQueue2Ptrs(comPtr, ptrO ptrl) (CommonCheck(comPtr), \
assert(comPtr->rxPortCount == 2), \
ptrO0 = &(comPtr->rxPortPtr[0]), ptrl = &(comPtr->rxPortPtr[1]))
#define SetRxQueue3dPtrs(comPtr, ptr0, ptrl, ptr2) (CommonCheck(comPtr), \
assert(comPtr->rxPortCount == 3), ptrO0 = &(comPtr->rxPortPtr[0]), \
ptrl = &(comPtr->rxPortPtr[1]), ptr2 = &(comPtr->rxPortPtr[2]))
#define SetTxQueuelPtrs(comPtr, ptr0) (CommonCheck(comPtr), \
assert(comPtr->txPortCount == 1), ptrO = &(comPtr->txPortPtr[0]))
#define SetTxQueue2Ptrs(comPtr, ptrO ptrl) (CommonCheck(comPtr), \
assert(comPtr—>txPortCount \
ptro = &(comPtr—>txPortPtr[O]) ptrl &(comPtr->txPortPtr[1]))

#define RxPortPtr(comPtr, count) (&(comPtr->rxPortPtr[count]))
#define StationTime(comPtr) (comPtr->smallTime)
#define SystemTime(comPtr) (comPtr->largeTime)
#define TxPortPtr(comPtr, count) (&(comPtr->txPortPtr[count]))

#define PrecedenceToEui64(a) (a-lower)
#define SizePlus(set) (sizeof(set) + EXTRA)

#define LargeToSmall(a) WideExtract(a, 16)

#define SmallToLarge(a) WideShift(SignedToWide(a), -16)
#define SmallToGrand(a) WideShift(SignedToWide(a), 8)
#define SmallToLocal(a) ((a) >> 8)

#define SmallAsLocal(a) ((a) & (ONES >> 8))

#define TinyToGrand(x) (SignedToWide((int64_t)(x)))

#define TinyToSmall(a) (((int64_t)(a)) << 8

#define TinyToLarge(a) (SignedToWide(((int64_t)(a)) << 24))

typedef enum {
INTERPOLATE,
EXTRAPOLATE
} GuessMode;

enum {
FALSE,
TRUE,
WAIT

¥

enum {
BODY,
LIST,
BOTH

¥

enum {
TALK_QUIET,

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

111

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30

TALK_GSYNC,
TALK_FRAME

};

enum {
VOCAL_QUIET,
VOCAL_DEBUG,
VOCAL_PAIRS

};

// Field extract/deposit definitions
#define FieldToSigned(fPtr, field) \
FrameToValue((uint8_t *)(&(fPtr—>fie|d)), sizeof(fPtr->field), TRUE)
#define FieldToUnsign(fPtr field) \
FrameToValue((uint8_t *) (&(fPtr- >f|eld)) sizeof(fPtr->field), FALSE)
#define WideToFrame(value, fPtr, field) \
ValueToFrame(value, (uint8_t *)(&(fPtr—>fle|d)), sizeof(fPtr->field))
#define LongToFrame(value, fPtr, field) \
ValueToFrame(SignedToWide(value), (uint8_t *)(&(fPtr->field)), sizeof(fPtr->field))

#define DeQueue(a, b) Dequeue(a, (uint8_t *)b, sizeof(*b))
#define EnQueue(a, b) Enqueue(a, (uint8_t *)b, sizeof(*b))

typedef struct { // Double-precise integers
uint64_t upper; // More significant portion
uint64_t lower; // Less significant portion

} WideUnsigned;

#ifndef AVB_TIMES
#define NLIMIT 63

typedef struct { // Double-precise integers
inté4_t upper; // More significant portion
uint64_t lower; // Less significant portion

} WideSigned;

typedef int32_t TicksTime; // Link-dependent time

typedef int64_t SmallTime; // Local time reference

typedef WideSigned LargeTime; // General 128-bit timers

#endif

typedef uint8_t Boolean; // True or false

typedef uint8_t Port; // Received port number

typedef uint8_t Class; // 1588: clock class

typedef uint8_t HopCount; // 1588: distance from GM

typedef uintl6_t Variance; // 1588: clock error variance

typedef int32_t TinyTime; // Extra part of GM time

typedef int64_t LocalTime; // Compacted SmallTime

typedef WideSigned GrandTime; // 1588: grand-master time

typedef WideSigned Precedence; // Fields {priorities,clocklID}

typedef WideUnsigned Preference; // Fields {precedence,hops,port}

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

// Convert field to signed
// Convert field to unsigned

// Convert field to unsigned

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

112

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

//

//

Communication components

//

typedef struct {
LargeTime largeTime;
SmallTime extraTime;
SmallTime smallTime;
uintlé_t extraCount;
} BaseTimes;

typedef struct {
GrandTime grandTime;
TinyTime extraTime;
GrandTime totalTime;
} NextTimes;

Grand-master synchronized
Extra part for largeTime
Station’s free-running

Count of extra-values sampling

Time-result collection
Grand-master synchronized
Side-band extra values
Precise grandTime+extraTime

//

//

Formal interface exchanges

//

typedef struct {
uint8_t frameCount[1];
uint8_t grandTime[10];
} ClockMasterSet;

typedef struct {
uint8_t frameCount[1];
} ClockSlaveReq;

typedef struct {
uint8_t frameCount[1];
uint8_t grandTime[10];
} ClockSlaveRes;

typedef struct {
uint8_t protocolType[2];
uint8_t function[1];
uint8_t version[1];
uint8_t precedence[14];
uint8_t grandTime[10];
uint8_t extraTime[4];
uint8_t sourcePort[1];
uint8_t hopCount[1];
uint8_t smallTime[8];
uint8_t synclinterval[6];

} SyncSduData;

typedef struct {

//
//

//

uint8_t destination_address[6]; //
uint8_t source_address[6]; //
uint8_t priority[1]; //
SyncSduData service_data_unit; //

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

Sequential consistency check
Received grand-master time

Sequential consistency check

Sequential consistency check
Provided grand-master time

Time-sync frame parameters
Protocol identifier
Identifies timeSync frame
Specific format identifier
Grand-master precedence
Grand-master time

Extra part of grandTime
Transmit sequence number
GM hop-count distance
Local-time reference
Opposite-link transmit time

MS_UNITDATA.request
Destination address
Source address
Delivery priority
Data content

113

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D
} GrandSyncReq

typedef struct
uint8_t
uint8_t
uint8_t
SyncSduDat

} GrandSynclind

typedef struct
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t

} EfdxSduData;

typedef struct
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t

} EfdxMacFrame

typedef struct
uint8_t
uint8_t
uint8_t
EfdxSduDat

} EfdxMaclind;

typedef EfdxMa

typedef struct
uint8_t
uint8_t

} EfdxRxInfo;

0.710, 2007-05-30

{
destination_address[6];
source_address[6];
priority[1];

a service_data_unit;

{
protocolType[2];
function[1];
version[1];
precedence[14];
grandTime[10];
extraTime[4]:;
frameCount[1];
hopCount[1];
localTime[6];
thatTxTime[6];
thatRxTime[6];

{

sa[6];
protocolType[2];
function[1];
version[1];
precedence[14];
grandTime[10];
extraTime[4];
frameCount[1];
hopCount[1];
localTime[6];
thatTxTime[6];
thatRxTime[6];
fcs[4];

{

destination_address[6];

source_address[6];
priority[1];
a service_data_unit;

clnd EfdxMacReq;

{
frameCount[1];
smallTime[8];

typedef struct {

uint8_t

frameCount[1];

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

// MS_UNITDATA.indication
// Destination address
// Source address

// Delivery priority

// Data content

// Time-sync frame parameters
// Protocol identifier

// ldentifies timeSync frame
// Specific format identifier
// Grand-master precedence

// Grand-master time

// Extra part of grandTime

// Transmit sequence number
// GM hop-count distance

// Transmitted timeSync time
// Opposite-link transmit time
// Opposite-link received time

// Time-sync frame parameters
// Destination address

// Source address

// Protocol identifier

// ldentifies timeSync frame
// Specific format identifier
// Grand-master precedence

// Grand-master time

// Extra part of grandTime

// Transmit sequence number
// GM hop-count distance

// Transmitted timeSync time
// Opposite-link transmit time
// Opposite-link received time
// Opposite-link received time

// Time-sync frame parameters
// Destination address
// Source address
// Delivery priority
// Efdx service-data-unit

// Sequential consistency check
// Common station-local time

// Sequential consistency check

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

114

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30

uint8_t smallTime[8];
} EfdxTxInfo;

typedef struct {
uint8_t protocolType[2];
uint8_t function[1];
uint8_t version[1];
uint8_t precedence[14];
uint8_t grandTime[10];
uint8_t extraTime[4];
uint8_t frameCount[1];
uint8_t hopCount[1];
uint8_t ticksTime[4];

} SyncSduEpon;

typedef struct { //
uint8_t destination_address[6]; //
uint8_t source_address[6]; //
uint8_t priority[1]; //
SyncSduEpon service_data_unit; //

} EponMacind;
typedef EponMaclnd EponMacReq;

typedef struct {
uint32_t reserved;
} RllvinfolReq;

typedef struct {
uint32_t ticksTime2;
uint32_t ticksTime3;
} Rllvinfollnd;

typedef struct {
uint32_t ticksTimel;
uint32_t ticksTime4;
} RllvinfolCon;

typedef struct {
uint32_t ticksTime4;
uint32_t roundTrip;
GrandTime levelTime;
TinyTime extraTime;
Precedence precedence;
HopCount hopCount;

} Rllvinfo2Req;

typedef R1llviInfo2Req Rllvinfo2lnd;
typedef struct {

uint32_t reserved;
} R1llvinfo2Con;

//

//
//

//
//

//

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Common station-local time

Time-sync frame parameters
Protocol identifier
Identifies timeSync frame
Specific format identifier
Grand-master precedence
Grand-master time

Extra part of grandTime
Transmit sequence number
GM hop-count distance
Local timing reference

Time-sync frame parameters
Destination address

Source address

Delivery priority

Efdx service-data-unit

Reserved

Received snapshot
Transmit snapshot

Transmit snapshot
Received snapshot

Received shapshot
Duration snapshot
Grand-master like

Extra part of levelTime
Grand-master error
Grand-master error

Reserved

//

//

Defined entities

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

115

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

//

enum {
Q_RXOO_LAST,
Q_TXOO_LAST
}:

enum {
Q_RX01_BASE,
Q_RX11_LAST,
Q_TXO1 BASE = 0,
Q_TX11 LAST

};

enum {
Q_RX02_BASE,
Q_RX12_NEXT,
Q_RX22_LAST,
Q_TX02_BASE = O,
Q_TX12_NEXT,
Q_TX22_LAST

}:

enum {
Q_RX03_BASE,
Q_RX13_NEXT,
Q_RX23_PLUS,
Q_RX33_LAST,
Q_TX03_BASE = 0,

1
o

Q_TX13_NEXT,
Q_TX23_NEXT,
Q_TX33_LAST

};

// GrandSync entity

typedef struct { //
Precedence precedence; //
Port sourcePort; //
HopCount hopCount; //
SmallTime synclinterval; //

} GrandSyncSaved;

typedef struct { //
Common common; //
LocalTime lastTime; //
GrandSyncSaved rxSaved; //
} GrandSyncEntity;

// ClockMaster entity

typedef struct { //
Common common; //
uint8_t rxFrameCount; //

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

GrandSync entity state
Grand-master precedence
Source-port identifier
Synchronization interval
Synchronization interval

GrandSync entity state
Common simulation state
Timeout, set on activity
Saved indication

Client-clock master
Common simulation state
Consistency-check count

116

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30

Precedence

SmallTime
SmallTime
SmallTime

precedence;

synclinterval;

shapShotO;
shapShotl;

} ClockMasterEntity;

//

typedef struct {

SmallTime

} ClockSlaveSaved;
typedef struct {

Boolean
uintlé_t
uintl6é_t
SmallTime
BaseTimes
} BaseTimer;

typedef struct {

synclinterval;

validated;
headlndex;
taillndex;
interval;

times[64];

Common common;
uint8_t frameCount;
SmallTime synclinterval;
SmallTime shapShot0;
SmallTime shapShotl;
ClockSlaveSaved rxSaved;
BaseTimer baseTimer;

} ClockSlaveEntity;

//

typedef struct {
SmallTime thisTime;
SmallTime thatTime;

} PastTimes;

typedef struct {

Boolean

uintlé_t

uintlé_t

SmallTime

PastTimes
} RxTimer;

typedef struct {

Common
Boolean
LocalTime
uintl6é_t
uintl6é_t
SmallTime
SmallTime

validated;
headlndex;
taillndex;
interval;

times[64];

common;
txReady;
synclinterval;
snapCount;
frameCount;
shapShotO;
shapShotl;

duplex-Ethernet

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Grand-master precedence
Synchronization interval
Recent snapshot
Remote snapshot

ClockSlave entity

//

Client-clock slave

Client-clock slave
Validated; operational
Recent interval index
Oldest interval index
Rate-averaging interval
txTimes value array

Client-clock slave
Common simulation info
Consistency-check count
Synchronization interval
Recent snapshot

Remote snapshot

Saved rx information
Receive-time history

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

EFDX receive
Saved previous shapshot
Saved previous thisTxTime

EFDX receive

Validity indication
Recent interval index
Oldest interval index
Rate-averaging interval
Larger than ever needed

EFDX receive

Common simulation info
Cable-delay valid
Clock-master’s tockTime

The indication’s frameCount

The timeSync’s frameCount
This frame’s arrival time
Past frame’s arrival time

117

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30

LocalTime
LocalTime
LocalTime
EfdxMacInd

RxTimer

} EfdxRxEntity;
typedef struct {

uinté4_t
uinté4_t
uintl6é_t
uint8_t
uint8_t

WideSigned

HopCount

SmallTime
} EfdxTxSaved;

typedef struct {

thisTxTime;
thisRxTime;
thatRxTime;
savedInd;
rxTimer;

da;

sa;

type;
function;
version;
precedence;
hopCount;
synclinterval;

Common common;
GuessMode guessMode;
Boolean rxReady;
Boolean txReady;
SmallTime execTime;
SmallTime lastTime;
uint8_t frameCount;
SmallTime synclinterval;
EfdxTxSaved rxSaved;
uint8_t sxSnapCount;
SmallTime sxSnapTimed;
BaseTimer baseTimer;

} EFdXTxXEntity;

//

typedef struct {
Common common;
LocalTime synclinterval;
TicksTime turnRound;

} R11vRxEntity;

typedef struct {
WideSigned precedence;
HopCount hopCount;
SmallTime synclinterval;

} R1llvTxSaved;

typedef struct {

Common

LocalTime
LocalTime
LocalTime
R11vTxSaved
BaseTimer

common;
synclinterval;
pastTime;
lastTime;
rxSaved;
baseTimer;

802.11v

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

radio

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Frame transmission time
Frame reception time
Frame reception time

Received timeSync indication
For computing rateRatio (new)

EFDX transmit
destination_address
source_address

Received protocolType
Specified function (AVB)
Version number in AVB
Grand-master preference
Grand-master distance
Sync transmit interval

EFDX transmit

Common simulation info
Estimating next value
Sinking rx initialized
Sending tx initialized
Next transmission time
Periodic transmission time
The timeSync frame count
Sync interval duration
Received GrandSync request
Received MAC snapshot
Received MAC snapshot
Receive-time history

802.11v wireless receive
Common simulation info
Clock-master’s tockTime
Turn-round delay times

802.11v wireless transmit
Grand-master preference
hopCount

802.11v wireless transmit
Common simulation info
Clock-master’s tockTime
Back-interpolation time
Last transmission

Saved parameters
Receive-time history

118

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30

TicksTime shapShotl;
TicksTime roundTrip;
TicksTime rxTurnRound;
TicksTime shapShot4;
TicksTime rxRoundTrip;
Boolean respondNow;

} R11vTXEntity;

//

typedef struct {
Common common;
LocalTime synclinterval ;

} EponRxEntity;

typedef struct {
uinté4_t da;
uint64_t sa;
Precedence precedence;
HopCount hopCount;
SmallTime synclinterval;

} EponTxSaved;

typedef struct {
Common common;
LocalTime synclinterval;
SmallTime lastTime;
EponTxSaved rxSaved;
BaseTimer baseTimer;

} EponTxEntity;

// External control parameters

GuessMode
SmallTime
uintl6é_t
uint32_t
uint32_t
uint32_t

// Standar
Common
Common
Common
Common
Common
Common
Common
Common
Common
Common

argGuessMode = INTERPOLATE;
argMegaHertz = 0;
argBridgeCount = 10;
argFirstSecs = 0;

argFinalSecs = 150;
argVocalType = VOCAL_DEBUG;
d state-machine routines

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Saved ticksTimel

Saved ticksTime4-ticksTimel
Turn-round delay times
Saved ticksTime4

Saved ticksTime4-ticksTimel

Ethernet-PON entity

//
//
//

*GrandSyncExec(Common *, char *);

*ClockMasterExec(Common *,
*ClockSlaveExec(Common *,

char *);

char *);

*EfdxRxExec(Common *, char *);
*EfdxTxExec(Common *, char *);

*EfdxSpanExec(Common *,

*R11vRxExec(Common *, char
*R11vTxExec(Common *, char
*EponRxExec(Common *, char
*EponTxExec(Common *, char

char *);

*);
*);
*);
*);

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

Etherent-PON receive
Common simulation info
Clock-master’s tockTime

Ethernet-PON transmit
destination_address
source_address
Grand-master precedence
hopCount

Ethernet-PON transmit
Common simulation info
Clock-master’s tockTime
Last time checkpoint

Receive-time history

119

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30

void
Boolean
Common

Port
TicksTime
TicksTime

SmallTime
void
NextTimes

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

CommonChecks(Common *, uintl6_t, uintl6_t);
PortsCheck(Common *, char *);

*CommonCreate(Common *, uintl6_t,
Common *(Common *, char *), uintl6_t, uintl6_t, uintl6_t);
PortiID(Common *);

EponTime(EponRXEntity *);

R11vTime(R11vRXEntity *);

NextRate(RxTimer *, SmallTime, SmallTime, SmallTime, SmallTime);
NextSaved(BaseTimer *, SmallTime, SmallTime, LargeTime, SmallTime, SmallTime);
NextTimed(BaseTimer *, SmallTime, SmallTime);

// A minimalist double-width integer library

int

int
inté4_t
WideSigned
WideSigned
WideSigned
WideSigned
WideSigned

inté4_t
inté4_t
SmallTime

double
GrandTime
double
SmallTime
double
LargeTime
TinyTime
double
double

WideCompare(WideSigned, WideSigned);
WideCompareUnsigned(WideUnsigned, WideUnsigned);
WideExtract(WideSigned, uint8_t);
WideAddition(WideSigned, WideSigned);
WideSubtract(WideSigned, WideSigned);
WideShift(WideSigned, intl6_t);
WideNegate(WideSigned);

WideMultiply(int64_t, int64_t);

DivideSmall(int64_t, int64_t);
MultiplySmall(int64_t, int64_t);
ClockTicks(int64_t, uint64_t);

LargeToFloat(LargeTime);
LargeToGrand(LargeTime);
LocalToFloat(LocalTime);
LocalToSmall(LocalTime);
GrandToFloat(GrandTime);
GrandToLarge(GrandTime);
SmallToTiny(SmallTime);
SmallToFloat(SmallTime);
TinyToFloat(TinyTime);

// Other routines

uint64_t
Precedence
WideSigned
Preference
GrandTime
GrandTime
uint64_t
SmallTime
WideSigned
Boolean
void

Entry
uint32_t
Boolean
void
void

Eui48ToEui64(uint64_t);
FieldsToPrecedence(uint8_t, uint8_t, uintl6_t, uint8_t, uinté4 _t);
FrameToValue(uint8_t *, uintl6_t, Boolean);
FormPreference(WideSigned, uint8_t, uint8_t);
GrandToLevel (GrandTime);
LevelToGrand(GrandTime);

MacAddress(Common *);

RandomMagOne() ;

SignedToWide(int64_t);
TimeSyncSdu(SyncSduData *);
ValueToFrame(WideSigned, uint8_t *, uintl6_t);

*Bequeue(RxPort *);
Dequeue(RxPort *, void *, unsigned);
Enqueue(TxPort *, void *, unsigned);
SleepOnRoot(Common *, LargeTime);
SleepOnBase(Common *, LocalTime);

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

120

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30

char *StrPair(char *, char *, char *, uintl6_t);

//

// GrandSync state-machine routine
//

Common *GrandSynclInit(Common *, char *);

// Sets common state to allow grandTime values to be back-interpolated
// arguments:

// comPtr - associated state-maintaining data structure
// name - initialization trigger and assigned entity name
Common *

GrandSyncExec(Common *comPtr, char *name)
uint8_t rxInfo[SizePlus(GrandSynclind)], txInfo[SizePlus(GrandSyncReq)];
GrandSyncEntity *ePtr (GrandSyncEntity *)comPtr;
GrandSyncind *rxpPtr (GrandSynclInd *)rxiInfo;
GrandSyncReq *txPtr (GrandSyncReq *)txInfo;
GrandSyncSaved *sxPtr = &(ePtr->rxSaved);
SyncSduData *rsPtr = &(rxPtr->service_data_unit);
SyncSduData *tsPtr = &(txPtr->service_data_unit);
RxPort *rxQueuePtr;
TxPort *txQueuePtr;
GrandTime rxGrandTime;
Preference test, past;
Precedence rxPrecedence;
SmallTime nextTime, rxSmallTime, rxSynclnterval, stationTime;
TinyTime rxExtraTime;
HopCount rxHopCount;
Port rxSourcePort;
uinté4_t macAddress;
uint32_t sized;
uintlé_t accelerated, count, hopCount;
Boolean serviced, better;

if (name != NULL)
return(GrandSynclnit(comPtr, name));

SetRxQueuelPtrs(comPtr, rxQueuePtr);

SetTxQueuelPtrs(comPtr, txQueuePtr);

do {
serviced = FALSE;
//

// ***** Processing arriving GrandSync MA_UNITDATA.indication parameters ******xx

//

stationTime = StationTime(comPtr);

sized = DeQueue(rxQueuePtr, &rxInfo);

if (sized == sizeof(GrandSynclInd) && TimeSyncSdu((SyncSduData *)rsPtr)) {
serviced = TRUE;

rxPrecedence = FieldToUnsign(rsPtr, precedence);
rxHopCount = FieldToUnsign(rsPtr, hopCount). lower;
rxSourcePort = FieldToUnsign(rsPtr, sourcePort).lower;
rxGrandTime = FieldToSigned(rsPtr, grandTime);
rxExtraTime = FieldToSigned(rsPtr, extraTime).lower;

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

//

Initialization

Station’s localTime
Check rx queue
Verify parameters

Precedence value
Hop-count distance
Received port identifier
Grand-master time

Extra part of grandTime

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

121

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30

rxSmallTime =
rxSynclnterval =

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

FieldToSigned(rsPtr, smallTime).lower;
FieldToUnsign(rsPtr, synclnterval).lower;

}

test = FormPreference(rxPrecedence, rxHopCount, rxSourcePort);
past = FormPreference(sxPtr->precedence, sxPtr->hopCount, sxPtr->sourcePort);

better = rxSourcePort == sxPtr->sourcePort || WideCompareUnsigned(test, past) <= 0;

if (rxHopCount !'= LAST_HOP && better) {

ePtr->lastTime = stationTime;
count = sxPtr->hopCount;
sxPtr->precedence = rxPrecedence;
sxPtr->sourcePort = rxSourcePort;
sxPtr->hopCount = rxHopCount;

sxPtr->synclnterval = rxSynclnterval;

accelerated = 1 + (LAST_HOP + rxHopCount) / 2;

hopCount = MIN(LAST_HOP, rxHopCount > count ? accelerated : rxHopCount + 1);

//

// ****xk Create and transmit MA_UNITDATA. indication parameters

//
macAddress = MacAddress(comPtr);

LongToFrame(AVB_MCAST, txPtr,
LongToFrame(macAddress, t~xPtr,
LongToFrame (AVB_PROTOCOL, tsPtr,
LongToFrame (AVB_FUNCTION, tsPtr,
LongToFrame(AVB_VERSION, tsPtr,
WideToFrame(rxPrecedence, tsPtr,
LongToFrame (hopCount, tsPtr,
LongToFrame(rxSourcePort, tsPtr,
WideToFrame(rxGrandTime , tsPtr,
LongToFrame(rxExtraTime, tsPtr,
LongToFrame(rxSmallTime, tsPtr,

LongToFrame(rxSynclnterval, tsPtr,
EnQueue(txQueuePtr, txPtr);
}

assert(sxPtr->synclinterval != 0);
nextTime = ePtr->lastTime + 4 * sxPtr->syncinterval;
if ((stationTime - nextTime) >= 0) {

serviced = TRUE;

destination_address);
source_address);
protocolType);
function);
version);
precedence);
hopCount) ;
sourcePort);
grandTime);
extraTime);
smallTime);
synclnterval);

sxPtr->precedence.upper = sxPtr->precedence.lower = ONES;
sxPtr->hopCount = sxPtr->sourcePort = OXFF;

ePtr->lastTime = stationTime;
// printf(“GrandSync (timeout):\n");

¥
} while (serviced == TRUE);
assert((nextTime - stationTime) > 0);
SleepOnBase(comPtr, nextTime);
return(NULL);
}

Common *

GrandSynclnit(Common *oldPtr, char *string) {

Common *comPtr;

Internal station time
Sync-interval time

Test preference

Past preference

This one is better
and is also valid
Update timeout timer
Saved hopCount value
Saved GM values

Accelerated aging
if receiver is aged

Neighbor multicast address
This port”’s MAC address
The AVB protocol

The timeSync frame in AVB
This version number
Create new precedende
Create GM distance

Create port indentifier
Echo grandTime

Echo extraTime

Echo localTime

Echo synch interval
Enqueue the result;

Consistency check
Timeout threshold
Timeout actions

Worst precedence &
worst tie-breakers
Resets the timeout

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

122

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

GrandSyncEntity *ePtr;
GrandSyncSaved *sxPtr;
char temp[TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

comPtr = CommonCreate(oldPtr, sizeof(GrandSyncEntity), &GrandSyncExec, TYPE_ENTITY, Q RX11_LAST, Q _TX11_LAST);
if (comPtr != NULL) {

ePtr = (GrandSyncEntity *)comPtr;

sxPtr = &(ePtr->rxSaved);

sxPtr->synclnterval = SMALL_10ms;

sxPtr->precedence.upper = sxPtr->precedence.lower = ONES;

nextPtr = StrPair(strncpy(temp, string, TLIMIT), name, data, NLIMIT);
for (; nextPtr !'= NULL && name[0] !'= “\0”; nextPtr = StrPair(nextPtr, name, data, NLIMIT)) {
if (strcmp(name, “name™) == 0)
strcpy(comPtr->name, data);
else if (strcmp(name, “rx0”) == 0)
assert(comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
else if (strcmp(name, “tx0”) == 0
assert(comPtr->txPortCount > 0), strcpy(comPtr->txPortPtr[0].name, data);

}
assert(PortsCheck(comPtr, nextPtr) == TRUE);

return(comPtr);

//
// ClockMaster state-machine routines
//

Common *ClockMasterInit(Common *, char *);
// Provide the clock source information, retransmits to GrandSync
// arguments:

// comPtr - associated state-maintaining data structure
// name - initialization trigger and assigned entity name
Common *

ClockMasterExec(Common *comPtr, char *name) {
uint8_t cmInfo[SizePlus(ClockMasterSet)], txInfo[SizePlus(GrandSyncind)];
ClockMasterEntity *ePtr (ClockMasterEntity *)comPtr;
ClockMasterSet *rxPtr (ClockMasterSet *)cminfo;
GrandSyncind *txPtr (GrandSynciInd *)txInfo;
SyncSduData *tsPtr = &(txPtr->service_data_unit);
RxPort *rxQueuePtr;
TxPort *txQueuePtr;
GrandTime grandTime;
SmallTime stationTime;
uint64_t macAddress;
uint32_t sized;
uintlé_t count, frameCount;
uint8_t portliD;
Boolean serviced;

it (name !'= NULL) // The entity name
return(ClockMasterInit(comPtr, name)); // for initialization

SetRxQueuelPtrs(comPtr, rxQueuePtr);

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

123

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30

SetTxQueuelPtrs(comPtr, txQueuePtr);

macAddress = MacAddress(comPtr);
portiD = PortiD(comPtr);

do {

serviced = FALSE;
//

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

// ***** processing arriving GrandSync clock-master indication parameters ******

//

stationTime = StationTime(comPtr);
sized = DeQueue(rxQueuePtr, rxPtr);

if

(sized > 0) {
serviced = TRUE;

assert(sized == sizeof(ClockMasterSet));
ePtr->snapShotl = ePtr->snapShotO;
ePtr->snapShot0 = stationTime;

count = (ePtr->rxFrameCount + 1) % COUNT;

frameCount = FieldToUnsign(rxPtr, frameCount).lower;
grandTime = FieldToSigned(rxPtr, grandTime);

ePtr->rxFrameCount = frameCount;

if (count == frameCount) {

//

// ****** Creation and transmit of MA_UNITDATA.indication parameters **

//
LongToFrame(AVB_MCAST,

LongToFrame(macAddress,
LongToFrame (AVB_PROTOCOL,
LongToFrame (AVB_FUNCTION,
LongToFrame(AVB_VERSION,
WideToFrame(ePtr->precedence,

LongToFrame(O,
LongToFrame(portliD,
WideToFrame(grandTime,

LongToFrame(ePtr->snapShotl,

LongToFrame(O,

LongToFrame(ePtr->synclnterval,

// TBD: fcs, priority,

EnQueue(txQueuePtr, txPtr);

}

} while (serviced == TRUE);
return(NULL) ;

Common *
ClockMasterInit(Common *oldPtr, char *string) {

Common
ClockMasterEntity *ePtr;
uint64_t macAddress;

char temp[TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

comPtr

*comPtr;

destination_address);
source_address);
protocolType);
function);

version);

precedence);
hopCount) ;
sourcePort);
grandTime);
smallTime);
extraTime);
synclinterval);

Neighbor multicast address
This port”’s MAC address
The AVB protocol

The timeSync frame in AVB
This version number
Create new precedence
Initial GM distance
Create port indentifier
Report grandTime

Report smallTime

Initial extraTime
Sync-frame interval

Enqueue the result;

= CommonCreate(oldPtr, sizeof(ClockMasterEntity), &ClockMasterExec, TYPE_RX_PORT, Q RX11_LAST, Q_TX11_LAST);

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

124

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30

if (comPtr = NULL) {
macAddress = MacAddress(comPtr);
comPtr->portlD = CLOCK_MASTER_PORT_ID;
comPtr->portLink = comPtr;
ePtr = (ClockMasterEntity *)comPtr;
ePtr->syncinterval = SMALL_10ms;
ePtr->precedence.upper = 0;
ePtr->precedence. lower = Eui48ToEui64(macAddress);

nextPtr = StrPair(strncpy(temp, string, TLIMIT), name, data, NLIMIT);
for (; name[0] '= “\O0”; nextPtr = StrPair(nextPtr, name, data, NLIMIT)) {

1T (strcmp(name, “name”) == 0)
strncpy(comPtr->name, data, NLIMIT);
else if (strcmp(name, “rx0”’) ==

assert(comPtr->rxPortCount >= 1), strcpy(comPtr->rxPortPtr[0].name, data);

else if (strcmp(name, “tx0”) == 0

assert(comPtr->txPortCount >= 1), strcpy(comPtr->txPortPtr[0].name, data);

¥
assert(PortsCheck(comPtr, nextPtr) == TRUE);

return(comPtr);

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

//

// ClockSlave state-machine routines

//

Common *ClockSlavelnit(Common *, char *);
// Generates a GrandSync indication, after being triggered
// arguments:

// comPtr - associated state-maintaining data structure
// name - initialization trigger and assigned entity name
Common *

ClockSlaveExec(Common *comPtr, char *name) {

// Get MAC address
// Set port identifier

uint8_t sxInfo[SizePlus(ClockSlaveReq)], rxInfo[SizePlus(GrandSyncReq)], txInfo[SizePlus(ClockSlaveRes)];

ClockSlaveEntity *ePtr = (ClockSlaveEntity *)comPtr;
ClockSlaveSaved *rcPtr = &(ePtr->rxSaved);

BaseTimer *btPtr = &(ePtr->baseTimer);
ClockSlaveReq *sxPtr (ClockSlaveReq *)sxInfo;
GrandSyncReq *rxPtr (GrandSyncReq *)rxInfo;
ClockSlaveRes *txPtr (ClockSlaveRes *)txInfo;

SyncSduData *rsPtr = &(rxPtr->service_data_unit);
RxPort *cxPortPtr, *rxQueuePtr;
TxPort *txQueuePtr;

NextTimes nextTimes;
LargeTime systemTime;
GrandTime grandTime;

SmallTime backlnterval, ratelnterval, smallTime, stationTime, synclnterval;

TinyTime extraTime;
uint32_t sized;
uint8_t frameCount;
Boolean serviced;

if (name != NULL)

// The entity’s name

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

125

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
return(ClockSlavelnit(comPtr, name)); // for initialization

SetRxQueue2Ptrs(comPtr, rxQueuePtr, cxPortPtr);
SetTxQueuelPtrs(comPtr, txQueuePtr);
stationTime = StationTime(comPtr);
do {
serviced = FALSE;
systemTime = SystemTime(comPtr);
backinterval = (3 * rcPtr->synclnterval + ePtr->syncinterval) / 2;
ratelnterval = backlnterval + (3 * ePtr->syncinterval) 7/ 2;

//
// ******* processing arriving GrandSync ClockSlave.request parameters *******xxx
//
sized = DeQueue(cxPortPtr, sxPtr);
if (sized '=0) {

serviced = TRUE;

assert(sized == sizeof(ClockSlaveReq));
frameCount = FieldToUnsign(sxPtr, frameCount).lower;
nextTimes = NextTimed(btPtr, stationTime, backlnterval);
grandTime = nextTimes.totalTime;
LongToFrame(frameCount, txPtr, frameCount); // Tag from the request
WideToFrame(grandTime, txPtr, grandTime); // Associated grandTime
EnQueue(txQueuePtr, txPtr); // Enqueue the result;
3
//
// ******* processing arriving GrandSync MA_UNITDATA.request parameters ******xxx
//

sized = DeQueue(rxQueuePtr, rxPtr);

if (sized == sizeof(GrandSyncReq) && TimeSyncSdu((SyncSduData *)rsPtr)) {
serviced = TRUE;
synclnterval = FieldToSigned(rsPtr, synclnterval).lower;

grandTime = FieldToSigned(rsPtr, grandTime);
extraTime = FieldToSigned(rsPtr, extraTime).lower;
smallTime = FieldToSigned(rsPtr, smallTime).lower;

rcPtr->synclnterval = synclnterval;
NextSaved(btPtr, ePtr->synclinterval, ratelnterval, GrandToLarge(grandTime), TinyToSmall(extraTime), smallTime);

¥
} while (serviced == TRUE); // Return tagged indication
return(NULL);

Common *
ClockSlavelnit(Common *oldPtr, char *string) {
Common *comPtr;
ClockSlaveEntity *ePtr;
BaseTimer *btPtr;
char temp[TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

comPtr = CommonCreate(oldPtr, sizeof(ClockSlaveEntity), &ClockSlaveExec, TYPE_TX_ PORT, Q_RX22_ LAST, Q_TX11_ LAST);
if (comPtr = NULL) {

ePtr = (ClockSlaveEntity *)comPtr;

ePtr->syncinterval = SMALL_10ms;

ePtr->rxSaved.synclnterval = SMALL_10ms;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

126

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

btPtr = &(ePtr->baseTimer);
btPtr->validated = O;
btPtr->headlndex = btPtr->taillndex = 0;

nextPtr = StrPair(strncpy(temp, string, TLIMIT), name, data, NLIMIT);
for (; name[0] '= “\O0”; nextPtr = StrPair(nextPtr, name, data, NLIMIT)) {

if (strcmp(name, “name”) == 0)
strncpy(comPtr->name, data, NLIMIT);
else if (strcmp(name, “rx0”) == 0)

assert(comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
else if (strcmp(name, “rx1”) == 0)

assert(comPtr->rxPortCount > 1), strcpy(comPtr->rxPortPtr[1].name, data);
else if (strcmp(name, “tx0”) == 0

assert(comPtr->txPortCount >= 1), strcpy(comPtr->txPortPtr[0].name, data);

¥
assert(PortsCheck(comPtr, nextPtr) == TRUE);

3
return(comPtr);

//
// Ethernet-duplex state-machine routines
//

Common *EfdxRxInit(Common *, char *);
// Receives duplex-Ethernet SDUs, retransmits them to GrandSync
// arguments:

// comPtr - associated state-maintaining data structure
// name - initialization trigger and assigned entity name
Common *

EfdxRxExec(Common *comPtr, char *name) {
uint8_t rxInfo[MTU_SIZED], txInfo[MTU_SIZED], sxInfo[SizePlus(EfdxRxInfo)];
EfdxRxEntity *ePtr = (EFfdxRxEntity *)comPtr;
RxTimer *btPtr = &(ePtr->rxTimer);
EfdxRxInfo *sxPtr (EfdxRxInfo *)sxlInfo;
EfdxMaclnd *rxPtr (EfdxMacInd *)rxInfo;
GrandSynclind *txPtr (GrandSynclInd *)txInfo;
EfdxSduData *rsPtr = &(rxPtr->service_data_unit);
SyncSduData *tsPtr = &(txPtr->service_data_unit);
EfdxMaclnd *dxPtr = &(ePtr->savedind);
EfdxSduData *dsPtr = &(dxPtr->service_data_unit);
RxPort *rxQueuePtr, *sxQueuePtr;
TxPort *txQueuePtr;
Precedence precedence;
GrandTime grandTime;
SmallTime cableDelay, compRxTime, rateRatio, smallTime, stationTime, thisRxTime, thisTxTimed;
LocalTime roundTrip, thatTxTime, thatRxTime, thisTxTime, turnRound, turnRoundO;
TinyTime extraTime;
uinté4_t da, sa;
uint32_t sized;
uintlé_t frameCount, protocol, rxHeadSize, snapCount, txHeadSize;
uint8_t function, guess, hopCount, portlD, version;
Boolean countsAreEqual, serviced;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

127

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30

it (name !'= NULL)

return(EfdxRxInit(comPtr, name));
SetRxQueue2Ptrs(comPtr, rxQueuePtr, sxQueuePtr);
SetTxQueuelPtrs(comPtr, txQueuePtr);

portiD = PortiD(comPtr);
countsAreEqual = 0;
do {
stationTime = StationTime(comPtr);
serviced = FALSE;

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

// Processing arriving timeSync snapshots

sized = DeQueue(sxQueuePtr, &sxInfo);

if (sized = 0) {
serviced = TRUE;
assert(sized == sizeof(EfdxRxInfo));
snapCount = FieldToUnsign(sxPtr, frameCount).lower;
smallTime = FieldToUnsign(sxPtr, smallTime).lower;
ePtr->snapShotl = ePtr->snapShotO;
ePtr->snapShot0 smallTime;

ePtr->snapCount snapCount;
countsAreEqual = (snapCount == ePtr->frameCount);
¥
//
// Processing arriving timeSync frames
//

sized = Dequeue(rxQueuePtr, rxPtr, sizeof(rxInfo));
if (sized "= 0) {
serviced = TRUE;

if (sized == sizeof(EfdxMaclnd) && TimeSyncSdu((SyncSduData *)rsPtr)) {

frameCount = FieldToUnsign(rsPtr, frameCount).lower;
guess = (ePtr->frameCount + 1) % COUNT;
ePtr->frameCount = frameCount;
if (frameCount == guess) {
bcopy(rxPtr, dxPtr, sizeof(EfdxMaclnd));
countsAreEqual = (frameCount == ePtr->snapCount);

} else {

a = FieldToUnsign(rxPtr, destination_address).lower;
sa = FieldToUnsign(rxPtr, source_address). lower;
LongToFrame(da, txPtr, destination_address);
LongToFrame(sa, txPtr, source_address);
rxHeadSize = (void *)rsPtr - (void *)rxPtr;
txHeadSize = (void *)tsPtr - (void *)txPtr;
bcopy(rsPtr, tsPtr, sized - rxHeadSize);

Enqueue(txQueuePtr, txPtr, sized + txHeadSize - rxHeadSize);

¥
¥

if (countsAreEqual == TRUE) {
serviced = TRUE;

//
//

//

The entity’s name
for initialization.

Station’s localTime

Any timeSync frame
has an actual and
expected frameCount
Update frameCount
An expected frame
Save valid frames
Enable processing

Extract destination
Extract source
Deposit destination
Deposit source
Received header size
Transmit header size
Copy entire SDU
Enqueue the contents

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

128

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30
countsAreEqual = FALSE;

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

da = FieldToUnsign(dxPtr, destination_address).lower;
sa = FieldToUnsign(dxPtr, source_address). lower;
protocol = FieldToUnsign(dsPtr, protocolType).lower;
function = FieldToUnsign(dsPtr, function).lower;
version = FieldToUnsign(dsPtr, version).lower;
precedence = FieldToUnsign(dsPtr, precedence);

hopCount = FieldToUnsign(dsPtr, hopCount).lower;
frameCount = FieldToUnsign(dsPtr, frameCount).lower;
thatTxTime = FieldToSigned(dsPtr, thatTxTime).lower;
thatRxTime = FieldToSigned(dsPtr, thatRxTime).lower;
grandTime = FieldToSigned(dsPtr, grandTime);

extraTime = FieldToSigned(dsPtr, extraTime).lower;

thisTxTime = FieldToSigned(dsPtr,
thisRxTime = ePtr->snapShotl;

localTime). lower;

ePtr->thisTxTime = thisTxTime; // Saved for transmit

ePtr->thisRxTime = SmallToLocal (thisRxTime); //

if (ePtr->thatRxTime != thatRxTime) {
ePtr->thatRxTime = thatRxTime;
ePtr->txReady = TRUE;

}
thisTxTimed = thisRxTime - LocalToSmall(SmallToLocal(thisRxTime) - thisTxTime);
if (ePtr->txReady == TRUE)

over returning link

rateRatio = NextRate(btPtr, thisRxTime, thisTxTimed, ePtr->synclnterval, btPtr->interval);

else
rateRatio = SMALL_ONE;

if (btPtr->validated != TRUE || ePtr->txReady != TRUE)
hopCount = LAST_HOP;

roundTrip = LocalToSmall(ePtr->thisRxTime - thatTxTime); //
turnRound0 = LocalToSmall(thisTxTime - thatRxTime); //
turnRound = MultiplySmall(turnRoundO, rateRatio); //
cableDelay = MAX(O, roundTrip - turnRound) / 2; //
compRxTime = thisRxTime - cableDelay; //
//

[/ FrREFEEEEIARRRAR Update revised service-data-unit parameters *Frrradkkkk

//

LongToFrame(da, txPtr, destination_address); //
LongToFrame(sa, txPtr, source_address); //
LongToFrame(protocol, tsPtr, protocolType); //
LongToFrame(function, tsPtr, function); //
LongToFrame(version, tsPtr, version); //
WideToFrame(precedence, tsPtr, precedence); //
LongToFrame (hopCount, tsPtr, hopCount); //
LongToFrame(portliD, tsPtr, sourcePort); //
WideToFrame(grandTime, tsPtr, grandTime); //
LongToFrame(extraTime, tsPtr, extraTime); //
LongToFrame(compRxTime, tsPtr, smallTime); //
LongToFrame(ePtr->synclnterval, tsPtr, synclnterval); //
EnQueue(txQueuePtr, txPtr); //

}
} while (serviced == TRUE);
return(NULL);

Round-trip delay
Turn-around delay
Normalized turnRound
Cable-delay computed
Cable-delay adjustment

The destination address
The source address

The protocol identifier
The function identifier
The function identifier
GM selection precedence
GM hop-count distance
Source-port identifier
grandTime at snapShot
Next extraTime value
Transmitted frame time
Sync transmit interval
Enqueue the result

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

129

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30
}

Common *
EfdxRxInit(Common *oldPtr, char *string) {
Common *comPtr;
EfdXRXEntity *ePtr;
RxTimer *btPtr;
char temp[TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

comPtr = CommonCreate(oldPtr, sizeof(EfdxRxEntity), &EFfdxRxExec, TYPE_RX_PORT, Q_RX22_LAST, Q_TX11_LAST);

it (comPtr !'= NULL) {
ePtr = (EfdxRxEntity *)comPtr;
ePtr->synclinterval = SMALL_10ms;
ePtr->snapCount = ePtr->frameCount = -1;
ePtr->txReady = FALSE;

btPtr = &(ePtr->rxTimer);
btPtr->validated = FALSE;
btPtr->interval = SMALL_10ms * 20;
btPtr->headlndex = btPtr->taillndex = 0O;

nextPtr = StrPair(strncpy(temp, string, TLIMIT), name, data, NLIMIT);
for (; name[0] '= “\O0”; nextPtr = StrPair(nextPtr, name, data, NLIMIT)) {
1T (strcmp(name, “name”) == 0)
strcpy(comPtr->name, data);
else if (strcmp(name, “rx0”) ==
assert(comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
else if (strcmp(name, “rx1”) == 0
assert(comPtr->rxPortCount > 1), strcpy(comPtr->rxPortPtr[1].name, data);
else if (strcmp(name, “tx0”) == 0)
assert(comPtr->txPortCount > 0), strcpy(comPtr->txPortPtr[0].name, data);

}
assert(PortsCheck(comPtr, nextPtr) == TRUE);

return(comPtr);

SmallTime

NextRate(RxTimer *btPtr, SmallTime thisRxTime, SmallTime thisTxTime, SmallTime intervalO, SmallTime intervall)

PastTimes *timePtr;

SmallTime rateRatioO, rateRatiol, thatDelta, thisDelta;
uintl6_t headlndex, taillndex, lastindex, limit;
uint8_t i;

assert(btPtr = NULL);
timePtr = btPtr->times;
limit = ARRAY_SIZE(btPtr->times);

it (btPtr->headlndex == btPtr->taillndex) {
assert(btPtr->validated == FALSE);
btPtr->headlndex = 1, btPtr->taillndex = 0;
timePtr[0] .thisTime = thisRxTime;
timePtr[0] -thatTime = thisTxTime;

Verify the pointer
Array value pointer
Array-size limits

Unitialized array
has no validated
Initialize index
and tail-indexed
data values

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

130

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30

headlndex = btPtr->headlndex;
lastIndex = PLUS(headlndex, -1, limit);
assert(headlndex < limit && lastlndex < limit);

it ((timePtr[headlndex].thatTime - timePtr[lastindex].thatTime) > (intervalO / 2)) {

btPtr->headlndex = headlndex = PLUS(headlndex, 1, limit);
btPtr->validated = TRUE;

}

timePtr[headlndex].thisTime =

timePtr[headlndex].thatTime =

it (btPtr->validated == FALSE)
return(SMALL_ONE) ;

thisRxTime;
thisTxTime;

for (i = 0; 1 <2; 1 += 1, btPtr->taillndex = taillndex) {
taillndex = PLUS(btPtr->taillndex, 1, limit);
if (taillndex == headlndex)
break;
if (thisTxTime - timePtr[taillndex].thatTime <= intervall)
break;

}
taillndex = btPtr->taillndex;

thisDelta = thisRxTime - timePtr[taillndex].thisTime;
thatDelta = thisTxTime - timePtr[taillndex].thatTime;
assert(thatDelta '= 0);

rateRatio0 = DivideSmall(thisDelta, thatDelta);
rateRatiol = CLIP_RATE(rateRatioO, PPM250);
return(rateRatiol);

}

Common *EfdxTxInit(Common *, char *);
// Receives GrandSync SDUs, retransmits them as duplex-Ethernet SDUs
// arguments:

// comPtr - associated state-maintaining data structure
// name - initialization trigger and assigned entity name
Common *

EfdxTxExec(Common *comPtr, char *name) {
uint8_t txInfo[MTU_SIZED], rxInfo[MTU_SIZED], sxInfo[SizePlus(EfdxTxInfo)];
EfdxTxEntity *ePtr = (ETfdxXTxXEntity *)comPtr;
BaseTimer *btPtr &(ePtr->baseTimer);
GrandSyncReq *rxPtr (GrandSyncReq *)rxInfo;
EfdxTxSaved *rcPtr = &(ePtr->rxSaved);
EfdxMacReq *txPtr (EfdxMacReq *)txlInfo;
SyncSduData *rsPtr = &(rxPtr->service_data_unit);
EfdxSduData *tsPtr = &(txPtr->service_data_unit);
EfdxTxInfo *sxPtr (EfdxTxInfo *)sxlInfo;
EfdxRxEntity *dPtr;
RxPort *rxQueuePtr, *sxQueuePtr;
TxPort *txQueuePtr;
NextTimes nextTimes;
GrandTime grandTime;

SmallTime backlnterval, execTime, nextTime, ratelnterval, smallTime, stationTime, wakeTime;

LocalTime localTime;
TinyTime extraTime;
uintlé_t rxHeadSize, txHeadSize, size, sized;

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

The head and last
index values within
the circular buffer

Time to advance
increment headlndex
Set when ready

Save received time
Save transmit time
Until times change,
assume slope==1

Check taillndex twice
Next taillndex value
The taillndex can
never equal headlndex
Update taillndex if
range is maintained

Received interval
Transmit interval
Must have changed
Compute the rate
Clip within 250PPM

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

131

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
Boolean serviced;

if (name != NULL)

return(EfdxTxInit(comPtr, name));
SetRxQueue2Ptrs(comPtr, rxQueuePtr, sxQueuePtr);
SetTxQueuelPtrs(comPtr, txQueuePtr);
assert((dPtr = (EfdxRxEntity *)comPtr->pairLink) != NULL);

do {
serviced = FALSE;
stationTime = StationTime(comPtr);

backinterval = (3 * rcPtr->synclnterval + ePtr->syncinterval) / 2;
ratelnterval = backlnterval + (3 * ePtr->syncinterval) / 2;

//

// Processing arriving timeSync snapshots

//

sized = DeQueue(sxQueuePtr, &sxInfo);

if (sized '= 0) {
serviced = TRUE;
assert(sized == sizeof(EfdxTxInfo));
ePtr->sxSnapCount = FieldToUnsign(sxPtr, frameCount).lower;
ePtr->sxSnapTimed = FieldToUnsign(sxPtr, smallTime).lower;
ePtr->txReady = TRUE;

3

//
[/ FFREFFEEIIRRAAER Processing arrived MS_DATAUNIT.request frames *****ixxtddiirx
//
sized = DeQueue(rxQueuePtr, &rxInfo);
if (sized '= 0) {
serviced = TRUE;
if (sized != sizeof(GrandSyncReq) || !TimeSyncSdu(rsPtr)) {
LongToFrame(rcPtr->da, txPtr, destination_address);
LongToFrame(rcPtr->sa, txPtr, source_address);
rxHeadSize = (void *)rsPtr - (void *)rxPtr;
txHeadSize = (void *)tsPtr - (void *)txPtr;
bcopy(rsPtr, tsPtr, sized - rxHeadSize);
size = sized + txHeadSize - rxHeadSize;
Enqueue(txQueuePtr, txPtr, size);

} else {
rcPtr->da = FieldToUnsign(rxPtr, destination_address).lower;
rcPtr->sa = FieldToUnsign(rxPtr, source_address).lower;
rcPtr->type = FieldToUnsign(rsPtr, protocolType).lower;
rcPtr->function = FieldToUnsign(rsPtr, function).lower;
rcPtr->version = FieldToUnsign(rsPtr, version).lower;
rcPtr->hopCount = FieldToUnsign(rsPtr, hopCount). lower;
rcPtr->precedence = FieldToUnsign(rsPtr, precedence);
rcPtr->synclnterval = FieldToUnsign(rsPtr, synclnterval).lower;
grandTime = FieldToSigned(rsPtr, grandTime);
extraTime = FieldToSigned(rsPtr, extraTime).lower;
smallTime = FieldToSigned(rsPtr, smallTime).lower;

NextSaved(btPtr, ePtr->synclinterval, ratelnterval,
GrandToLarge(grandTime), TinyToSmall(extraTime), smallTime);

// The entity name
// for initialization.

// Associated receiver

// Station’s localTime

// The destination_address
// The source_address

// Received header size

// Transmit header size

// Copy entire SDU

// Size of enqueued frame
// Enqueue for transmission

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

132

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

// if (ePtr->guessMode == EXTRAPOLATE)
// ePtr->execTime = stationTime + RESIDENCE_DELAY;
}
3
//
// Preparing transmitted timeSync frames
//

nextTime = ePtr->lastTime + ePtr->synclinterval;

if ((stationTime - nextTime) >= 0) {

serviced = TRUE;
ePtr->lastTime = nextTime;

ePtr->execTime = stationTime + RESIDENCE_DELAY;

}

execTime = ePtr->execTime;

if ((stationTime - execTime) >= 0) {

serviced = TRUE;

ePtr->execTime = stationTime + LARGE_TOCK;
ePtr->frameCount = (ePtr->frameCount + 1) % COUNT;

if (lePtr->txReady)

ePtr->sxSnapTimed = (stationTime - ePtr->synclnterval);
localTime = SmallToLocal (ePtr->sxSnapTimed);

switch(ePtr->guessMode) {

case INTERPOLATE:
nextTimes =
break;

case EXTRAPOLATE:

NextTimed(btPtr, ePtr->sxSnapTimed, backlInterval);

nextTimes = NextTimed(btPtr, ePtr->sxSnapTimed, (SmallTime)O0);

break;

LongToFrame(rcPtr->da,
LongToFrame(rcPtr->sa,
LongToFrame(AVB_PROTOCOL,
LongToFrame(AVB_FUNCTION,
LongToFrame(AVB_VERSION,
WideToFrame(rcPtr->precedence,
LongToFrame(rcPtr->hopCount,
LongToFrame(ePtr->frameCount,
WideToFrame(nextTimes.grandTime,
LongToFrame(nextTimes.extraTime,
LongToFrame(localTime,
LongToFrame(dPtr->thisTxTime,
LongToFrame(dPtr->thisRxTime,
EnQueue(txQueuePtr, txPtr);

wakeTime = (execTime - nextTime) > 0 ? nextTime :

} while (serviced == TRUE);
assert((wakeTime - stationTime) > 0);
SleepOnBase(comPtr, wakeTime);
return(NULL) ;

}

Common *
EfdxTxInit(Common *oldPtr, char *string) {

t™Ptr,
t™Ptr,
tsPtr,
tsPtr,
tsPtr,
tsPtr,
tsPtr,
tsPtr,
tsPtr,
tsPtr,
tsPtr,
tsPtr,
tsPtr,

destination_address);
source_address);
protocolType);
function);
version);
precedence);
hopCount) ;
frameCount) ;
grandTime);
extraTime);
localTime);
thatTxTime);
thatRxTime);

execTime;

//
//

//
//

Next sync transmission

Restart 10ms timer

Indefinite future
Incremented counter

The destination_address
The source_address

The protocol identifier
The basic function

and version identifier
Grand-master precedence
The ~GM distance.
Source-port identifier
grandTime at snapShot
Next extraTime value
Transmitted frame time
Opposing transmit time
Opposing received time
Enqueue the result

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

133

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Common *comPtr;
EfdXTxEntity *ePtr;
BaseTimer *btPtr;
EfdxTxSaved *rcPtr;
char temp[TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

comPtr = CommonCreate(oldPtr, sizeof(EFfdxTxEntity), &EfdxTxExec, TYPE_TX_PORT, Q_RX22_LAST, Q_TX11_LAST);
it (comPtr !'= NULL) {

ePtr = (EFfdXTxXEntity *)comPtr;

rcPtr = &(ePtr->rxSaved);

ePtr->syncinterval = rcPtr->synclnterval = SVMALL_10ms;

ePtr->guessMode = INTERPOLATE;

rcPtr->precedence.upper = rcPtr->precedence.lower = ONES;
rcPtr->hopCount = OXFF;

btPtr = &(ePtr->baseTimer);
btPtr->validated = O;
btPtr->headlndex = btPtr->taillndex = 0;

nextPtr = StrPair(strncpy(temp, string, TLIMIT), name, data, NLIMIT);
for (; name[0] '= “\O0”; nextPtr = StrPair(nextPtr, name, data, NLIMIT)) {
if (strcmp(name, “name”) == 0)
strncpy(comPtr->name, data, NLIMIT);
else if (strcmp(name, “rx0”) == 0)
assert(comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
else if (strcmp(name, “rx1”) == 0
assert(comPtr->rxPortCount > 1), strcpy(comPtr->rxPortPtr[1].name, data);
else if (strcmp(name, “tx0”) == 0)
assert(comPtr->txPortCount > 0), strcpy(comPtr->txPortPtr[0].name, data);
else if (strcmp(name, “guessMode”) == 0)
ePtr->guessMode = atoi(data);

}
assert(PortsCheck(comPtr, nextPtr) == TRUE);

return(comPtr);

// The NextTimed() routine computes grandTime based on current txTime and

// previously sampled rxTimes information. The computation effect is:

// 1) Step back in time by a duration backlnterval, to tbTime

// 2) Interpolate between rxTimes[n-N] and rxTimes[n+0], yielding tiTime

// 3) Extrapolate the tiTime forward, assuming slope==1, yielding grandTime
// 4) Extrapolate the tiTime forward, assuming rateRatio, yielding totalTime
// The rateRatio is the ratio of grandTime to stationTime changes.

// 5) Forward {extraTime = totalTime - grandTime) along with grandTime.

// The incoming extraTime is also filtered, but not extrapolated forward:

// 1) Step back in time by a duration backlnterval, to tbTime

// 2) Interpolate between rxTimes[n-N] and rxTimes[n+0], yielding extraTime
// The value of of backlnterval is based on worst-case latencies:

// backlnterval = (3 * thatlnterval + thislnterval) / 2

// thatlinterval - is the synclnterval for the selected clock-slave

// thislInterval - is the synclnterval for this clock-master port

NextTimes

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

134

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

NextTimed(BaseTimer *btPtr, SmallTime txTime, SmallTime backlnterval) {

}

void

BaseTimes *timePtr = btPtr->times;

BaseTimes thisTimes, pastTimes;

NextTimes nextTimes;

LargeTime largeTimeO, largeTimel;

SmallTime deltaTime, extraDelta, extraTimeO, extraTimel, extraTime2, extraTime3,
grandDelta, rateRatioO, rateRatiol, smallDelta, weight;

uintl6é_t headlndex, taillndex, extraCount, i;

assert(btPtr = NULL);
headlndex = btPtr->headlndex;

taillndex = btPtr->taillndex;

thisTimes = timePtr[headlndex];

pastTimes = timePtr[taillndex];

grandDelta LargeToSmal I(WideSubtract(thisTimes.largeTime, pastTimes.largeTime));

extraDelta = thisTimes.extraTime - pastTimes.extraTime;
smallDelta = thisTimes.smallTime - pastTimes.smallTime;
if (smallDelta == 0) {
grandDelta = smallDelta = 2 * SMALL_10ms;
extraDelta 0;

}

weight = DivideSmall ((txTime - backlInterval) - thisTimes.smallTime, smallDelta);
rateRatioO = DivideSmall(grandDelta, smallDelta);
rateRatiol = CLIP_RATE(rateRatioO, PPM250);
deltaTime = MultiplySmall((rateRatiol - SMALL_ONE), backlInterval);
if (rateRatiol != rateRatioO)
grandDelta = MultiplySmall(rateRatiol, smallDelta);

largeTime0 = WideAddition(thisTimes.largeTime, SmallToLarge(MultiplySmall(grandDelta, weight)));
largeTimel = WideAddition(largeTimeO, SmallTolLarge(backlnterval));

// Average the accumulated extraTime values...
extraTime0 = extraCount = 0;
for (i = taillndex; ; 1 = PLUS(i, 1, ARRAY_SIZE(btPtr->times))) {
extraTimeO += timePtr[i].extraTime;
extraCount += timePtr[i].extraCount;
if (i == headlndex)
break;

assert(headlndex == taillndex |] extraCount != 0);

extraTimel = (extraCount !'= 0) ? (extraTimeO / extraCount) : O;
extraTime2 = extraTimel + deltaTime;

extraTime3 = CLIP_SIZE(extraTime2, (SMALL_ONE / 256) - 1);

nextTimes.grandTime = LargeToGrand(largeTimel);
nextTimes.extraTime = SmallToTiny(extraTime3);

nextTimes.totalTime = LargeToGrand(WideAddition(largeTimel, SmallToLarge(extraTime3)));
return(nextTimes);

NextSaved(BaseTimer *btPtr, SmallTime intervalO, SmallTime intervall,

LargeTime largeTime, SmallTime extraTime, SmallTime stationTime) {

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

135

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30

BaseTimes *timePtr = btPtr->times;
uintlé_t headlndex, taillndex, lastlndex, limit;

uint8_t i;

assert(btPtr !'= NULL);

if (btPtr->headlndex == btPtr->taillndex) {
assert(btPtr->validated == FALSE);
btPtr->headlndex = 1, btPtr->taillndex = 0;

timePtr[0].largeTime = largeTime;
timePtr[0].smallTime = stationTime;
timePtr[0] .extraTime = extraTime;

timePtr[0] .extraCount = 1;

b

limit = ARRAY_SIZE(btPtr->times);

headlndex = btPtr->headlndex;

lastindex = PLUS(headlndex, -1, limit);

assert(headlndex < limit && lastlndex < limit);

ifT (timePtr[headlndex].smallTime == stationTime)
return;

if ((timePtr[headlndex].smallTime - timePtr[lastindex].smallTime) > (intervalO / 2)) {

btPtr->headlndex = headlndex = PLUS(headlndex, 1, limit);
timePtr[headlndex].extraCount = timePtr[headlndex].extraTime =
btPtr->validated = TRUE;

timePtr[headlndex].largeTime = largeTime;
timePtr[headlndex].smallTime = stationTime;
timePtr[headlndex].extraTime += extraTime;
timePtr[headlndex].extraCount += 1;

for (i = 0; 1 <2; 1 += 1, btPtr->taillndex = taillndex) {
taillndex = PLUS(btPtr->taillndex, 1, limit);
if (taillndex == headlndex)

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

break;
if (stationTime - timePtr[taillndex].smallTime <= intervall)
break;
¥
}
//
// Wireless 802.11v wireless state-machine routines
//

Common *R11vRxInit(Common *, char *);
// Receives radio service-interface parameters, sends GrandSync an SDU
// arguments:

// comPtr - associated state-maintaining data structure
// name - initialization trigger and assigned entity name
Common *

R11vRxExec(Common *comPtr, char *name)

{
uint8_t rlinfo[SizePlus(R1lvinfollnd)], r2Info[SizePlus(R1lvinfo2ind)], txInfo[MTU_SIZED];

R11VRxEntity *ePtr = (R11vRxEntity *)comPtr;
Rilvinfollnd *ri1Ptr = (R1llvinfollnd *)rilinfo;
R1lviInfo2Ind *r2Ptr = (R1llvinfo2lnd *)r2Info;

Validate the pointer
IT not initialized
Indicate not valid
Initial index values
Initialize GM time
and the other time
values, including

an errorTime count

Array index limit
Current-head index
Previous-head index
Index limitatins

IT time has changed
Advance the headlndex
Initialize extraTime
and set validated

Saved GM time

Saved station time
Averaged time value
is accumulated

Check taillndex twice
Next taillndex value
The taillndex must
not equal headlndex
The taillndex must
maintain the interval

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

136

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30

GrandSynclnd *txPtr = (GrandSyncind *)txInfo;
SyncSduData *tsPtr = &(txPtr->service_data unit);
RxPort *rilQueuePtr, *r2QueuePtr;

TxPort *txQueuePtr;

GrandTime grandTime;

SmallTime stationTime, cableDelay, totalDelay, smallTime;
TinyTime extraTime;

TicksTime ticksTime;

uinté4_t da, sa;

uint32_t sized;

uint8_t hopCount, portliD;

Boolean serviced;

it (name '= NULL)

return(R11vRxInit(comPtr, name));
SetRxQueue2Ptrs(comPtr, rlQueuePtr, r2QueuePtr);
SetTxQueuelPtrs(comPtr, txQueuePtr);

portiD = PortiD(comPtr);

do {
stationTime = StationTime(comPtr);
serviced = FALSE;

//
// ****** processing arriving MLME_PRESENCE_REQUEST. indication snapshots ****x*x*xx*
//
sized = DeQueue(rlQueuePtr, &rlinfo);
if (sized 1= 0) {

assert(sized == sizeof(Rllvinfollnd));

ePtr->turnRound = rlPtr->ticksTime3 - rlPtr->ticksTime2;

}

//
// ****** processing arriving MLME_PRESENCE_RESPONSE. indication snhapshots ****x*x*
//
sized = DeQueue(r2QueuePtr, &r2Info);
if (sized 1= 0) {

assert(sized == sizeof(R1llvinfo2iInd));

serviced = TRUE;

ticksTime = R11lvTime(ePtr);

cableDelay = MIN(O, r2Ptr->roundTrip - ePtr->turnRound) / 2;

totalDelay = cableDelay + (ticksTime - r2Ptr->ticksTime4);

grandTime = LevelToGrand(r2Ptr->levelTime);

hopCount = r2Ptr->hopCount;

extraTime = r2Ptr->extraTime;

smallTime = stationTime - MultiplySmall(totalDelay, RADIO_TICK_TIME);
//

[/ FrREFFEEIIRRKAEX Creation of service-data-unit parameters

//

LongToFrame(da, txPtr, destination_address);
LongToFrame(sa, txPtr, source_address);

LongToFrame (hopCount, tsPtr, hopCount);

LongToFrame(portliD, tsPtr, sourcePort);
WideToFrame(grandTime, tsPtr, grandTime);

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

//

The entity name

// for initialization.

//

Station’s localTime

// Station local times

/ Cable delay ticks

Elapsed time

Grand-master time
Grand-master time
Grand-master time
Local-time stamp

Destination address
Source-port identifier
The ~GM distance.
Source-port identifier
grandTime at snapShot

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

137

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

LongToFrame(extraTime, tsPtr, extraTime);
LongToFrame(smallTime, tsPtr, smallTime);
LongToFrame(ePtr->synclnterval, tsPtr, synclnterval);
EnQueue(txQueuePtr, txPtr);

}
} while (serviced == TRUE);
return(NULL);

Common *
R11vRxInit(Common *oldPtr, char *string) {
Common *comPtr;
R11VRXEntity *ePtr;
char temp[TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

// Next extraTime value
// Transmitted frame time
// Sync transmit interval
// Enqueue the result

comPtr = CommonCreate(oldPtr, sizeof(R11vRxEntity), &R11vRxExec, TYPE_RX_PORT, Q_RX22_LAST, Q_TX11_LAST);

it (comPtr !'= NULL) {
ePtr = (R11lvRxEntity *)comPtr;
ePtr->syncinterval = SMALL_10ms;

nextPtr = StrPair(strncpy(temp, string, TLIMIT), name, data, NLIMIT);
for (; name[0] '= “\O0”; nextPtr = StrPair(nextPtr, name, data, NLIMIT)) {

if (strcmp(name, “name”) == 0)
strncpy(comPtr->name, data, NLIMIT);
else if (strcmp(name, “rx0”) == 0)

assert(comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
else if (strcmp(name, “rx1”) == 0

assert(comPtr->rxPortCount > 1), strcpy(comPtr->rxPortPtr[1].name, data);
else if (strcmp(name, “tx0”) == 0)

assert(comPtr->txPortCount > 0), strcpy(comPtr->txPortPtr[0].name, data);

¥
assert(PortsCheck(comPtr, nextPtr) == TRUE);

return(comPtr);

Common *R11vTxInit(Common *, char *);

// Receives radio GrandSync SDUs, retransmits as service-interface parameters
// arguments:

// comPtr - associated state-maintaining data structure
// name - initialization trigger and assigned entity name
Common *

R11vTxExec(Common *comPtr, char *name) {
uint8_t rxInfo[MTU_SI1ZED], c2Info[SizePlus(R1lvIinfo2Con)], clinfo[SizePlus(R11lvinfolCon)];
R11VTXEntity *ePtr (R11vTXEntity *)comPtr;
BaseTimer *btPtr = &(ePtr->baseTimer);
GrandSyncReq *rxPtr (GrandSyncReq *)rxInfo;
R11vTxSaved *sxPtr = &(ePtr->rxSaved);
SyncSduData *rsPtr = &(rxPtr->service_data_unit);
R11vInfo2Con *c2Ptr (R11lvinfo2Con *)c2info;
Ri1lvinfolCon *cl1Ptr (R11vinfolCon *)clinfo;
R11VRXEntity *dPtr;
RilvinfolReq rlinfo, *rlPtr = &rlinfo;

// Setup entity pointer
// Set default interval

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

138

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30

R1lvinfo2Req *r2Ptr, r2info;

TxPort *rlQueuePtr, *r2QueuePtr;

RxPort *c1lQueuePtr, *c2QueuePtr, *rxQueuePtr;

NextTimes nextTimes;

GrandTime grandTime;

SmallTime backinterval, lapseTime, nextTime, ratelnterval, stationTime, smallTime;
TicksTime ticksTime;

TinyTime extraTime;

uint32_t sized;

Boolean serviced;

if (name != NULL)

return(R11vTxInit(comPtr, name));

SetRxQueue3Ptrs(comPtr, clQueuePtr, c2QueuePtr, rxQueuePtr);
SetTxQueue2Ptrs(comPtr, rlQueuePtr, r2QueuePtr);

assert((dPtr = (R11lvRxEntity *)(comPtr->pairLink)) '= NULL);
do {

stationTime = StationTime(comPtr);

serviced = TRUE;

backinterval = (3 * sxPtr->synclnterval + ePtr->syncinterval) / 2;
ratelnterval = backlnterval + (3 * ePtr->syncinterval) / 2;

//
// ***** Preparing transmitted MLME_PRESENCE_RESPONSE.request information ******
//
nextTime = ePtr->lastTime + SMALL_10ms;
if ((stationTime - nextTime) >= 0) {
serviced = TRUE;
ePtr->lastTime = nextTime;
EnQueue(r2QueuePtr, riPtr);

//
[/ FFRFFREEEIIRRAARX Processing arrived MS_DATAUNIT.request frames *****xxtddiirx
//
sized = DeQueue(rxQueuePtr, rxPtr);
if (sized = 0) {

serviced = TRUE;

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

// The entity name
// for initialization

// Receiver pair

// Station’s localTime

// Next sync transmission

// Restart 10ms timer
// Enqueue the trigger

assert(sized == sizeof(GrandSyncReq));

sxPtr->hopCount = FieldToUnsign(rsPtr, hopCount). lower;

sxPtr->precedence = FieldToUnsign(rsPtr, precedence);

sxPtr->synclnterval = FieldToUnsign(rsPtr, synclnterval).lower;

grandTime = FieldToSigned(rsPtr, grandTime);

extraTime = FieldToSigned(rsPtr, extraTime).lower;

smallTime = FieldToSigned(rsPtr, smallTime).lower;

NextSaved(btPtr, ePtr->synclinterval, ratelnterval, GrandToLarge(grandTime), TinyToSmall(extraTime), smallTime);
3
//

// ****** processing arriving MLME_PRESENCE_REQUEST.confirm information ******xxx
//
sized = DeQueue(clQueuePtr, &clinfo);
if (sized 1= 0) {

serviced = TRUE;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

139

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

}

assert(sized == sizeof(R1llvinfolCon));
ePtr->snapShotl clPtr->ticksTimel;
ePtr->snapShot4 clPtr->ticksTime4;
ePtr->respondNow = TRUE;

¥

//

// ***** Preparing transmitted MLME_PRESENCE_RESPONSE.request inforomation *****

//

if (ePtr->respondNow == TRUE) { // Next sync transmission
serviced = TRUE;
ePtr->respondNow = TRUE; // Clear the trigger
ticksTime = R11lvTime(dPtr);
lapseTime = ticksTime - ePtr->snapShot4; // Elapsed time
smallTime = stationTime - MultiplySmall(lapseTime, RADIO_TICK_TIME); // Extrapolate stationTime
nextTimes = NextTimed(btPtr, smallTime, backlnterval);
r2Ptr = &r2info;
r2Ptr->ticksTime4 = ePtr->snapShot4; // Snapshot time transfer
r2Ptr->roundTrip = ePtr->roundTrip; // Snapshot diff transfer
r2Ptr->levelTime = GrandToLevel (nextTimes.grandTime); // Grand-master radio time
r2Ptr->extraTime = nextTimes.extraTime; // Grand-master extra time
r2Ptr->precedence = sxPtr->precedence; // GM precedence
r2Ptr->hopCount = sxPtr->hopCount; // GM hop-count

3 EnQueue(r2QueuePtr, r2Ptr); // Enqueue the result

//

// ****** Processing arriving MLME_PRESENCE_RESPONSE.confirm information *******

//

sized = DeQueue(c2QueuePtr, &c2Info);

if (sized = 0) {
serviced = TRUE;
assert(sized == sizeof(R1lvInfo2Con));
assert(c2Ptr '= NULL);

by
} while (serviced == TRUE);
assert((nextTime - stationTime) > 0);
SleepOnBase(comPtr, nextTime);
return(NULL);

Common *
R11vTxInit(Common *oldPtr, char *string) {

Common *comPtr;
R11VTXEntity *ePtr;
BaseTimer *btPtr;
char temp[TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

comPtr = CommonCreate(oldPtr, sizeof(R11vTxEntity), &R11vTxExec, TYPE_TX_PORT, Q RX33_LAST, Q_TX22_LAST);
if (comPtr != NULL) {

ePtr = (R11vTxEntity *)comPtr;

btPtr = &(ePtr->baseTimer);

btPtr->validated = O;

btPtr->headlndex = btPtr->taillndex = 0;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

140

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

nextPtr
for (;
if
els
els
els
els

els

assert(

return(comP

Common *EponRxI

= StrPair(strncpy(temp, string, TLIMIT), name, data, NLIMIT);

name[0] '= “\0’; nextPtr = StrPair(nextPtr, name, data, NLIMIT)) {
(strcmp(name, “name’) == 0)

strncpy(comPtr->name, data, NLIMIT);
e if (strcmp(name, “rx0”) == 0

assert(comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
e if (strcmp(name, “rx1”) == 0)

assert(comPtr->rxPortCount > 1), strcpy(comPtr->rxPortPtr[1].name, data);
e if (strcmp(name, “rx2”) == 0)

assert(comPtr->rxPortCount > 2), strcpy(comPtr->rxPortPtr[2].name, data);
e if (strcmp(name, “tx0”) == 0)

assert(comPtr->txPortCount > 0), strcpy(comPtr->txPortPtr[0].name, data);
e if (strcmp(name, “tx1) == 0)

assert(comPtr->txPortCount > 1), strcpy(comPtr->txPortPtr[1].name, data);

PortsCheck(comPtr, nextPtr) == TRUE);
tr);

nit(Common *, char *);

//

//

Ethernet-PON state-machine routines

//

// Receives Eth
// arguments:
// comPtr -
// name -
Common *
EponRxExec(Comm
uint8_t rxl
EponRxEntit
EponMaclind
GrandSyncln
SyncSduEpon
SyncSduData
RxPort
TxPort
GrandTime
SmallTime
TinyTime
TicksTime
uinté4_t
uint32_t
uint8_t
Boolean

if (name !=

return(
SetRxQueuel
SetTxQueuel

ernet-PON SDUs, reformats and sends to GrandSync

associated state-maintaining data structure
initialization trigger and assigned entity name

on *comPtr, char *name)

nfo[MTU_SI1ZED], txInfo[MTU_SIZED];

y *ePtr = (EponRxEntity *)comPtr;
*rxpPtr (EponMaciInd *)rxInfo;

d *txPtr (GrandSynciInd *)txInfo;
*rsPtr = &(rxPtr->service_data unit);
*tsPtr = &(txPtr->service_data_unit);

*rxQueuePtr;

*txQueuePtr;

grandTime;

smallTime, stationTime;
extraTime;

lapseTime, ticksTime, ponTime;
da, sa;

sized;

hopCount, portlD;

serviced;

NULL) // The entity name
EponRxInit(comPtr, name)); // for initialization.
Ptrs(comPtr, rxQueuePtr);

Ptrs(comPtr, txQueuePtr);

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

141

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30

portiD = PortiD(comPtr);
do {
serviced = FALSE;
stationTime = StationTime(comPtr);

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

// Processing arriving timeSync frames

sized = DeQueue(rxQueuePtr, rxPtr);
if (sized '= 0) {
serviced = TRUE;

assert(sized == sizeof(EponMacind));

ponTime = EponTime(ePtr);

//

;; **x*x* Extract frame parameters and perform basic consistency checks *****
da = FieldToUnsign(rxPtr, destination_address).lower;

sa = FieldToUnsign(rxPtr, source_address).lower;

hopCount = FieldToUnsign(rsPtr, hopCount). lower;

grandTime = FieldToSigned(rsPtr, grandTime);

extraTime = FieldToSigned(rsPtr, extraTime).lower;

ticksTime = FieldToSigned(rsPtr, ticksTime).lower;

lapseTime = ponTime - ticksTime;

smallTime = stationTime - MultiplySmall(lapseTime, PON_TICK_TIME);
//

[/ FrREFEEEIARRxAE Update revised service-data-unit parameters *Fxrddddkdkkkkk
//

LongToFrame(da, txPtr, destination_address);
LongToFrame(sa, txPtr, source_address);

LongToFrame (hopCount, tsPtr, hopCount);
LongToFrame(portliD, tsPtr, sourcePort);
WideToFrame(grandTime, tsPtr, grandTime);
LongToFrame(extraTime, tsPtr, extraTime);
LongToFrame(smallTime, tsPtr, smallTime);

LongToFrame(ePtr->synclnterval, tsPtr, synclnterval);
EnQueue(txQueuePtr, txPtr);

¥
} while (serviced == TRUE);
return(NULL);

Common *EponRxInit(Common *oldPtr, char *string) {
Common *comPtr;
EponRxEntity *ePtr;
char temp[TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

//

Station’s localTime

Destination address
Source-port identifier
The ~GM distance.
Source-port identifier
grandTime at snapShot
Next extraTime value
Transmitted frame time
Sync transmit interval
Enqueue the result

comPtr = CommonCreate(oldPtr, sizeof(EponRxEntity), &EponRxExec, TYPE_RX_PORT, Q RX11_LAST, Q_TX11_LAST);

it (comPtr !'= NULL) {
ePtr = (EponRxEntity *)comPtr;
ePtr->syncinterval = SMALL_10ms;

nextPtr = StrPair(strncpy(temp, string, TLIMIT), name, data, NLIMIT);
for (; name[0] !'= “\O0’; nextPtr = StrPair(nextPtr, name, data, NLIMIT)) {

if (strcmp(name, “name”) == 0)

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

142

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

strncpy(comPtr->name, data, NLIMIT);
else if (strcmp(name, “rx0”) == 0

assert(comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
else if (strcmp(name, “tx0”) == 0)

assert(comPtr->txPortCount > 0), strcpy(comPtr->txPortPtr[0].name, data);

¥
assert(PortsCheck(comPtr, nextPtr) == TRUE);

return(comPtr);

Common *EponTxInit(Common *, char *);

// Receives GrandSync SDU, reformats/resends as Ethernet-PON SDU
// arguments:

// comPtr - associated state-maintaining data structure
// name - initialization trigger and assigned entity name
Common *

EponTxExec(Common *comPtr, char *name) {
uint8_t rxInfo[MTU_SI1ZED], txInfo[MTU_SIZED];
EponTxEntity *ePtr (EponTxEntity *)comPtr;
BaseTimer *btPtr = &(ePtr->baseTimer);
GrandSyncReq *rxPtr (GrandSyncReq *)rxInfo;
EponTxSaved *sxPtr = &(ePtr->rxSaved);
EponMacReq *txPtr (EponMacReq *)&txInfo;
SyncSduData *rsPtr = &(rxPtr->service_data_unit);
SyncSduEpon *tsPtr = &(txPtr->service_data_unit);
RxPort *rxQueuePtr;
TxPort *txQueuePtr;
NextTimes nextTimes;
GrandTime grandTime;
SmallTime backlnterval, smallTime, ratelnterval;
TicksTime ticksTime;
TinyTime extraTime;
LocalTime nextTime, stationTime;
uint32_t sized;

Boolean serviced;
if (name != NULL) // The entity name
return(EponTxInit(comPtr, name)); // fTor initialization

SetRxQueuelPtrs(comPtr, rxQueuePtr);
SetTxQueuelPtrs(comPtr, txQueuePtr);

do {
serviced = FALSE;
stationTime = StationTime(comPtr); // Station’s localTime
backinterval = (3 * sxPtr->synclnterval + ePtr->syncinterval) / 2;
ratelnterval = backlnterval + (3 * ePtr->syncinterval) / 2;
//
[/ FERHHEIeGaackek Processing arrived MS_DATAUNIT.request frames kit
//

sized = DeQueue(rxQueuePtr, rxPtr);
if (sized 1= 0) {

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

143

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

JggDvj20050416/D0.710, 2007-05-30 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

serviced = TRUE;

assert(sized == sizeof(GrandSyncReq));
sxPtr->da = FieldToUnsign(rxPtr, destination_address).lower;
sxPtr->sa = FieldToUnsign(rxPtr, source_address).lower;
sxPtr->hopCount = FieldToUnsign(rsPtr, hopCount). lower;
sxPtr->precedence = FieldToUnsign(rsPtr, precedence);
sxPtr->synclnterval = FieldToUnsign(rsPtr, synclnterval).lower;
grandTime = FieldToSigned(rsPtr, grandTime);
extraTime = FieldToSigned(rsPtr, extraTime).lower;
smallTime = FieldToSigned(rsPtr, smallTime).lower;
NextSaved(btPtr, ePtr->synclinterval, ratelnterval, GrandToLarge(grandTime), TinyToSmall(extraTime), smallTime);
}
//
// Preparing transmitted timeSync frames
//
nextTime = ePtr->lastTime + SMALL_10ms;
if ((stationTime - nextTime) >= 0) { // Next sync transmission
serviced = TRUE;
ePtr->lastTime = nextTime; // Restart 10ms timer
ticksTime = EponTime((EponRxEntity *)comPtr); // Get localTime values
nextTimes = NextTimed(btPtr, stationTime, backlnterval);
LongToFrame(sxPtr->da, txPtr, destination_address); // The destination_address
LongToFrame(sxPtr->sa, txPtr, source_address); // The source_address
WideToFrame(sxPtr->precedence, tsPtr, precedence); // GM precedence
LongToFrame(sxPtr->hopCount, tsPtr, hopCount); // GM distance
WideToFrame(nextTimes.grandTime, tsPtr, grandTime); // grandTime at snapShot
LongToFrame(nextTimes.extraTime, tsPtr, extraTime); // Next grandTime value
LongToFrame(ticksTime, tsPtr, ticksTime); // Next extraTime value
EnQueue(txQueuePtr, txPtr); // Enqueue the result

¥
} while (serviced == TRUE);
assert((nextTime - stationTime) > 0);
SleepOnBase(comPtr, nextTime);
return(NULL) ;
}

Common *
EponTxInit(Common *oldPtr, char *string) {
Common *comPtr;
EponTxEntity *ePtr;
BaseTimer *btPtr;
char temp[TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

comPtr = CommonCreate(oldPtr, sizeof(EponTxEntity), &EponTxExec, TYPE_TX_ PORT, Q_RX11l LAST, Q_TX11 LAST);
if (comPtr = NULL) {

ePtr = (EponTxEntity *)comPtr;

btPtr = &(ePtr->baseTimer);

btPtr->validated = O;

btPtr->headlndex = btPtr->taillndex = 0;

nextPtr = StrPair(strncpy(temp, string, TLIMIT), name, data, NLIMIT);
for (; name[0] '= “\O0”; nextPtr = StrPair(nextPtr, name, data, NLIMIT)) {
1T (strcmp(name, “name”) == 0)
strncpy(comPtr->name, data, NLIMIT);

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

144

O OO0 NO OIS, WN PP

WWWWWWWWRNNRNNMNRNNMNNNNMNRERRRRRERERRER R
OO RERONPOODNVNOUTDWNROOWOMNOUAWNDERO

JggDvj20050416/D0.710, 2007-05-30 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
else if (strcmp(name, “rx0”) == 0)
assert(comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
else if (strcmp(name, “tx0”) == 0)
assert(comPtr->txPortCount > 0), strcpy(comPtr->txPortPtr[0].name, data);
¥
assert(PortsCheck(comPtr, nextPtr) == TRUE);

return(comPtr);

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

145

OO ~NOoO Uk~ WN -

WWWWWWWWRNRNRNNRNNMNNNNMNRPERRRRERRR R
NO O RONPOOONVYNOUTRWNROOO~NOUDWNRO

