JggDvj20050416
2007-08-05
(August 5, 2007)

DVJ Perspective on:

Timing and synchronization for
time-sensitive applications in bridges
local area networks

Draft 0.718

Contributors:
See page xx.

Abstract: This working paper provides background and introduces possible higher level concepts
for the development of Audio/Video bridges (AVB).
Keywords: audio, visual, bridge, Ethernet, time-sensitive

Contribution from: dvj@alum.mit.edu.

This is an unapproved working paper, subject to change. 1

O©CoO~NOOTLhAWNPE

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

|EEE Standards documents are developed within the |EEE Societies and the Standards Coordinating Committees of
the |IEEE Standards Association (IEEE-SA) Standards Board. The |IEEE develops its standards through a consensus
development process, approved by the American National Standards Institute, which brings together volunteers repre-
senting varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the Insti-
tute and serve without compensation. While the IEEE administers the process and establishes rules to promote fairness
in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy of any of
the information contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other
damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly
resulting from the publication, use of, or reliance upon this, or any other |EEE Standard document.

The |EEE does not warrant or represent the accuracy or content of the material contained herein, and expressly disclaims
any express or implied warranty, including any implied warranty of merchantability or fitness for a specific purpose, or
that the use of the material contained herein is free from patent infringement. IEEE Standards documents are supplied
“ASI1S”

The existence of an |EEE Standard does not imply that there are no other ways to produce, test, measure, purchase, mar-
ket, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint expressed
at the time a standard is approved and issued is subject to change brought about through developments in the state of the
art and comments received from users of the standard. Every |IEEE Standard is subjected to review at least every five
years for revision or reaffirmation. When a document is more than five years old and has not been reaffirmed, it is rea
sonable to conclude that its contents, although still of some value, do not wholly reflect the present state of the art. Users
are cautioned to check to determine that they have the latest edition of any |EEE Standard.

In publishing and making this document available, the |EEE is not suggesting or rendering professional or other services
for, or on behalf of, any person or entity. Nor is the |EEE undertaking to perform any duty owed by any other person or
entity to another. Any person utilizing this, and any other |EEE Standards document, should rely upon the advice of a
competent professional in determining the exercise of reasonable care in any given circumstances.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to spe-
cific applications. When the need for interpretations is brought to the attention of 1EEE, the Institute will initiate action
to prepare appropriate responses. Since |EEE Standards represent a consensus of concerned interests, it is important to
ensure that any interpretation has aso received the concurrence of a balance of interests. For this reason, |EEE and the
members of its societies and Standards Coordinating Committees are not able to provide an instant response to interpre-
tation requests except in those cases where the matter has previously received formal consideration.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with
appropriate supporting comments. Comments on standards and requests for interpretations should be addressed to:

Secretary, |EEE-SA Standards Board
445 Hoes Lane

PO. Box 1331

Piscataway, NJ 08855-1331

USA.

Note: Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position istaken with respect to the existence or validity
of any patent rights in connection therewith. The |EEE shall not be responsible for identifying patents for which a
license may be required by an | EEE standard or for conducting inquiriesinto the legal validity or scope of those
patents that are brought to its attention.

Authorization to photocopy portions of any individual standard for internal or personal use is granted by the Institute of
Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center. To
arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood
Drive, Danvers, MA 01923 USA; (978) 750-8400. Permission to photocopy portions of any individual standard for
educational classroom use can also be obtained through the Copyright Clearance Center.

Contribution from: dvj@alum.mit.edu.
2 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

Editors’ Foreword

Comments on this draft are encouraged. PLEASE NOTE: All issuesrelated to |EEE standards presen-
tation style, formatting, spelling, etc. should be addressed, as their presence can often obfuscate
relevant technical details.

By fixing these errors in early drafts, readers can devote their valuable time and energy to comments that
materially affect either the technical content of the document or the clarity of that technical content.
Comments should not simply state what is wrong, but also what might be done to fix the problem.

Information on 802.1 activities, working papers, and email distribution lists etc. can be found on the 802.1
Website:

http://ieee802.0rg/1/

Use of the email distribution list is not presently restricted to 802.1 members, and the working group has had
apolicy of considering ballot comments from all who are interested and willing to contribute to the devel-
opment of the draft. Individuals not attending meetings have helped to identify sources of misunderstanding
and ambiguity in past projects. Non-members are advised that the email lists exist primarily to allow the
members of the working group to develop standards, and are not ageneral forum.

Comments on this document may be sent to the 802.1 email reflector, to the editors, or to the Chairs of the
802.1 Working Group and Interworking Task Group.

This draft was prepared by:

David V James

JGG

3180 South Court

Palo Alto, CA 94306
+1.650.494.0926 (Tel)
+1.650.954.6906 (Mohile)
Email: dvj@alum.mit.edu

Chairs of the 802.1 Working Group and Audio/Video Bridging Task Group:.

Michael Johas Teener Tony Jeffree

Chair, 802.1 Audio/Video Bridging Task Group Chair, 802.1 Working Group
Broadcom Corporation 11A Poplar Grove

3151 Zanker Road Sale

San Jose, CA Cheshire

95134-1933 M33 3AX

USA UK

+1 408 922 7542 (Tel) +44 161 973 4278 (Tel)

+1 831 247 9666 (Mohile) +44 161 973 6534 (Fax)
Email:mikejt@broadcom.com Email: tony @jeffree.co.uk

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 3

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718

2007-08-05

WHITE PAPER CONTRIBUTION TO

Introduction to IEEE Std 802.1AS™

(This introduction is not part of P802.1AS, IEEE Standard for Local and metropolitan area networks—

Timing and synchronization for time-sensitive applications in bridged local area networks.)

This standard specifies the protocol and procedures used to ensure that the synchroni zation requirements are
met for time sensitive applications, such as audio and video, across bridged and virtual bridged local area
networks consisting of LAN media where the transmission delays are fixed and symmetrical; for example,
IEEE 802.3 full duplex links. This includes the maintenance of synchronized time during normal operation
and following addition, removal, or failure of network components and network reconfiguration. The design
is based on concepts developed within the IEEE Std 1588, and is applicable in the context of IEEE Std

802.1D and | EEE Std 802.1Q.

Synchronization to an externally provided timing signal (e.g., a recognized timing standard such as UTC or

TAI) is not part of this standard but is not precluded.

Version history

Version Date Edits by Comments
0.082 2005-04-28 DVJ Updates based on 2005Apr27 meeting discussions
0.085 2005-05-11 DVJ — Updated list-of-contributors, page numbering, editorial fixes.
0.088 2005-06-03 DVJ — Application latency scenarios clarified.
0.090 2005-06-06 DVJ —Misc. editorias in bursting and bunching annex.
0.092 2005-06-10 DVJ — Extensive cleanup of Clause 5 subscription protocols.
0.121 2005-06-24 DVJ — Extensive cleanup of clock-synchronization protocols.
0.127 2005-07-04 DVJ — Pacing descriptions greatly enhanced.
0.200 2007-01-23 DVJ Removal of non time-sync related information, initial layering proposal.
0.207 2007-02-01 DVJ Updates based on feedback from Monterey 802.1 meeting.
— Common entity terminology; Ethernet type code expanded.
0.216 2007-02-17 DVJ Updates based on feedback from Chuck Harrison:
—linkDelay based only on syntonization to one's neighbor.
— Time adjustments based on observed grandMaster rate differences.
0.224 2007-03-03 DVJ Updates for whiplash free PLL cascading.
0.230 2007-03-05 DVJ Major changes:
—simplified back-interpolation
—first iteration on an Ethernet-PON interface
— client-level clock-master and clock-slave interfaces defined
0.243 2007-04-20 DVJ — Revised GrandSync entity illustrations
— Genera cleanup
0.708 2007-05-30 DVJ — Simulation results provided within an annex
— Extensive code revisions for simplicity & clarity.
— Interpolation better described.
— TBD — —

Contribution from: dvj@alum.mit.edu.

This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

Formats

In many cases, readers may elect to provide contributions in the form of exact text replacements and/or
additions. To simplify document maintenance, contributors are requested to use the standard formats and
provide checklist reviews before submission. Relevant URLSs are listed below:
General: http://grouper.ieee.org/groups/msc/WordProcessors.html
Templates. http://grouper.ieee.org/groups/msc/ Templ ateTool /FrameM aker/
Checklist: http://grouper.ieee.org/groups/msc/Templ ateTool s Checks20040ct18.pdf

TBDs
Further definitions are needed in the following areas:

a) Should low-rate leapSeconds occupy space in timeSync frames, if thisinformation rarely changes?
b) What other (than leapSeconds) low-rate information should be transferred between stations?
¢) When the grandmaster changes, how should the new grandmaster affect change:

1) Transitionimmediately to therate of its reference clock.
2) Transition slowly (perhaps 1ppm/s) between previous and reference clock rates.

Contribution from: dvj@alum.mit.edu.

This is an unapproved working paper, subject to change. 5

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

Contents
IS o) 011 == T 9
TS 0 7o) = 11
I @ Y V1= 13
TR oo o 13
O U o0 = T 13
G T g o (102 £ o o 13
B 3= (= (<110 15
B = 10 S0 T o L TS= T o 1] = 1 o) 16
I A O00) {04010 7= 1o o] [=Y/= £ 16
I =010 To I (< L T (0] 16
RIS [1 1F= (o 11T 17
3.4 Arithmetic and |0giCal OPErBIOrS......ccvcieeriectiies e e ste e e e et e e se e e se e eresseesesresresnennens 19
3.5 NUMENICal rEPIrESENLALION.......ceveiverreriestireeieeeeee e st s e e e e s e e sseesesbesaesresrentesee e eneenenseens 19
ST S T= Lo a0 e= 1T 0] T 20
3.7 Bit nUMDBEriNG aNd OFAEITNG.cvireeeieereieetesese st see e e e e ese s sre e s aesrestesaesreseenseseeneeeeneeseens 21
3.8 Byte SEqUENTIal fOMMIAES......iiviieiiereirecie ettt ettt sae st e te e e e s e e e e e e e eneene e 22
3.9 Ordering of MUItIDYLE FIEldS.......ccieeeceeece e e 22
I LI Y AN Of=To (o[(o) {01 1= T 23
I I R 0 0T 4= Y 0] (T 24
3.12 Conventionsfor C code used in Stat€ MACNINES.........cccueiieeeiiieiicee et e 24
4. Abbreviations and @CrONYIMScccvieiireieseeeee e st e e sse e sre s e sresaeseesae e eeeneeseens 25
B, ATChITECIUINE OVEIVIEW ...ttt ettt st e bt ssbe e s bt e saae e st e s sbeesae s sabesabesabessbbesabessabessbeessenenbens 27
LI AN oo o= o g IS 0= 7= 14 0 27
LIV D= Lo a1 071 070 (o] [T 1Y 2P 28
LI I NN = Y04 1 (0 oo o o =S 29
N o g aaT= o AN o= = o 1 (= £ 30
5.5 Grandmaster SEIECLIONveeeeeiireiccee ettt s s e e s be e st e beesbe s s sbessbessabeesbessneessbessnsesabessnes 31
5.6 Synchronized time diStriDULION..........ccvieieeeece s et ene e 34
5.7 DistinctionsS from [EEE StA 1588.........cccuiiiuieiiiieriieeieiessree et srtestessbessstssssesssbesssesssssssbessnnessessnns 39
B =010 K5V oo o= (o] o SRR 41
(ST R @< Y/ = 41
6.2 Service interfate PrimMItiVES.......ccociiii i e e sr e e s e e ene e 42
6.3 GrandSyNC StAate MACKINEcveueeeeeeie et e ettt et seese e e e se e e esessensesrenresnennens 46
. ClockMaster/ClockSlave State MAChINES.........cccieiie ittt e et seesbeesbe s st e s sreesabe s sreesnessareas 50
A8 R O Y= Y/ = 50
7.2 ClOCKMaStEr SEIVICE INTEITACES. .. .ciieceeieeteectte ettt e s b s sae e st e s sbeeenee e sbessabesabessnes 51
7.3 ClOCKMaStEr StAat@ MACKINE......eciveieiteeetei ettt sree e be s st e b e e sbe s s sbessbessabessbessseeesbessanesaressnes 52
7.4 ClOCKSIAVE SEIVICE INLEITACES.ivve it ite ettt ete st s ee e st s e e e be s sbes st e s sbessbessbessseeesbessneesnbeeans 55
FASIN O 00 S Fo VRS = (=Y 41T o a1 T 56

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718

2007-08-05

8. Ethernet full duplex (EFDX) stat€ MaChines...........ccccueererinere e 59
8.1 OVEIVIEBIW ..ottt et st e Rt R et e et e ner e 59

8.2 efdXClockSyNC frame fOrMELcccviueierireriecc e re e enesreeresnennen 62

8.3 TimeSYyNCRXEfAX State MAChINEcceciciee et se e s sne e 64

8.4 TimeSyNCTXEFUX Stat€ MAChINE........ccueieeeeeieeee e ne e ene e 67

9. WIireleSS St MECNINES........cccuiireireieire et r e ee s e e 71
O.1 OVEIVIEBIW ..ottt et e Rt e R e e Rt e et eener e 71

9.2 Service interface defiNitioNS. ... s 73

9.3 TimeSYNCRXR1LV State MBCHINEcveieeeeeeeeeee et sr e e e e e e ne s e 76

9.4 TimeSYNCTXRLLV Stat€ MACKhiNE........c.eciviereiirc e re e nnens 79

10. Ethernet passive optical network (EPON) State MaChingsSoooevireiierriceie e 82
FO.1 OVEIVIBW ..ttt ettt st ee et s ae et e he e aeeb e s he e e e b ea b e sE e e e b e R e e e e Rt e R e e bt e Rt ebesbeseeee e besee s e e eneeneens 82
10.2 timeSyNCEPON frame FOMMEL...........ooiieieeeeieeeee ettt s 84
10.3 TimeSyncRXEpon service interface PrimitiVeS.ooeceereriereie e 85
10.4 TimeSyncRXEPON State MAaChiNe..........cccoiiiiiiiie e e 86
10.5 TimeSyncTXEpon service interface primitiVeS..........ccoocereiiiiere e 89
10.6 TimeSYNCTXEPON StAtE MACNINE.......cceii ettt st se e e e b b saesbesae e 90
Annex A (informative) Bibliography ... e e e 93
Annex B (informative) Time-SCale CONVEISIONSc.couiieierererieeteriesieseesieseeseeeeessesaesbesaeseeseesbeseeseenesseeneens 9
BLL OVEIVIBIW ...ttt bt a e s b b s ae s e e e b e seeae et e Reeaeeheebesbeeeenbe b e seeneenteneennnaeas 9

B.2 TAT @GN UTC ...ttt bbb ekttt se bbbttt et ee 94
B.3 NTP ANU GPS ...ttt bbb et sttt 95

B.4 TimeE-SCal@ CONVEISIONS... ..ottt ettt sttt st ae et se et e besbesbeee e benseseeneenseneennnneas 96
B.5 TimeEZONES ANU GIMT ...ttt et sttt e b e b bt se et et seene e seneennnneas 97
Annex C (informative) Reclocked clockSyNnC reqUIreMENtS.........cc.oeeiireii e 98
C.1 Cascaded CloCK CONSIAEIAtiONS.c.ciuiieriereeie ettt et b e bt st be e s enas 98
C.2 Sampling Off SEL/rate CONVEISIONcviieie ettt ettt be bt ae et e enas 99
Annex D (informative) Simulation results (Preliminary) ... e 102
D.1 SIMUIELION ENVIFONMIENEcciitiitiitietite ettt sb et se et see e e b e et eae et saeebesbesbeseese e benes 102
D.2 INitialiZation traNSIENESocuiieeieeeeee et ettt st ae et ae e b b e e benes 103
D.3 Steady-state interpOlation ETOFS........cociiiiireiirieieie et s e ne b b s se e benes 104
D.4 Steady-state extrapOlation EITOIS........cccieireririererie ettt et e st see e ene e seeaeebesaees 105
Annex E (informative) Bridging to IEEE Std 1394..........cooiiieeeee e 106
E.1 Hybrid network tOPOIOGIES.cueiviieieeieie et b see s 106
Annex F (informative) Time-of-day format CONSIAEratioNnS............cceverirereieriese e 108
F.1 Possible time-of-day fOMMELS..........ccouiiriiii e e 108
Annex G (informative) C-COdE iITUSIFELIONS..........coeiiiiriirieie et s s 111

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 7

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

AVB BRIDGING

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

JggDvj20050416/D0.718
2007-08-05

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

AVB BRIDGING JggDvj20050416/D0.718

2007-08-05
List of figures
Figure 1.1—Topol0gy and CONNECLIVITYcciiiiiieriiieieee et sttt s b e sttt se e ne e e 14
Figure 3.1—Bit NUMbBEriNG and OFAEIINGccveevereereeieeeeeece s e se st saesae e e e seenee e eneeneens 21
Figure 3.2—Byte sequential field format illUSLrationSccoieeiiieeire e 22
Figure 3.3—Multibyte field iHIUSLFatiONS.......ccccveeeirerire e et ene e 22
Figure 3.4—Illustration of fairness-frame StrUCIUIE..........couiiiii i e 23
Figure 3.5—MAC addreSS fOMMELccocveeiiieire et esae e saesaese e sese e e e e eneeneens 23
Figure 3.6—48-bit MAC address fOrMIEL.........cco i e e 24
FiQUIre 5.1—Garage JAM SESSIONc.ceivereererueeeesteseessessesseeesesessessessestessessessessessessesessesssssessesssssesseseessensessnsenns 27
Figure 5.2—P0ossibl€ 100pIiNG tOPOIOGY -...vevireirterieriiieieie ettt sttt st se e ae e s sbe b e se e e ne s e 28
Figure 5.3—Synchronized-System tOPOIOGIES.ccuriiiieriresereseee e ssese e stese e se e e seeesseeseesesressesnesnens 29
Figure 5.4—GrandSync service-interface COMPONENTS........c.cooiiiriireiireere e e 30
Figure 5.5—ClOCKSEI ECt PArAMELErS.......coveeerereeee sttt e e s e e saeseesbesee e e e eneene e 31
Figure 5.6—Clock-time synchroni Zation flOWS ... e 34
Figure 5.7—Intermediate-bridge reSpoNnSiDiliTi€S........c.vriierereecrecer s 36
Figure 5.8—CLOCK_SLAVE link-delay COMPENSALIONcc.ciuiiieiieieieiieiese et s sie e 37
Figure 5.9—CLOCK_MASTER time-sample interpolationccueevvrieieseriesierieneeeeseseeeesese e seeseeeens 38
Figure 5.10—1588 grandmaster PreferENCecoooiiiriree et e 39
Figure 6.1—GrandSync interfaCe MOELcoceiiieeeccec e 41
Figure 6.2—The clockSel ect/clockSync service-interface CompPONENtScooererereierrene e a2
Figure 6.3—Global-time SUbfield FOrMaLccoviierrcee e e 44
Figure 6.4—precedence SUDFIEIAS. ..ot bbb e 44
FigUre 6.5—ClOCKID fOMMEAL......ccueieeieeeieeeeete ettt s re st e et te e e e esee e e e esesrenresreneesrenens 44
Figure 6. 7—eXtraTimE fOMMIBLcoeii ittt ettt bbb et e e e e e e ene e 45
Figure 6.8—10Cal TIME TOMMALcoceieiises et ere e s ae st s ae st e se e e e e e eneerennenes 45
Figure 6.6—grandTime fOMMEL.........cooiiiieii ettt s b e s et st et se e e e e e e ne e 45
Figure 7.1—ClockMaster interface MOAEcccovuieeeiccecre e e s 51
Figure 8. 1—EFDX-Iink interface MOEc.ooiiuiiieee e e 59
Figure 8.2—Contents of rxSync/AXSYNC iNGiCALIONS..........ccciviirerirerreeeee e ene e 59
Figure 8.3—Link-del@y COMPENSELION.......cciiiiriieirieie sttt st st e e e e b s e b sbesbesae e 60
Figure 8.4—efdXClockSync frame fOrMELccccveieieierece e s e 62
Figure 9.1—R11V interfaCe MOUEc.ooeiiieeeeere e et e bt be b b e e 71
Figure 9.2—Formats of Wireless-dependent tIMES.........covvcivirirereseec e 71
Figure 9.3—802.11v time-synchronization iNtErfaCesS..........cooirie i e 72
Figure 10.1—EPON tOPOIOQY ..cuverveeerereriesieeeesteseestestesseeessesesessessessessessessessessessessssssssssessssssssesseseessessessssenns 82
Figure 10.2—EPON interface MOTELooiiiiiiieee e s e e e 83
Figure 10.3—Format of EPON-AEpeNdENt tiMES........ciiveeieeerere st e ee e see e s enesne e 83
Figure 10.4—timeSyncEpPON frame fOrMAat ..o e 84
Figure 10.5—tiCKTimE fOrMEL........cveeceecece et r s e e e e e e e e e ene e 84
Figure C.1—Cascading causes sync-interval bunching ... 98
Figure C.2—Reclocking eliminates sync-interval bunChing...........cocvvvviriererccrrecce e 98
Figure 3.3—Reclocking localizes sync-interval Properties.......ooeereierereriesee e s 99

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 9

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

Figure 3.4—Extrapolation for grandTime..........ccvcirieiiiisieeseeeree et se e e ese e eresresresnesnens 99
Figure C.5—Extrapolation for granaTime ...ttt s eae bbb 100
Figure C.6—Interpolation for grandTimEAcccerrrrieerre e s s e e s r e resreeresrenes 100
Figure C.7—Interpolation Of @XtraTiMmEDccoiiiiiiiniene et s ebe e 101
Figure D.1—Time-synchronization flOWS........c..ccveiririiecre et er e 102
Figure D.2—Startup transientS With 8 StatiONS.........cc.eiiiiriiieieeeiree e e 103
Figure D.3—Startup transients With 64 StaliONS..........c.ccvererereieereerrese s se e e 103
Figure D.4—Time interpolation With 8 SLaLIONS..........cociiriire i e 104
Figure D.5—Time interpolation With 64 StatiONS..........ccccvrerieiereerreerre e s enes 104
Figure D.6—Time extrapolation With 8 StatiONScoiieiiieerer e e 105
Figure D.7—Time extrapol ation With 64 SLAlIONSccceeieeiniere s r e 105
Figure E.1—IEEE 1394 |€af OMEINSccueiiieeeceeieeeieti e ete st ie st ste s see e sae e e e e seese e e sseesesressesneseensenes 106
Figure E.2—IEEE 802.3 1€8f JOMAINScceriiiiriiiiiiesierie ettt sttt e ebe s 106
Figure E.3—Time-0f -day fOrmat CONVEISIONS..........cceiuirierirreerieeeiressesse s siesee s e seeseeeeseesesseesessessessessenes 107
Figure E.4—Grandmaster precedenCe MaPPIiNGocc eeereeereresertesessesieseeseessessesesesesessessesseseeseessessenes 107
Figure F.1—Global-time Subfield fOrmMat............cooiriiiiinie e e 108
Figure F.2—IEEE 1394 timMer TOMMELcoue ittt st se s s 108
Figure F.3—IEEE 1588 timMer fFOrMaLcceieeiireeece ettt s ne e en et e see s 109
Figure F.A—EPON tiMer FOMMELcoiiiriieeeeese ettt bbb e et b e s bt e et 109

Contribution from: dvj@alum.mit.edu.
10 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718

2007-08-05
List of tables
Table 3.1—State table NOtati ON EXAMPIE.......c.oii i e e 18
Table 3.2—Special SyMbOlS N OPEIGLOIS........cccviverieriresie e et se e e saese e e e e eneeneens 19
Table 3.3—Names of fields and SUD-FIEIAS ... 20
Table 3.4—Wrap fIEld VAIUES..........ccceiee ettt st ne e neeneene e 21
Table 6.1—GrandSynC St taADI©oiiiiiee e e e 49
Table 7.1—ClockMaster state Machine tahl€.........c..ovvieireireee s 54
Table 7.2—ClockS ave State tall..........cooiiie et e e 58
Table 8.1—Clock-synchroni zatiON INLENVAIS.........c.eciveeesire e e e ene e 63
Table 8.2—TimeSyncRXEfdx state Machine table...........cceiiiiiiiiieee e e 66
Table 8.3—TimeSyncTxEfdx state machinetable..........cccevevivirire s 70
Table 9.1—TimeSyncRxR11v state machinetable............coo i 78
Table 9.2—TimeSYNCTXRLIV StAt@tabl€.......cceeieieecirecc e s ene e 81
Table 10.1—TimeSyncRxEpon state machine table...........coo i e 88
Table 10.2—TimeSyncTXEpon state Machinetableccoceveeeeceerece e 92
Table B.1—TimeE-SCAl € PAIaIMELENScieieireeeeieeieteee et eteste st se et see e ese e ee e e e s be e e st saesbesaesbeseebesee e aeeneeneens 9
Tabhle B.2—Time-SCal € CONVEISIONS.cuiuiirieiirieirieiesteesie sttt sttt st bbb bttt e ettt nsesenes 96

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 11

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718
2007-08-05

12

WHITE PAPER CONTRIBUTION TO

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

DVJ Perspective on: Timing and
synchronization for time-sensitive
applications in bridges local area
networks

1. Overview

1.1 Scope

This draft specifies the protocol and procedures used to ensure that the synchroni zation requirements are met
for time sensitive applications, such as audio and video, across bridged and virtual bridged local area
networks consisting of LAN media where the transmission delays are fixed and symmetrical; for example,
|EEE 802.3 full duplex links. This includes the maintenance of synchronized time during normal operation
and following addition, removal, or failure of network components and network reconfiguration. It specifies
the use of IEEE 1588 specifications where applicable in the context of IEEE Std 802.1D and IEEE Std
802.1Q. Synchronization to an externally provided timing signal (e.g., a recognized timing standard such as
UTC or TAI) isnot part of this standard but is not precluded.

1.2 Purpose

This draft enables stations attached to bridged LANs to meet the respective jitter, wander, and time
synchronization requirements for time-sensitive applications. This includes applications that involve
multiple streams delivered to multiple endpoints. To facilitate the widespread use of bridged LANsfor these
applications, synchronization information is one of the components needed at each network element where
time-sensitive application data are mapped or demapped or a time sensitive function is performed. This
standard leverages the work of the IEEE 1588 WG by developing the additional specifications needed to
address these requirements.

1.3 Introduction
1.3.1 Background

Ethernet has successfully propagated from the data center to the home, becoming the wired home computer
interconnect of choice. However, insufficient support of real-time services has limited Ethernet’s success as
a consumer audio-video interconnects, where |EEE Std 1394 Serial Bus and Universal Serial Bus (USB)
have dominated the marketplace. Success in this arena requires solutions to multiple topics:

a) Discovery. A controller discovers the proper devices and related streaml D/bandwidth parametersto
allow the listener to subscribe to the desired talker-sourced stream.

b) Subscription. The controller commands the listener to establish a path from the talker.
Subscription may pass or fail, based on availability of routing-table and link-bandwidth resources.

¢) Synchronization. The distributed clocks in talkers and listeners are accurately synchronized.
Synchronized clocks avoid cycle dips and playback-phase distortions.

d) Pacing. The transmitted classA traffic is paced to avoid other classA traffic disruptions.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 13

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718

2007-08-05

This draft covers the “ Synchronization” component, assuming solutions for the other topics will be devel-

oped within other drafts or forums.

1.3.2 Interoperability

AVB time synchronization interoperates with existing Ethernet, but the scope of time-synchronization is
limited to the AVB cloud, as illustrated in Figure 1.1; less-precise time-synchronization services are
available everywhere else. The scope of the AVB cloud is limited by a non-AVB capable bridge or a

half-duplex link, neither of which can support AVB services.

Separation of AVB devicesisdriven by the requirements of AVB bridges to support subscription (bandwidth
allocation) and pacing of time-sensitive transmissions, as well as time-of-day clock-synchronization.

WHITE PAPER CONTRIBUTION TO

Peer device is
not AVB capable

Half-duplex link
can't do AVB

Figure 1.1—Topology and connectivity

1.3.3 Document structure

The clauses and annexes of this working paper are listed below.

14

Clause 1: Overview

Clause 2: References

Clause 3: Terms, definitions, and notation

Clause 4: Abbreviations and acronyms

Clause 5: Architecture overview

Clause 6: GrandSync operation

Clause 7: ClockM aster/ClockSlave state machines
Clause 8: Ethernet full duplex (EFDX) state machines
Clause 9: Wireless state machines

Clause 10: Ethernet passive optical network (EPON) state machines
Annex A: Bibliography

Annex B: Time-scale conversions

Annex C: Reclocked clockSync requirements

Annex D: Simulation results (preliminary)

Annex E: Bridging to |EEE Std 1394

Annex F: Time-of-day format considerations

Annex G: C-code illustrations

Contribution from: dvj@alum.mit.edu.

This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

2. References

The following documents contain provisions that, through reference in this working paper, constitute provi-
sions of this working paper. All the standards listed are normative references. Informative references are
givenin Annex A. At the time of publication, the editions indicated were valid. All standards are subject to
revision, and parties to agreements based on this working paper are encouraged to investigate the possibility
of applying the most recent editions of the standards indicated bel ow.

ANSI/ISO 9899-1990, Programming Language—C.l'2

|EEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access Control
(MAC) Bridges.

IReplaces ANSI X3.159-1989

21S0 documents are available from 1SO Central Secretariat, 1 Rue de Varembe, Case Postale 56, CH-1211, Geneve 20, Switzer-
land/Suisse; and from the Sales Department, American National Standards Institute, 11 West 42 Street, 13th Floor, New York, NY
10036-8002, USA

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 15

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

GRES

o1 o1 U1 01 U1
LERLEEELS

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

3. Terms, definitions, and notation

3.1 Conformance levels

Several key words are used to differentiate between different levels of requirements and options, as
described in this subclause.

3.1.1 may: Indicates a course of action permissible within the limits of the standard with no implied
preference (“may” means “is permitted to”).

3.1.2 shall: Indicates mandatory requirements to be strictly followed in order to conform to the standard and
from which no deviation is permitted (“shall” means“is required to”).

3.1.3 should: An indication that among several possibilities, one is recommended as particularly suitable,
without mentioning or excluding others; or that a certain course of action is preferred but not necessarily

required; or that (in the negative form) a certain course of action is deprecated but not prohibited (“ should”
means “is recommended to”).

3.2 Terms and definitions

For the purposes of this working paper, the following terms and definitions apply. The Authoritative
Dictionary of |EEE Standards Terms[B2] should be referenced for terms not defined in the clause.

3.2.1 bridge: A functional unit interconnecting two or more networks at the data link layer of the OS
reference model.

3.2.2 clock master: A bridge or end station that provides the link clock reference.
3.2.3 clock slave: A bridge or end station that tracks the link clock reference provided by the clock master.

3.2.4 cyclic redundancy check (CRC): A specific type of frame check sequence computed using a
generator polynomial.

3.2.5 grandmaster: Refersto the station that is selected to provide the network time reference.

3.2.6link: A unidirectional channel connecting adjacent stations (half of a span).

3.2.7 listener: A sink of a stream, such as atelevision or acoustic speaker.

3.2.8 local area network (LAN): A communications network designed for a small geographic area,
typically not exceeding afew kilometers in extent, and characterized by moderate to high data transmission
rates, low delay, and low bit error rates.

3.2.9 MAC client: The layer entity that invokes the MAC service interface.

3.2.10 medium (plura: media): The material on which information signals are carried; e.g., optical fiber,
coaxial cable, and twisted-wire pairs.

3.2.11 medium access control (MAC) sublayer: The portion of the data link layer that controls and
mediates the access to the network medium. In this working paper, the MAC sublayer comprises the MAC
datapath sublayer and the MAC control sublayer.

Contribution from: dvj@alum.mit.edu.
16 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

3.2.12 network: A set of communicating stations and the media and equipment providing connectivity
among the stations.

3.2.13 plug-and-play: The requirement that a station perform classA transfers without operator intervention
(except for any intervention needed for connection to the cable).

3.2.14 protocol implementation confor mance statement (PICS): A statement of which capabilities and
options have been implemented for a given Open Systems I nterconnection (OSI) protocol.

3.2.15 span: A hidirectional channel connecting adjacent stations (two links).

3.2.16 station: A device attached to a network for the purpose of transmitting and receiving information on
that network.

3.2.17 topology: The arrangement of links and stations forming a network, together with information on
station attributes.

3.2.18 transmit (transmission): The action of a station placing a frame on the medium.

3.2.19 unicast: The act of sending a frame addressed to a single station.

3.3 State machines
3.3.1 State machine behavior

The operation of a protocol can be described by subdividing the protocol into a number of interrelated
functions. The operation of the functions can be described by state machines. Each state machine represents
the domain of afunction and consists of a group of connected, mutually exclusive states. Only one state of a
function is active at any given time. A transition from one state to another is assumed to take place in zero
time (i.e., no time period is associated with the execution of a state), based on some condition of the inputsto
the state machine.

The state machines contain the authoritative statement of the functions they depict. When apparent conflicts
between descriptive text and state machines arise, the order of precedence shall be formal state tables first,
followed by the descriptive text, over any explanatory figures. This does not override, however, any explicit
description in the text that has no parallel in the state tables.

The models presented by state machines are intended as the primary specifications of the functions to be
provided. It is important to distinguish, however, between a model and a real implementation. The models
are optimized for simplicity and clarity of presentation, while any realistic implementation might place
heavier emphasis on efficiency and suitability to a particular implementation technology. It is the functional
behavior of any unit that has to match the standard, not its interna structure. The interna details of the
model are useful only to the extent that they specify the external behavior clearly and precisaly.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 17

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

3.3.2 State table notation

NOTE—The following state machine notation was used within 802.17, due to the exactness of C-code
conditions and the simplicity of updating table entries (as opposed to 2-dimensional graphics).
Early state table descriptions can be converted (if necessary) into other formats before publication.

Each row of the table is preferably provided with a brief description of the condition and/or action for that
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric

tags.

State machines may be represented in tabular form. The table is organized into two columns: aleft hand side
representing all of the possible states of the state machine and all of the possible conditions that cause transi-
tions out of each state, and the right hand side giving all of the permissible next states of the state machine as
well as all of the actions to be performed in the various states, as illustrated in Table 3.1. The syntax of the
expressions follows standard C notation (see 3.12). No time period is associated with the transition from one
state to the next.

Table 3.1—State table notation example

Current Next
=
o
- o .
state condition action state
START | sizeOfMacControl > spacelnQueue 1| — START
passM == 2
— 3 | TransmitFromControl Queue(); FINAL
FINAL SelectedTransferCompl etes() 4 | — START
— 5 | — FINAL

Row 3.1-1: Do nothing if the size of the queued MAC control frame is larger than the PTQ space.
Row 3.1-2: Do nothing in the absence of MAC control transmission credits.
Row 3.1-3: Otherwise, transmit aMAC control frame.

Row 3.1-4: When the transmission completes, start over from theinitia state (i.e., START).
Row 3.1-5: Until the transmission completes, remain in this state.

Each combination of current state, next state, and transition condition linking the two is assigned to a
different row of the table. Each row of the table, read |eft to right, provides: the name of the current state; a
condition causing atransition out of the current state; an action to perform (if the condition is satisfied); and,
finally, the next state to which the state machine transitions, but only if the condition is satisfied. The symbol
“—" dgnifies the default condition (i.e., operative when no other condition is active) when placed in the
condition column, and signifies that no action is to be performed when placed in the action column.
Conditions are evaluated in order, top to bottom, and the first condition that evaluates to aresult of TRUE is
used to determine the transition to the next state. If no condition evaluates to aresult of TRUE, then the state
machine remains in the current state. The starting or initialization state of a state machine is always labeled
“START” in the table (though it need not be the first state in the table). Every state table has such alabeled
state.

Contribution from: dvj@alum.mit.edu.
18 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

Each row of the table is preferably provided with a brief description of the condition and/or action for that
row. The descriptions are placed after the table itself, and linked back to the rows of the table using numeric

tags.

3.4 Arithmetic and logical operators
In addition to commonly accepted notation for mathematical operators, Table 3.2 summarizes the symbols

used to represent arithmetic and logical (boolean) operations. Note that the syntax of operators follows
standard C notation (see 3.12).

Table 3.2—Special symbols and operators

Printed character Meaning

&& Boolean AND

| Boolean OR

! Boolean NOT (negation)

& Bitwise AND

| Bitwise OR

A Bitwise XOR
<= Lessthan or equal to
>= Greater than or equal to
= Equal to

1= Not equal to

= Assignment operator

// Comment delimiter

3.5 Numerical representation

NOTE—The following notation was taken from 802.17, where it was found to have benefits:
— The subscript notation is consistent with common mathematical/logic equations.
— The subscript notation can be used consistently for all possible radix values.

Decimal, hexadecimal, and binary numbers are used within this working paper. For clarity, decimal numbers
are generally used to represent counts, hexadecimal numbers are used to represent addresses, and binary
numbers are used to describe bit patterns within binary fields.

Decimal numbers are represented in their usual 0, 1, 2, ... format. Hexadecimal numbers are represented by
a string of one or more hexadecimal (0-9,A-F) digits followed by the subscript 16, except in C-code
contexts, where they are written as 0x123EF2 etc. Binary numbers are represented by a string of one or
more binary (0,1) digits, followed by the subscript 2. Thus the decimal number “26” may also be represented
as"1A,g" or “110107".

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 19

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

MAC addresses and OUI/EUI values are represented as strings of 8-bit hexadecimal numbers separated by
hyphens and without a subscript, as for example “01-80-C2-00-00-15" or “AA-55-11".

3.6 Field notations
3.6.1 Use of italics

All field names or variable names (such as level or myMacAddress), and sub-fields within variables (such as
thisate.level) are italicized within text, figures and tables, to avoid confusion between such names and
similarly spelled words without special meanings. A variable or field name that is used in a subclause
heading or afigure or table caption is also italicized. Variable or field names are not italicized within C code,
however, sincetheir special meaning isimplied by their context. Names used as nouns (e.g., subclassA0) are
also not italicized.

3.6.2 Field conventions

This working paper describes fields within packets or included in state-machine state. To avoid confusion
with English names, such fields have an italics font, asillustrated in Table 3.3.

Table 3.3—Names of fields and sub-fields

Name Description
newCRC Field within aregister or frame
thisSate.level Sub-field within field thisate

thatSaterateC[n].c | Sub-field within array element rateC[n]

Run-together names (e.g., this3ate) are used for fields because of their compactness when compared to
equivalent underscore-separated names (e.g., this_state). The use of multiword names with spaces (e.g.,
“This State”) is avoided, to avoid confusion between commonly used capitalized key words and the
capitalized word used at the start of each sentence.

A sub-field of a field is referenced by suffixing the field name with the sub-field name, separated by a
period. For example, thisSate.level refers to the sub-field level of the field thisate. This notation can be
continued in order to represent sub-fields of sub-fields (e.g., thisState.level.next is interpreted to mean the
sub-field next of the sub-field level of the field thisXate).

Two specia field names are defined for use throughout this working paper. The name frame is used to
denote the data structure comprising the complete MAC sublayer PDU. Any valid element of the MAC
sublayer PDU, can be referenced using the notation frame.xx (where xx denotes the specific element); thus,
for instance, frame.serviceDataUnit is used to indicate the serviceDataUnit element of aframe.

Unless specifically specified otherwise, reserved fields are reserved for the purpose of allowing extended
features to be defined in future revisions of this working paper. For devices conforming to this version of
thisworking paper, nonzero reserved fields are not generated; values within reserved fields (whether zero or
nonzero) are to be ignored.

Contribution from: dvj@alum.mit.edu.
20 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

3.6.3 Field value conventions

This working paper describes values of fields. For clarity, names can be associated with each of these
defined values, asillustrated in Table 3.4. A symbolic name, consisting of upper case letters with underscore
separators, allows other portions of this working paper to reference the value by its symbolic name, rather
than a numerical value.

Table 3.4—wrap field values

Value Name Description
0 STANDARD Standard processing selected
1 SPECIAL Specia processing selected
2,3 — Reserved

Unless otherwise specified, reserved values allow extended features to be defined in future revisions of this
working paper. Devices conforming to this version of this working paper do not generate nonzero reserved
values, and process reserved fields as though their values were zero.

A field value of TRUE shall always be interpreted as being equivalent to a numeric value of 1 (one), unless
otherwise indicated. A field value of FALSE shall aways be interpreted as being equivalent to a numeric
value of 0 (zero), unless otherwise indicated.

3.7 Bit numbering and ordering

Data transfer sequences normally involve one or more cycles, where the number of bytes transmitted in each
cycle depends on the number of byte lanes within the interconnecting link. Data byte sequences are shownin
figures using the conventions illustrated by Figure 3.1, which represents a link with four byte lanes. For
multi-byte objects, the first (left-most) data byte is the most significant, and the last (right-most) data byteis
the least significant.

bit bit
0 31

data[n+0] data[n+1] data[n+2] data[n+3]

data[n+4] data[n+5] data[n+6] data[n+7]

Figure 3.1—Bit numbering and ordering

Figures are drawn such that the counting order of data bytesis from left to right within each cycle, and from
top to bottom between cycles. For consistency, bits and bytes are numbered in the same fashion.

NOTE—The transmission ordering of data bits and data bytes is not necessarily the same as their counting order; the
trandation between the counting order and the transmission order is specified by the appropriate reconciliation sublayer.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 21

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718
2007-08-05

WHITE PAPER CONTRIBUTION TO

3.8 Byte sequential formats

Figure 3.2 provides an illustrative example of the conventions to be used for drawing frame formats and
other byte sequential representations. These representations are drawn as fields (of arbitrary size) ordered
along a vertical axis, with numbers along the left sides of the fields indicating the field sizesin bytes. Fields
are drawn contiguously such that the transmission order across fields is from top to bottom. The example
shows that fieldl, field2, and field3 are 1-, 1- and 6-byte fields, respectively, transmitted in order starting
with the field1 field first. Asillustrated on the right hand side of Figure 3.2, a multi-byte field represents a
seguence of ordered bytes, where the first through last bytes correspond to the most significant through least
significant portions of the multi-byte field, and the MSB of each byteis drawn to be on the left hand side.

1 field1 - byte[0]
1 field2 . — — tl)ytle[jli] -
6 field3 - t;ytle[Zl] -
6 field4 ™~ byte[3]

~ 1 1 1 1 1 1 1
2 fields RS bytef4]

~ 1 1 1 1 1 1 1
2 field6 Transmission = L l:.)yt.e[‘r)l] L
order

n field7
4 fields Y

Figure 3.2—Byte sequential field format illustrations

NOTE—Only the left-hand diagram in Figure 3.2 is required for representation of byte-sequential formats. The
right-hand diagram is provided in this description for explanatory purposes only, for illustrating how a multi-byte field
within a byte sequential representation is expected to be ordered. The tag “Transmission order” and the associated
arrows are not required to be replicated in the figures.

3.9 Ordering of multibyte fields

In many cases, bit fields within byte or multibyte objects are expanded in a horizontal fashion, asillustrated
in the right side of Figure 3.3. The fields within these objects are illustrated as follows: |eft-to-right is the
byte transmission order; the left-through-right bits are the most significant through least significant bits
respectively.

22

field representation

N
I |

byte[4] byte[5]

byte representation

byte[0] MSB LSB
TR B B I fourByteField I
1111111 1111111 1111111 1111111
. ,b),/t?[,l], field representation
byte[2]
L1 byte[0] byte[1] byte[2] byte[3]
| T T . | | T T . | | T T . | | T T . |
. IbYt?[?]l byte representation
 bye[4] MSB LSB
twoByteField
| InytIE[IS]I | T - Iy | T T . |

Figure 3.3—Multibyte field illustrations

Contribution from: dvj@alum.mit.edu.

This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

Thefirst fourByteField can beillustrated as asingle entity or a 4-byte multibyte entity. Similarly, the second
twoByteField can beillustrated as a single entity or a 2-byte multibyte entity.

To minimize potential for confusion, four equivalent methods for illustrating frame contents areillustrated in
Figure 3.4. Binary, hex, and decimal values are aways shown with a left-to-right significance order,
regardless of their bit-transmission order.

da_hi
6 da | T T T T | | | T T T | I_ | T T T T | | | T T T T |
da_lo sa_hi
6 sa | | rl | | | | rl | |
2 protocolType sa_lo
| T T T T | | | T T T T | N T T T T | N T T T T |
1 subType protocolType subType | hopCount
1 hOpCOunt | | | | | | | | |
(--)
a) Sequential-byte format b) Field names
AC DE 48 2344 1010 1100 1101 1110 0100 1000 0010 0011,
| | | | | | | | | | | | | | | | | | |
456744 AC DEq¢ 0100 0101 0110 0111, | 1010 1100 1101 1110,
| T T T T | | | T T T T | | T T T T | | | T T T T | | T T T T | | T T T T | | T T T T | | | T T T T |
48 76 54 3214 0100 1000 0111 0110 0101 0100 0011 0010,
| | | | | | | | | | | | | | | | |
FA CEqg 0l4g 0315 1111 1010 1100 1110, | 0000 0001, [0000 0011,
| T T T Y T | | | T T T Y T | | T T T Y T | | T T T Y T | | T T T Y T | | T T T Y T | | T T T Y T | | T T T Y T |
c) Hexadecimal values d) Binary values

Figure 3.4—lllustration of fairness-frame structure

3.10 MAC address formats

The format of MAC address fields within framesisillustrated in Figure 3.5.

MSB LSB

| oui dependentID |

'Legend:
. I: locallyAdministered :
(called the ‘U/L address bit’ or ‘universally or locally administered bit in IEEE 802)
g: groupAddress
(called the ‘I/G address bit’ or ‘individual/group bit’ in IEEE 802)

Figure 3.5—MAC address format

3.10.1 oui: A 24-bit organizationally unique identifier (OUI) field supplied by the IEEE/RAC for the
purpose of identifying the organization supplying the (unique within the organization, for this specific
context) 24-bit dependentID. (For clarity, the locallyAdministered and groupAddress bits are illustrated by
the shaded bit locations.)

3.10.2 dependentl D: An 24-bit field supplied by the oui-specified organization. The concatenation of the
oui and dependentI D provide a unique (within this context) identifier.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 23

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

To reduce the likelihood of error, the mapping of OUI values to the oui/dependentI D fields are illustrated in
Figure 3.6. For the purposes of illustration, specific OUI and dependentlD example values have been
assumed. The two shaded bits correspond to the locallyAdministered and groupAddress bit positions illus-
trated in Figure 3.5.

OUlI value: AC-DE-48
Organization assigned extension: 23-45-67
MSB LSB
6 AC16 DE16 4816 2316 4516 6716
N I I S | | N I | | I I | N I | N I I | N I I |

byte transmission order >

Figure 3.6—48-bit MAC address format

3.11 Informative notes

Informative notes are used in this working paper to provide guidance to implementers and also to supply
useful background material. Such notes never contain normative information, and implementers are not
required to adhere to any of their provisions. An example of such a note follows.

NOTE—Thisis an example of an informative note.

3.12 Conventions for C code used in state machines

Many of the state machines contained in this working paper utilize C code functions, operators, expressions
and structures for the description of their functionality. Conventions for such C code can be found in
Annex G.

Contribution from: dvj@alum.mit.edu.
24 This is an unapproved working paper, subject to change.

AVB BRIDGING

4. Abbreviations and acronyms

This working paper contains the following abbreviations and acronyms:

AP

AV
AVB
AVB network
BER
BMC
BMCA
CRC
EFDX
EPON
FIFO
IEC
IEEE
IETF

ITU
LAN
LSB
MAC
MAN
MSB
osl
PDU
PHY
PLL
PTP
R11V
RFC
RPR
VOIP

access point

audio/video

audio/video bridging

audio/video bridged network

bit error ratio

best master clock

best master clock algorithm

cyclic redundancy check

Ethernet full duplex

Ethernet passive optical network
firstinfirst out

International Electrotechnical Commission
Ingtitute of Electrical and Electronics Engineers
Internet Engineering Task Force
International Organization for Standardization
International Telecommunication Union
local area network

least significant bit

medium access control

metropolitan area network

most significant bit

open systems interconnect

protocol data unit

physical layer

phase-locked loop

Precision Time Protocol

radio 802.11v

reguest for comment

resilient packet ring

voice over internet protocol

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

JggDvj20050416/D0.718
2007-08-05

25

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718
2007-08-05

26

WHITE PAPER CONTRIBUTION TO

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

5. Architecture overview

5.1 Application scenarios
5.1.1 Garage jam session
As an illustrative example, consider AVB usage for a garage jam session, as illustrated in Figure 5.1. The

audio inputs (microphone and guitar) are converted, passed through a guitar effects processor, two bridges,
mixed within an audio console, return through two bridges, and return to the ear through headphones.

t3=1ms
processing
delay

J

t0=1ms
A/D conversion
delay

t10=T

112 =6 ms t7=2ms
- (air c_ielay for t11=1 ms processing
r 6’ distance) D/A conversion delay
) €————— delay

Figure 5.1—Garage jam session

Using Ethernet within such systems has multiple challenges: low-latency and tight time-synchronization.
Tight time synchronization is necessary to avoid cycle slips when passing through multiple processing
components and (ultimately) to avoid under-run/over-run at the final D/A converter’s FIFO. The challenge
of low-latency transfersis being addressed in other forums and is outside the scope of this draft.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 27

-b-b000000wwgwww00I\)I\)NNNNNNNNHHHHHI—‘I—‘I—‘I—‘I—‘@OO\IO‘J(H#Q)NI—‘
PO OO0W~NOO O WNPOOO~NOUPR_RWNPOOO~NOOULD WNEFO

S2BEEAEEGERED

g8

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

5.1.2 Looping topologies

Bridged Ethernet networks currently have no loops, but bridging extensions are contemplating looping
topologies. To ensure longevity of this standard, the time-synchronization protocols are tolerant of looping
topologies that could occur (for example) if the dotted-line link were to be connected in Figure 5.2.

Peer device is
not AVB capable

Half-duplex link
can't do AVB

Figure 5.2—Possible looping topology

Separation of AVB devicesisdriven by the requirements of AVB bridges to support subscription (bandwidth
allocation) and pacing of time-sensitive transmissions, as well as time-of-day clock-synchronization.

5.2 Design methodology
5.2.1 Assumptions

This working paper specifies a protocol to synchronize independent timers running on separate stations of a
distributed networked system, based on concepts specified within IEEE Std 1588-2002. Although a high
degree of accuracy and precision is specified, the technology is applicable to low-cost consumer devices.
The protocols are based on the following design assumptions:

a) Each end station and intermediate bridges provide independent clocks.
b) All clocks are accurate, typically to within +100PPM.
¢) Detailsof the best time-synchronization protocols are physical-layer dependent.

5.2.2 Objectives

With these assumptions in mind, the time synchronization objectives include the following:
a) Precise. Multiple timers can be synchronized to within 10's of nanoseconds.

b) Inexpensive. For consumer AV B devices, the costs of synchronized timers are minimal.
(GPS, atomic clocks, or 1PPM clock accuracies would be inconsistent with this criteria.)

c) Scalable. The protocol isindependent of the networking technology. In particular:
1) Cyclical physical topologies are supported.
2) Longdistancelinks (up to 2 kM) are allowed.
d) Plug-and-play. The system topology is self-configuring; no system administrator is required.

Contribution from: dvj@alum.mit.edu.
28 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

5.2.3 Strategies

Strategies used to meet these objectives include the following:
a) Precisionisachieved by calibrating and adjusting grandTime clocks.

1) Offsets. Offset value adjustments eliminate immediate clock-value errors.
2) Rates. Rate value adjustments reduce long-term clock-drift errors.

b) Simplicity isachieved by the following:
1) Concurrence. Most configuration and adjustment operations are performed concurrently.
2) Firmware friendly. Clock offset and rate adjustments can be performed by low-rate firmware;

analog PL Ls are unnecessary within bridges (although necessary within some applications).
3) Frequent. Frequent ~100 Hz interchanges eliminates needs for expensive/precise clocks.

5.3 Network topologies

Clock synchronization involves streaming of timing information from a grandmaster clock to one or more
dave clocks. Although primarily intended for non-cyclical physical topologies, the synchronization
protocols also function correctly on cyclical physical topologies, by activating only a non-cyclical subset of
the physical topology.

The grandmaster station (GM) provides a time reference to locally attached clock-dave station (S), as
illustrated in Figure 5.3a. Bridges synchronize their clock-master (M) ports to their clock-dave (S) port, via
internal communications. These clock-master (M) ports typically connect to another bridge’s clock-slave (S)
port, or to an attached end-station clock-slave station (ES).

(central selection) per-port selection
J \
L) T
2(LLc LLCJe A
MAC relay | .§ -
ES) é S
gl @ | (Bump
— ‘(_mac J] i MAC 2l
--------------------------------- | I
' Legend: I A (_PHY ¥ o Reject
. GM grandmaster S slave port : _>J L,
' M master port ES end-station port '
— primary path - secondary path
a) Agents along the synchronization path b) Bridge processing

Figure 5.3—Synchronized-system topologies

In concept, network-wide clock-synchronization protocol starts with the selection of the reference-clock
station, called a grandmaster station (oftentimes abbreviated as grandmaster). Every AVB-capable station is
grandmaster capable, but only oneis selected to become the grandmaster station within each network grand-
master selection involves the transmission of ClockSelect messages between grandmaster capabl e stations.

In the presence of redundant loops, a bridge port can also be placed in a passive (P) state, wherein it
monitors ClockSelect messages but does not synchronize its clock to its associated clock-master port.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 29

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

After grandmaster selection, time-reference information flows from this selected grandmaster station to
attached clock-slave stations. Thus, time-synchronization involve two subservices, as follows:

a) Selection. Topologies are pruned into spanning tree with the grandmaster at the root (see 5.5).
b) Distribution. Synchronized time is distributed through the spanning tree from the root (see 5.6).

5.4 Information parameters

Clock-synchronization information includes clock-selection parameters (for selecting the grandmaster) and
clock-synchronization parameters (for synchronizing between clock-master and clock-slave ports), as
illustrated in Figure 5.4. A portion of the clock-synchronization parameters are media-independent and pass
across the bridge-internal service interface; the remainder are link-media dependent and used for calibration
of clock-master to clock-dave port delays.

priority clockiD | hopCount portID ‘preference
||||||||||||||| ||| NN NNRERENEEN ||||||||||||||| |||||||||||||||||||||||||||||||
‘period ﬂags| utcOffset | control
clock-selection parameters [RRRRENE SRRRNRTE ARRRRETE ARRNRET
" clock-synchronization parameters [socords T facior 1. ..
Y p seconds | fraction ‘ grandTime
INENENN] ||||||||||||||||||||||| INENENN] |||||||||||||||||||||||||||||||||||||||
‘ subfraction ‘ extraTime
|||||||||||||||||||||||||||||||
‘ secs | fraction ‘ localTime
medla-lndependentsel’vlce|nterfaCe INENENN] |||||||||||||||||||||||||||||||||||||||
" media-dependent delay-calibration =~ emmr———ee————
‘ secs | fraction | thisTxTime
INENEEN |||||||||||||||||||||||||||||||I|||||||
‘ secs | fraction | thatTxTime
INENEEN |||||||||||||||||||||||||||||||I|||||||
‘ secs | fraction | thatRxTime

Figure 5.4—GrandSync service-interface components

NOTE—Depending on the media specification, the clock-selection and clock-synchronization parameters could be
transmitted in distinct clockSelect and clockSync packets, or could be combined into a single clockSync packet.

The concatenation of priority, clocklD, hopCount, and portID values forms a preference value for the
selection of the preferred grandmaster candidate.

The {grandTime,local Time,extraTime} triad perculates from the grand-master to the clock-slave stations,
with adjustments along the way, to provide clock-slave stations with estimates of the grandmaster’s clock
time. The grandTime represents a station’s estimate of the grandmaster’s clock sampled at that stations's
local Time instant. The extraTime value represents a cumulative deviation error that (for the purposes of
accuracy and responsiveness) is maintained separately from the grandTime value.

The remaining media-dependent parameters allow a bridge's receive-port to calibrate and compensate for
delays introduced by the receive link of the span connecting its neighbor. For full-duplex Ethernet, these
include thatTxTime and thatRxTime (snapshots taken on opposing-link frames), and thisTxTime (a snap-
shot taken on the the neighbor’s transmission). Different values are applicable to aternative mediatypes.

Contribution from: dvj@alum.mit.edu.
30 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

5.5 Grandmaster selection
5.5.1 Selection overview

Intermediate bridge entities are responsible for providing standard/centralized preference-selection and
media-specific/per-port rejection entities, as illustrated in Figure5.3b. The centra GrandSync
preference-selection entity is responsible for selecting and echoing only the best ClockSelect messages. The
per-port rejection entity is responsible for discarding (unnecessary) reverse-flow ClockSelect messages.

5.5.2 ClockSelect-message content

As part of the grandmaster selection process, ClockSelect messages are generated by clock-master capable
stations; the ClockSel ect messages transport clock-preference values (see Figure 5.5) to other stations. Only
ClockSelect messages with the best observed clock-preference value are forwarded to neighbor stations,
allowing the overall best-preference value to be ultimately selected and known by all. The station with that
best preference value is called the grandmaster.

This ClockSelect information content is conceptually similar to the format of the spanning-tree preference
value, but larger identifiers and additional values are provided for the sake of generality, as illustrated in
Figure 5.5.

MSB LSB
priority clocklD hopCount portID

- precedence > resolver ———
- preference >

‘interval flags ‘ utcOffset
IHENENERENENENN] |||||||||||||||

‘ shift ‘ base | reserved ‘ utcTo ‘ utcOffset
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1

Figure 5.5—ClockSelect parameters

The portID portion of this information (shaded in dark gray) represents an internal field that is only passed
between bridge components; the remaining fields are also present within transmitted frames.

The grandmaster preference (a concatenation of multiple fields) identifies the best grand-master station. The
interval value specifies the nominal link-dependent delay between successive ClockSelect messages; flags
provides control and warning indications; utcOffset specifies the difference between UTC and TAI time
(commonly called |eap-seconds).

5.5.3 ClockSelect preference content

The fields within the preference group of an ClockSelect message (see Figure 5.5) are optimized for
spanning-tree topologies, which have no loops or parallel paths. However, the tie-breaker values are
sufficient to break loops within shortest-path bridging topologies, so that the clock-distribution paths (based
on grandmaster selection) could be optimized independently from the default broadcast distribution paths.

The value of each station’s priority field can be set by the application, for the purposes of biasing the grand-
master preference in an application-specific manner. The clockl D field is a globally unique number assigned
to each station. The hopCount represents the distance from the grandmaster. The internal portl D identifies
the port where the ClockSelect message was received and is not transmitted beteween stations.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 31

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

5.5.4 Other ClockSelect content

The interval field specifies the source-station’s nominal interval between ClockSelect/clockSync frames,
and is used for timeout purposes. For compactness, its value is encoded as simple floating point value:
value = (shift >= 0) ? (base << shift) : (base >> -sghift);

The control-group fields supports the management of |eap-second updates and timeouts. The utcOffset field
represents the grand-master’s vision of the difference between UTC (wall clock) time and TAI (continuous)
times. The two-bit difference of utcTo and utcOffset, diff= (utcTo-utcoffset)s4, Specifies the utcOffset
properties, as follows:

Value Property

0 Known and stable

1 Increment at midnight UTC
2 Decrement at midnight UTC
3 Unknown

NOTE—When the value of utcOffset is decremented, the event of “midnight” can occur twice, one second apart.
Sending an idempotent utcTo encoding (that specifies the changed value, not the change amount), eliminates undesirable
effects that might otherwise occur due to such as “double-clocking” event.

NOTE—To ensure correctness, an exact equation (not simply an English statement) should be provided to ensure
proper/consistent updating of UTC time.

5.5.5 Central ClockSelect-message processing

The central/standard GrandSync entity (see Figure 5.3b) is responsible for processing ClockSelect PDUs
provided by attached ports, as summarized in Equation 5.1. If the ClockSel ect message preference equals or
exceeds the previousy saved sync.preference value: sync.preference is updated with the
ClockSel ect-message preference, the ClockSel ect-message timeout is cleared, and the ClockSelect message
is echoed to al bridge ports. A timeout clears the sync.preference history in the absence of expected
(normally periodic) ClockSelect messages.

// Performed by the GrandSync entity (SJJ
// Compare (x,y) operates on multiple-precision arguments x and y
// The returned integer result is:

1 1if x-y > 0

0 1if x-y == 0
-1 if x-y < 0
while (FOREVER) ({ // Check constantly
clockSelect = Dequeue (GS_RX) ; // Get ClockSelect message
if (clockSelect != NULL) { // if one is available
gsPreference = GsPreference (clockSelect) ; // Form preference value
if (Compare (gsPreference,sync.preference) <= 0) ({ // The best preference
sync.preference = gsPreference; // 1is observed and saved
Enqueue (GS_TX, clockSelect) ; // Echoed the PDU to others
sync.lastTime = currentTime; // Restart the timeout
sync.timeout = GsTimeout (clockSelect.interval) ; // Form preference value
1
1
if (currentTime >= sync.lastTime + sync.timeout) // Inactivity timeout;
grandPreference = ONES; // clear saved preference

Contribution from: dvj@alum.mit.edu.
32 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

5.5.6 Per-port received ClockSelect-message processing

The per-port/media-dependent TS.rx entity (see Figure 5.3b) is responsible for processing rxClockSelect
PDUs provided by attached ports, as summarized in Equation 5.2. If the rxClockSelect-PDU preference
equals or exceeds the previously saved port.preference value: port.preference is updated with the
rxClockSelect-PDU preference and the ClockSelect-message timeout is cleared. Regardless, the (media
dependent) rxClockSelect-PDU is converted to a generic clockSelect-PDU and sent to the central
GrandSync entity. A timeout clears the port.preference history in the absence of expected (normally
periodic) ClockSelect messages.

// Performed by the TS.receive entity (5.2
while (FOREVER) ({ // Check constantly
rxClockSelect = Dequeue (ES_RX) ; // Get a ClockSelect
if (rxClockSelect != NULL) ({ // if one is available
rxPreference = RxPreference (rxClockSelect) ; // Form preference value
if (Compare (rxPreference, port.preference) < 0) ({ // The best preference
port.preference = rxPreference; // 1is observed and saved
port.lastTime = currentTime; // Restart the timeout
1
Enqueue (GS_RX, EsToGs (rxClockSelect)) ; // Send PDU to GrandSync
}
if (currentTime >= port.lastTime + rxTimeout) // Inactivity timeout;
port.preference = ONES; // clear saved preference

}

5.5.7 Per-port transmit ClockSelect-message processing

The per-port TS.rx entity (see Figure 5.3b) is responsible for setting the port state and selectively forwarding
clockSelect PDUs provided by the GrandSync entity, as summarized in Equation 5.3. If port.preference
compares favorably to the clockSelect-PDU (indicating this is the best-preference port), the port.state is set
to cLock_sLAVE and ClockSelect messages are discard. Otherwise, port.state (and its associated behaviors)
are dependent on comparisons between port and to-be-transmitted PDU preferences.

// Performed by the TS.transmit entity (533
while (FOREVER) ({ // Check constantly
clockSelect = Dequeue (GS_TX) ; // Get received ClockSelect
if (clockSelect != NULL) { // if one is available
if (clockSelect.hopCount == HOP_LIMIT) return; // Ignore aged frames
g0Preference = GsPreference (clockSelect) ; // Form preference value
gsClockSelect.hopCount += 1; // Increment hop count
glPreference = GsPreference (clockSelect) ; // Form preference value
if (Compare (port.preference, gOPreference) <= 0) // Rx preference is best;
port.state = CLOCK SLAVE, return; // Rx ClockSelect and time
switch (Compare(glPreference, port.preference)) ({ // Tx preference compare
case -1:
port.state = CLOCK PASSIVE, return; // Rx ClockSelect, ignore time
case 1:
port.state = CLOCK MASTER, break; // Tx ClockSelect and time
case 0:
port.state = CLOCK IDLED, break; // Tx ClockSelect, block time
}
Enqueue (ES_TX, GsToEs(clockSelect)) ; // Transmit the ClockSelect

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 33

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

5.6 Synchronized time distribution
5.6.1 Clock-time synchronization flows

As background for understanding, consider the flow of clock-time synchronization information within a
simple/stable three-bridge topology, as illustrated in Figure 5.6. The clock-time information flows from the
selected application-level ClockSource entity (located on the grandmaster station), through intermediate
bridges (when present), and terminates at application-level ClockSink entities.

m CIockSlnk application CIockSink
(CIockMaste) (Grandsync) (CIockSIave) lower-levels CIockSIave
@ | Y|) (k)

el

4 4
:,r":'Ts (0) é G é
Z[LLC LLC|% Z LLC LL
L) MAC relay ‘J (c) (e): ‘ \—y MAC relay ‘J

[MAC] ([mac AC
il

{T3) (J) TS
5 LLC LLC é
| MAC relay |

T I
PHY) (__PHY } [PHY) PHY]
((d) J ((h)]
e Tt
grandmaster station Intermediate bridge Slave station

Figure 5.6—Clock-time synchronization flows

The clock-master station (containing the ClockSource entity) and the clock-slave station (containing the
ClockSink entity) areillustrated as multipurpose bridges; either could also be end stations (not illustrated).

Time synchronization yields distributed but closely-matched grandTime values within stations and bridges.
No attempt is made to eliminate intermediate jitter with bridge-resident jitter-reducing phase-lock loops
(PLLSs) but application-level phase locked loops are expected to filter high-frequency jitter from the supplied
grandTime values.

Maintaining an accurate time reference relies on the presence of accurate time-stamp hardware capabilities
in or near the media-dependent PHY. A bypass path (illustrated as hashed PHY-to-TS lines within
Figure 5.6) alows the time-stamp information to be affiliated with the arriving clockSync-frame informa-
tion, before the PDU is processed by the time-synchronization (TS) entity above the MAC. A similar bypass
path is also required at the transmitter, so that an accurate time-stamp of a transmitted frame can be placed
into the next-transmitted clockSync frame.

This grandmaster station comprises client-level ClockSink as well as ClockSource entities. The ClockSink
entity allows the application-level clock to be synchronized to the network clock, whenever another station
becomes the grandmaster station. (The ClockSource entity on the grandmaster station provides the
network-synchronized clock-time reference.)

Contribution from: dvj@alum.mit.edu.
34 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718

2007-08-05

5.6.2 Steps in the grandTime flow

Processing steps along the path of the time-synchronization flow of Figure 5.6 include the following:

a)

b)

©)

d)

f)
9)
h)

)
k)

The ClockSource's time-reference parameters are converted into a standard format, supplemented
with additional parameters (such as the station-local arrival time), packaged into a PDU, and sent to
the GrandSync entity.

The GrandSync entity echoes the time-synchronization information from (what it determines to be)
the preferred port. Information from lower-preference ports is continuously monitored to detect
preference changes (typically due to attach or detach of clock-master capable stations).

Clock-time information in PDUs from lower-preference portsisignored.

Clock-time parameters within the echoed PDUs are saved in transmit-port time-value array. When
the next clockSync frame is transmitted, the transmission time is computed based on these array
values. The computed transmission time is queued for inclusion in the following clockSync trans-
mission.

The clockSync frame travels over spanl to the intermediate bridge, incurring a media-dependent
transmission delay and arriving at (station-local) time rxTime.

The (station-local) frame-arrival snapshot value, rxTime, is compensated by subtracting the
estimated transmission delay to create an rcTime value, where:

rcTime=rxTime-delayO, where delay0 is an estimate of span delay.
The grandTime value is extracted from the arriving frame; the {grandTime,rcTime} time-pair
values are encapsulated within a PDU; that PDU is sent to the GrandSync entity.

The GrandSync entity echoes the clockSync PDU provided by the preferred port, asin step (c).
Time parameters within the echoed PDUs are saved and eventually transmitted, asin step (d).

The clockSync frame travels over span2 to the final bridge, incurring a media-dependent
transmission delay and arriving at (station-local) time rxTime.

The (station-local) frame-arrival snapshot value, rxTime, is compensated by subtracting the
estimated transmission delay to created an rcTime value, asin step (d).
The{grandTime,rcTime} affiliationsare placedin aPDU; that PDU is sent to the GrandSync entity.

The GrandSync entity echoes the clockSync PDU from the preferred port, asin step (c).

The GrandSync's time-reference parameters are converted from the standard PDU format,
unnecessary parameters are discarded, and grandTime is communicated to the GrandSync entity.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 35

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QOWO~NOOUIAWNLPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

[S1N¢)]
H W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

36

5.6.3 Intermediate bridge entities

Entities within the intermediate bridge (see Figure 5.6) are responsible for performing three distinct (and
largely decoupled) functions, asillustrated in Figure 5.7. A port in the CLOCK_SLAVE stateis responsible for
compensating for link-transmission delays between this station and its neighbor, as described in 5.6.4. The
GrandSync entity is responsible for selecting the clockSync PDUs from the grandmaster station; only thus
selected PDUs are forwarded to transmitter ports.

b) grandmaster selection

a) Link-delay compensation c) Offset & rate conversion

state == CLOCK_SLAVE state == CLOCK_MASTER

Figure 5.7—Intermediate-bridge responsibilities

Ports in the CLOCK_MASTER state are responsible for revising the GrandSync-supplied clockSync PDUs to
supply the appropriate media-dependent service-interface parameters and/or frames. Since the transmission
times and rates may differ from those on the clock-slave port, the CLOCK_MASTER-state port is responsible
for interpolating/extrapolating between previously received time samples to generate parameters
corresponding to the recently observed transmit-snapshot, as described in 5.6.4

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718

2007-08-05

5.6.4 CLOCK_SLAVE link-delay compensation

When a clockSync frame is received at a CLOCK_SLAVE-state port, a snapshot of the local stationTime is
saved. This snapshot time is compensated by the measured link delayn. Although these time-delay adjust-
ments are media-dependent, the concepts described within this subcaluse are applicable to most
transmission media.

Processing of the rxTime snapshot to account for link-transmission delays involves the subraction of a
precomputed link delay value, as illustrated in Figure 5.8a. In parallel with this subtraction, the received
grandTime value is extracted from the received clockSync frame. The grandTime and rcTime (the
delay-compensated txTime) values provide an accurate time-affiliation pair that is packaged into the PDU
and sent to the GrandSync entity.

that this
! | station station
)
clockSync[p]— | t0 (thatTxTime)
LLC|
{grandTime,rcTime} (thatRxTime) t1
grandTime | rcTime MAC relay ’
@@ G?"\ N k (thisTxTime) t2 ~—clockSync[q]
) K" delay MAC] t3 (thisRxTime)
o | otme |) vy

receive-port thatTime ¥ increasing time y thisTime

compensation CLOCK_SLAVE CLOCK_MASTER

a) Receive-time compensation b) Delay measurements

Figure 5.8—CLOCK_SLAVE link-delay compensation

Link delays can be accurately precomputed if the delays are constant, accurate time-snapshot values are
present, and the clocks are stable. The computations are based on time-stamp measurements performed on
distinct clockSync[p] and following clockSync[q] frame transmissions, asillustrated in Figure 5.8b.

These computations are based on the free-running station-local timers, illustated as thisTime and thatTime.
For stability and accuracy, computations use time differences measured with respect to the local timers;
constant offset or frequency errors between local and neighbor timers thus have no effect on the accuracy of
the computations.

To improve accuracy, aratio of local-to-neighbor clock-intervalsis precomputed over N (perhaps 16) frame
transmissions, as specified in Equation 5.4. For hardware accuracy and simplicity, the t2 transmission-time
snapshot are held and transmitted in the following frame. Thus, the t2 snapshot for clockSync[n] is
transmitted within the follwing clockSync[n+1] frame.

// A typical value (5.4)
// Neighbor’s rate ratio

#define N 16
ratio = (t3[n+N]-t3[n]) / (t2[n+N]-t2[n]);

For symmetry and accounting simplicity, the tO transmission-time snapshot is also held and transmitted in
the following frame. Affiliated {tO,t1} pairs are then returned in following clockSync[q] frame transmis-
sions. The process is symmetric and thus allows either station to (otherwise independently) compute the
average link transmission delay, as specified in Equation 5.5.

delay = ((t3[q]l-t0[p]l) - rateRatio*(t2[qgl-tllpl))/2; // Average link delay (5.5)

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 37

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO

2007-08-05

5.6.5 CLOCK_MASTER time-sample interpolation

A port in the CLOCK_MASTER state receives the { grandTime,extraTime,rcTime} triads that are echoed by the
GrandSync entity. Since these (oftentimes) cannot be transmitted immediately, the received time-triads are
saved in atimeq] array, for access after the next clockSync frame transmission, asillustrated in Figure 5.9a.

? R
g Tz extraTimeB

¥) {grandTime,extraTime,rcTime} | sope=l N T ;
{TS) TS °)
H‘-'—C #LLC g grandTimel
© 1 1 1 1
é times[K] j backTime
Resample o| averaged
i £ .

s . .

[ocTime | X extraTimeA o
¢ I L | ! ,_StationTime
{grandTime1l,extraTimel,txTime}
rc[n-3] rc[n-2] rc[n-1] rcln] tx[K]
a) Per-port resampler components b) Interpolation of saved times[] values

Figure 5.9—CLOCK_MASTER time-sample interpolation

NOTE—Thedistribution of distinct timeg[] storage entitiesis an architectural model; implementations could emul ate the
specified behavior by providing access to shared storage and intermediate results.

During the next clockSync frame transmission, a txTime snapshot is produced. The Resample logic operates
on the timeg[] array values to compute the { grandTimel,extraTimel,txTime} time-triad that is placed within
the following clockSync frame transmission, based on interpolation and averaging strategies illustrated in
Figure 5.9b. Within Figure 5.9b, rc and tx are abbreviations for rcTime and txTime val ues, respectively.

To avoid traditional whiplash and gain-peaking problems associated with cascaded PLLs, an interpolation
(as opposed to extrapolation) strategy yields distinct grandTimel and extraTimel values. These two times
are forwarded independently but are recombined at the ClockSink entity, so that a single time can be passed
to the higher-level application.

In concept, the computation of grandTimel involves computing tbTime= txTime-backTime, using tbTime to
generate grandTime0 by interpolating between previously saved timeg] values, and then generating
grandTimel by extrapolating grandTimeO forward to time txTime (assuming a constant grandTime slope of
one). The value of extraTimeB is set to the difference between an extrapolated value (based on saved timeg[]
values) and the computed grandTimel value.

Computation of the extraTimel involves computing extraTimeA, the average of previoudy saved extraTime
values within the timeg[] array. The sum of extraTimeA (upstream station’s conntributions) and extraTimeB
(this station’s contribution) yields the extraTimel value. These computations are summarized in
Equation 5.6.

#define N 4 // Typical value (5.6)
rateRatio= // Relative rates
(grandTime [n] - grandTime [n-N]) / (rcTime[n] - rcTime[n-NJ]); // GM’s rate ratio
for (extraTimeA= i= 0; 1 < N; 1 += 1) // Use samples to
extraTimeA += extraTime[n-i]/N; // find an average
extraTimeB = backTime * (rateRatio - 1.0); // Contributed value
grandTimel = rc[n] + (txTime - rc[n]) * rateRatio - extraTimeB; // Tx grandTime value
extraTimel = extraTimeA/N + extraTimeB; // Tx extraTime value

Contribution from: dvj@alum.mit.edu.
38 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

5.7 Distinctions from IEEE Std 1588
5.7.1 Distinction summary

Advantageous properties of this protocol that distinguish it from other protocols (including portions of
|EEE Std 1588) include the following:

a) Synchronization between grandmaster and local clocks occurs at each station:

1) All bridges have alightly filtered synchronized image of the grandmaster time.
2) End-point stations have a heavily filtered synchronized image of the grandmaster time.

b) Timeisuniformly represented as scaled integers. seconds and fractions-of-a-second.

¢) Localy media-dependent synchronized networks don’t require extra time-snapshot hardware.

d) Error magnitudes are sublinear with hop distances; PLL-whiplash and O(n?) errors are avoided.
€) Multicast (one-to-many) services are not required; only adjacent-neighbor addressing is required.
f) A reatively frequent 100 Hz (as compared to 1 Hz) update frequency is assumed:

1) Thisrate can be readily implemented (in today’s technology) for minimal cost.
2) The more-frequent rate improves accuracy and reduces transient-recovery delays.
3) The more-frequent rate reduces transient-recovery delays.

g) Only one frame type simplifies the protocols and reduces transient-recovery times. Specifically:

1) Cabledelay computions, based on local clocks, are unaffected by grandTime transients.
2) Rogue frames are quickly scrubbed (2.6 seconds maximum, for 256 stations).
3) Drift-induced errors are greatly reduced.

5.7.2 1588 ClockSelect-message preference
Within 1588, the grandmaster preference is based on the concatenation of multiple fields, including

clock-master identifiers, asillustrated in Figure 5.10. The gray-shaded values are not supported in this docu-
ment.

clockAccuracy
clockClass offsetScaledLogVariance
priorityl-| —‘ ’V |-priority2 rstepsRemoved r portNumber

MSB -1 = |- clockiD clockldentity = rxPort |LSB
IIIIIIII|IIIIIII|IIIIIII|IIIIIII

DU sourcePortldentity —

«— precedence resolver

- preference >

Figure 5.10—1588 grandmaster preference
The clockClass, clockAccuracy, and offsetScaledLogVariance values are sparsely-encoded
andapplication-dependent and thus not supported in this document. Similar functionality can be achieved by
higher-level conventions that specify the partioning/assignment of distinct 16-bit priority values.

The txStation and txPort values are unnecessary and therefore not supported in this document.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 39

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718
2007-08-05

40

WHITE PAPER CONTRIBUTION TO

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

6. GrandSync operation

6.1 Overview
6.1.1 GrandSync behavior

This clause specifies the state machines that specify GrandSync-entity processing. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the primitives and formal procedures and the
interfaces in any particular implementation.

The GrandSync entity is responsible for monitoring time-sync PDUs viathe cLock _syNc.indication service
primitive, selectively echoing a subset of these PDUs via the CLOCK_SYNC.response service primitive, as
follows:

a) When apreferred time-sync related CLOCK_SyNc.indication arrives:

1) The grandmaster preference and port-timeout parameters are saved.
2) CLOCK_SyNc.indication parameters are echoed in CLOCK_SYNC.response parameters.
3) Thearrival timeis recorded, for the purpose of monitoring port timeouts.

b) Arriving non-preferred cLock_sSyNc.indications are discarded.
Theintent isto echo only PDUs from the currently selected grandmaster port.

c) |If the preferred-port timeout is exceeded, the preferred-port parameters are reset.
Theintent isto restart grandmaster selection based on the remaining candidate ports.

6.1.2 GrandSync interface model
The time-synchronization service model assumes the presence of one or more time-synchronized AVB ports
communicating with a MAC relay, asillustrated in Figure 6.1. All components are assumed to have access

to a common free-running (not adjustable) local Time value.

GrandSync CLOCK_SYNC.response
1 CLOCK_SYNC.indication

~localTime~

MAC relay

ISS
802.n MAC

ISS
802.n MAC

e e e e - - -~

Figure 6.1—GrandSync interface model

A received MAC frame is associated with link-dependent timing information, processed within the
TimeSync (TS) state machine, and passed to the GrandSync protocol entity. The GrandSync state machine
(illustrated with a darker boundary) is responsible for saving time parameters from observed
CLOCK_SYNC.indication parameters and generating CLOCK_SYNC.response parameters for delivery to other

ports.

Contribution from: dvj@alum.mit.edu.
41 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

The clockselect and clockSync information exchanged with the GrandSync entity includes precedence
information for grandmaster selection, a time-affiliation pair {grandTime,localTime}, and a cumulative
extraTime, and control information, asillustrated in Figure 6.2. A clock-slave end-point can filter the sum of
grandTime and extraTime values, thereby yielding its image of the globally synchronized grandTime value.

priority clockiD | hops | portID ‘ preference
||||||||||||||| IHENENERENENENN] ||||||||||||||||||||||||||||||| INERERNNENEEREN ||||||||||||||| |||||||||||||||||||||||||||||||
‘period info ‘ control
CIockSeIectparameterS NN NN |||||||||||||||||||||||
" clockSync parameters 0~ -~~~ -~~~ -~~~ """~ "~ """~~~ """ """ "=
seconds | fraction ‘ grandTime
INENENN] ||||||||||||||||||||||||||||||| |||||||||||||||||||||||||||||||||||||||
‘ secs | fraction ‘ localTime
NN NN |||||||||||||||||||||||||||||||||||||||
‘ subfraction ‘ extraTime

Figure 6.2—The clockSelect/clockSync service-interface components

6.2 Service interface primitives

6.2.1 CLOCK_SYNC.indication

6.2.1.1 Function

Provides the GrandSync protocol entity with clock-synchronization parameters derived from PDUs sent
from attached media-dependent ports. The information is sufficient to identify a single clock-slave port
(typicaly the closest-to-grandmaster port) and to disseminate grandmaster supplied clock-synchronization
information to other ports.

6.2.1.2 Semantics of the service primitive

The semantics of the primitives are as follows:

CLOCK_SYNc.indication {

destination_address, /I Destination address

source_address, // Optional

priority, /I Forwarding priority

service data unit, /I Delivered content

{ /I Contents of the service data_unit
protocol Type, /I Distinguishes AVB frames from others
function, /I Distinguishes between clockSync and other AVB frames
version, /I Distinguishes between clockSync frame versions
priority, /I Precedence for grandmaster selection
clockiD, /I Precedence for grandmaster selection
hopCount, I/ Distance from the grandmaster station
portlD, /I ldentifies the source port
interval, /I Nominal clockSync transmission interval
flags, /I Control flags
utcOffset, /I Difference between UTC and TAI timescales
grandTime, /I Global-time snapshot (1-cycle delayed)
extraTime, /I Accumulated grandTime error
local Time /I Local-time snapshot (1-cycle delayed)

}

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 42

NNNNRPEPREPPRPERPRPRPRPRPEPRPOONOURWNER
WNRPOOOM~NOUAMAWNEREO

24

O©oOoO~NOOUOIWNPE

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

NOTE—The grandTime field has a range of approximately 36,000 years, far exceeding expected equipment life-spans.
The localTime and linkTime fields have a range of 256 seconds, far exceeding the expected clockSync frame trans-
mission interval. These fields have a 1 pico-second resolution, more precise than the expected hardware snapshot
capabilities. Future time-field extensions are therefore unlikely to be necessary in the future.

The parameters of the cLocK_syNc.indication are described as follows:

6.2.1.2.1 destination_address: A 48-hit field that allows the frame to be conveniently stripped by its
downstream neighbor. The destination_address field contains an otherwise-reserved group 48-bit MAC
address (TBD).

6.2.1.2.2 source address. A 48-hit field that specifies the local station sending the frame. The
source_address field contains an individual 48-bit MAC address (see 3.10), as specified in 9.2 of IEEE Std
802-2001.

6.2.1.2.3 priority: Specifiesthe (802.3) priority associated with content delivery.

6.2.1.2.4 serviceDataUnit: A multi-byte field that provides information content.

For GrandSync-entity time-sync interchanges, the serviceDataUnit consists of the following subfields:

6.2.1.2.5 protocol Type: A 16-hit field contained within the payload that identifies the format and function of
the following fields.

6.2.1.2.6 function: An 8-bit field that distinguishes the clockSync frame from other AVB frame type.

6.2.1.2.7 version: An 8-hit field that identifies the version number associated with of the following fields.
TBD—A more exact definition of version is needed.

6.2.1.2.8 priority: A 16-bit field that can be configured by the user and overrides the remaining
preference-group field values (see 6.2.1.4).

6.2.1.2.9 clockl D: A 64-bit globally-unique field that ensures a unique precedence value for each potential
grandmaster, when the priority field happens to have the same value (see 6.2.1.4 and 6.2.1.5).

6.2.1.2.10 hopCount: A 16-hit field that represents the number of hops from the grandmaster. This field
applies preference to the shortest path from the grand-master, if multiple paths are provided by the inter-
connect (see 6.2.1.4).

6.2.1.2.11 portI Dt: A 32-bit field that represents the port number that sourced the PDU (see 6.2.1.4).

6.2.1.2.12 interval: An 8-bit pseudo floating-point field that specifies the nomina interval between
clockSync frame transmissions (see xx).

6.2.1.2.13 flags: An 8-hit field that warns/triggers changes to the end-station utcOffset value.
6.2.1.2.14 utcOffset: A 16-hit field that represents the current leap-seconds value.
6.2.1.2.15 grandTime: An 80-bit field that specifies a grandmaster synchronized time (see 6.2.1.6).

6.2.1.2.16 local Time: A 48-hit field that specifies the local free-running time within this station, when the
previous clockSync frame was received (see 6.2.1.8).

Contribution from: dvj@alum.mit.edu.
43 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

6.2.1.2.17 extraTime: A 32-hit field that specifies the cumulative grandmaster synchronized-time error.
(Propagating extraTime and grandTime separately eliminates whiplash associated with cascaded PLLS.)

6.2.1.3 Version format

For compatibility with existing 1588 time-snapshot, a single bit within the version field is constrained to be
zero, as illustrated in Figure 6.3. The remaining versionHi and versionLo fields shall have the values of 0
and 1 respectively.

MSB LSB
| versilonHi | - v?rsionll_o
8 bits

Figure 6.3—Global-time subfield format
6.2.1.4 preference group

The precedence group includes the concatenation of multiple fields that are used to establish precedence
between grandmaster candidates, asillustrated in Figure 6.4.

MSB LSB
priority clocklD hopCount portID

Figure 6.4—precedence subfields
6.2.1.5 clockID subfields

The 64-bit clockliD field is aunique identifier. For stations that have a uniquely assigned 48-bit macAddress,
the 64-bit clockiD field is derived from the 48-bit MAC address, asillustrated in Figure 6.5.

MSB macAddress LSB
‘ oui ‘ ouiDependent ‘
I | I | I I | I | I
l FF;ElG (—‘

‘ oui ‘ extension ‘ ouiDependent
|||

Figure 6.5—clockID format
6.2.1.5.1 oui: A 24-bit field assigned by the IEEE/RAC (see 3.10.1).
6.2.1.5.2 extension: A 16-hit field assigned to encapsulated EUI-48 values.
6.2.1.5.3 ouiDependent: A 24-bit field assigned by the owner of the oui field (see 3.10.2).
6.2.1.6 grandTime format

The grandTime (time-of-day) field within a frame are based on seconds and fractions-of-second values,
consistent with IETF specified NTP[B7] and SNTP[B8] protocols, asillustrated in Figure 6.6.

6.2.1.6.1 seconds: A 40-bit signed field that specifies time in seconds.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 44

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

MSB LSB

seconds fraction
IIIIIIIIIIIIII|IIIIIII|IIIIIIIIIIIIIIIIIIIIIIIIIIII|IIIIIII|IIIIIIIIIIIIII

40 bits 40 bits

Figure 6.6—grandTime format

6.2.1.6.2 fraction: A 40-bit unsigned field that specifies a time offset within each second, in units of 24°
second.

The concatenation of these fields specifies a 96-hit grandTime value, as specified by Equation 6.1.
grandTime = seconds + (fraction/ 240) (6.

6.2.1.7 extraTime

The error-time values within a frame are based on a selected portion of a fractions-of-second value, as
illustrated in Figure 6.7. The 40-bit signed fraction field specifies the time offset within a second, in units of
2% second.

MSB LSB

subFraction
IIIIIII|IIIIIII|IIIIIIIIIIIIII

32 bits

Figure 6.7—extraTime format
6.2.1.8 localTime format

The local Time value within aframeis based on seconds and fractions-of-second field values, asillustrated in
Figure 6.8. The 48-bit fraction field specifies the time offset within the second, in units of 28 second.

MSB LSB
‘ seconds | fraction
I I I I I I I I | I I I I I I I I I
8 bits 48 bits

Figure 6.8—localTime format
6.2.1.9 When generated

The time-sync related cLOCK_SyNc.indication service primitive is generated when new time-sync
information is available. Such information could change the selection of the grandmaster or could provide a
more-recent {grandTime, stationTime} time affiliation necessary for maintaining accurate grandmaster
synchronized time references.

6.2.1.10 Effect of receipt

Receipt of the service primitive by the GrandSync entity triggers an update of the grandmaster selection
information. If the grandmaster selection determines the source-port to be the preferred port, its provided
{grandTime,localTime} time affiliation is also echoed to the attached entities, via invocation of the
CLOCK_SYNC.response service primitive.

Contribution from: dvj@alum.mit.edu.
45 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

6.2.2 CLOCK_SYNC.response
6.2.2.1 Function

Communicates GrandSync protocol-entity supplied information to attached media-dependent ports. The
information is sufficient for attached ports to update/propagate grandmaster clock-synchronization
parameters.

6.2.2.2 Semantics of the service primitive
The semantics of the primitives are as specified for cLock_syNc.indication (see 6.2.1).
6.2.2.3 When generated

Generated by the GrandSync entity upon receipt of atime-sync related cLock_syNc.indication from a pre-
ferred (by grandmaster selection protocol) source port.

6.2.2.4 Effect of receipt

Receipt of the service primitive by a ClockSlave or TS entity updates entity storage. This storage update
allows the destination-port to provide accurate { grandTime, stationTime} affiliations during later time-sync
information transmissions.

6.3 GrandSync state machine
6.3.1 Function

The GrandSync state machine is responsible for observing cLOCK_SyNc.indication parameters, selecting
PDUs with preferred time-sync content, and echoing this content in following CLOCK_SYNC.response
parameters.

6.3.2 State machine definitions

AVB identifiers
Assigned constants used to specify AVB frame parameters.
AVB_FUNCTION—The function code that corresponds to a time-sync frame.
value—TBD.
AVB_MCAST—The multicast destination address corresponding to the adjacent neighbor.
value—TBD.
AVB_TYPE—The protocol Type corresponding that uniquely identifies time-sync SDUs.
value—TBD.
AVB_VERSION—The number that uniquely identifies this version of time-sync SDUs.
value—TBD.
LAST_HOP
A constant that specifies the largest possible hopCount value.
value—255
NULL
A constant indicating the absence of avalue that (by design) cannot be confused with avalid value.
ONES
A large constant wherein al binary bits of the numerical representation are set to one.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 46

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

gueue values
Enumerated values used to specify shared FIFO queue structures.
Q_MS IND—Queueidentifier for cLock_syNc.indication transfers.
Q_MS REQ—Queue identifier for CLOCK_SYNC.response transfers.

6.3.3 State machine variables

ePtr
A pointer to entity-dependent storage, where that storage comprises the following:
lastTime—Time of the last best-preference update, used for timeout purposes.
rxSaved—A copy of the best-preference GrandSync PDU parameters.
new, old
Local variables consisting of concatenated preference, hopCount, and port parameters.
rsPtr
A pointer to the service-data-unit portion of rxlnfo storage.
rxinfo
Parameters associated with an cLock_syNc.indication (see 6.2.1.2), comprising the following:
destination_address, source_address, service data_unit
Where service_data_unit comprises:
extraTime, function, grandTime, hopCount, precedence,
protocol Type, local Time, syncinterval, version
rxPtr
A pointer to the rxinfo storage.
stationTime
A shared value representing current time within each station.
Within the state machines of this standard, this is assumed to have two components, as follows:
seconds—An 8-bit unsigned value representing seconds.

fraction—An 40-bit unsigned value representing portions of a second, in units of 240 second.
ssPtr
A pointer to the service-data-unit portion of ePtr->rxSaved storage.
sxPtr
A pointer to the ePtr->rxSaved storage.
tsPtr
A pointer to the service-data-unit portion of txlnfo storage.
txinfo
Parameters associated with an CLOCK_SYNC.response (see 6.2.1.2), comprising the following:
destination_address, source_address, service data unit
Where service_data_unit comprises:
extraTime, function, grandTime, hopCount, precedence,
protocol Type, local Time, syncinterval, version
txPtr
A pointer to the txInfo storage.

6.3.4 State machine routines

Dequeue(queue)
Returns the next available frame from the specified queue.
info—The next available parameters.
NULL—NOo parameters available.
Enqueue(queue, info)
Places the info parameters at the tail of the specified queue on all ports.

Contribution from: dvj@alum.mit.edu.
47 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

FormPreference(precedence, hops, port)

Forms a 16-byte preference by concatenating the following fields:
precedence (14 bytes)
hops (1 byte)
port (1 byte)

SationTime(ePtr)

Returns the value of the station’s shared local timer, encoded as follows:
seconds—A 16-bit unsigned value representing seconds.
fraction—A 48-bit unsigned value representing portions of a second, in units of 240 second.

ClockSyncSdu(info)

Checks the frame contents to identify MS_DATAUNIT.indication frames.
TRUE—The frame is a clockSync frame.

FAL SE—Otherwise.

6.3.5 GrandSync state table

The GrandSync state machine includes a media-dependent timeout, which effectively restarts the grandmas-
ter selection process in the absence of received clockSync frames, as specified by Table 6.1.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 48

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO

2007-08-05
Table 6.1—GrandSync state table
Current . Next
(o]
. @ .
state condition action state
START | (rxInfo = Dequeue(Q_MS IND)) 1| — TEST
I= NULL
(stationTime — ePtr->timer) 2 | ePtr->lastTime = stationTime; START
> 4* ePtr->syncinterval SsPtr->hopCount = ssPtr->sourePort =
ssPtr->precedence = ONES;
— 3 | stationTime = StationTime();
TEST ClockSyncSdu(rsPtr) & & 4 | test = FormPreference(rsPtr->precedence, SERVE
rsPtr->hopCount !'= LAST_HOP rsPtr->hopCount, rsPtr->port);
best = FormPreference(ssPtr->precedence,
ssPtr->hopCount, ePtr->sourcePort);
— 5 | — START
SERVE | test <= best 6 | ePtr->lastTime = stationTime; HOPS
*ssPtr = *tsPtr = *rsPtr;
— 7 | — START
LAST | — 8 | txPtr->destination_address= AVB_MCAST,; START
txPtr->source_address = MacAddress(ePtr);
tsPtr->protocol Type = AVB_TYPE;
tsPtr->function = AVB_FUNCTION;
tsPtr->version = AVB_VERSION;
Enqueue(Q_MS_REQ, txPtr);

Row 6.1-1: Available indication parameters are processed.
Row 6.1-2: The absence of indications forces a timeout, after a entity-dependent delay
Row 6.1-3: Wait for changes of conditions.

Row 6.1-4: Still-active time-sync PDUs are processed further, based on grandmaster preferences.
The new and old preference values consist of precedence, hopCount, and port components.
Row 6.1-5: Other PDUs and over-aged indications are discarded.

Row 6.1-6: Same-port indications always have preference.
Row 6.1-7: Other indications are discarded.

Row 6.1-8: Reset the timeout timer; broadcast saved parametersto all ports (including the source).

Contribution from: dvj@alum.mit.edu.
49 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

7. ClockMaster/ClockSlave state machines

7.1 Overview
7.1.1 ClockMaster/ClockSlave behaviors

This clause specifies the state machines that specify ClockMaster and ClockSlave entity processing. The
operations are described in an abstract way and do not imply any particular implementations or any exposed
interfaces. There is not necessarily a one-to-one correspondence between the primitives and formal proce-
dures and the interfacesin any particular implementation.

The ClockMaster entity is responsible for forwarding the grandmaster time supplied by the ClockSource via
the CLOCK _SOURCE.request service primitive, as follows:

a) A count value (that isincremented in sequential CLOCK_SOURCE.request PDUS) is checked.
b) The grandmaster time parameter within the cLock_syNc.responseg[n+1] PDU is associated with
the cLock_syNc.response[n] PDU arrival time.

¢) The cLOCK_SYNC.response parameters are supplemented to form a cLOCK_SyNc.response PDU,
which is then passed to the GrandSync entity.

The ClockSlave entity is responsible for extracting the grandmaster time from cLock_syNc.indications and
supplying the current value to the ClockTarget entity through the CLOCK_TARGET service interfaces, as fol-
lows:

a) grandmaster time samples are extracted from GrandSync-supplied CLOCK _SYNC.response PDUS,
and saved for computing grandmaster times in following CLOCK_TARGET.indication PDUs.

b) When triggered by a cLOCK_TARGET.request indication, a CLOCK_TARGET.indication PDU is
delivered to the ClockTarget state machine. That returned cLock_TARGET.indication PDU supplies
the grandmaster time associated with the CLOCK_TARGET.request invocation time.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 50

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

7.1.2 ClockMaster/ClockSlave interface model

The time-synchronization service model assumes the presence of one or more grandmaster capable entities
communicating with the GrandSync state machine, asillustrated on the left side of Figure 7.1. A grandmas-
ter capable port is also expected to provide clock-slave functionality, so that any non-selected
grandmaster-capabl e station can synchronize to the selected grandmaster station.

ClockSource ClockTarget

application [~ CLOCK_SOURCE.request | CLOCK_TARGET.reques

lower levels

\ CLOCK_TARGET.indication v
(CIockMaster] [GrandSync] [CIockSIave)

Al }

~localTime~

MAC relay

ISS
802.n MAC

— e e e - — — -

Figure 7.1—ClockMaster interface model

The clock-master ClockMaster state machine (illustrated with an italics name and darker boundary) is
responsible for monitoring its port’'s CLOCK_SOURCE.request PDUs and sending CLOCK_SyNc.indication
PDUs. The sequencing of this state machine is specified by Table 7.1; details of the computations are
specified by the C-code of Annex G.

The time-synchronization service model assumes the presence of one or more clock-dave capable time-sync
entities communicating with a GrandSync protocol entity, as illustrated on the top-side of Figure 7.1. A
non-talker clock-slave capable entity is not required to be grandmaster capable.

The ClockSlave state machine (illustrated with an italics name and darker boundary) is responsible for
saving time parameters from echoed cLOCK_SyNc.response frames and servicing CLOCK_SOURCE.request

PDUs supplied by the associated clock-slave interface. The sequencing of this state machine is specified by
Table 7.2; details of the computations are specified by the C-code of Annex G.

7.2 ClockMaster service interfaces
7.2.1 Shared service interfaces

The ClockMaster entity is coupled to the bridge ports TS entities via the defined time-sync related
CLOCK_SYNC.indication serviceinterface (see 6.2.1).

Contribution from: dvj@alum.mit.edu.
51 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

7.2.2 CLOCK_SOURCE.request service interface
7.2.2.1 Function
Provides the ClockMaster entity with clock-synchronization parameters derived from the reference clock.
The information is sufficient to provide the ClockMaster with accurate {grandTime, localTime}
associations. The ClockSource entity supplies the reference time for service-interface invocation n within
the parameters of the next service-interface invocation n+1.
7.2.2.2 Semantics of the service primitive
The semantics of the primitives are as follows:

CLOCK_SOURCE.request {

frameCount, /I An integrity-check that is incremented each invocation
grandTime, /I Global-time snapshot (1-cycle delayed)

}

The parameters of the CLOCK_SOURCE.request service-interface primitive are described as follows:
7.2.2.2.1 frameCount: An 8-bit field that is incremented on each service-interface invocation.

7.2.2.2.2 grandTime: An 80-bit field that specifies the grandmaster synchronized time within the source
station, when the previous clockSync frame was transmitted (see 6.2.1.6).

7.2.2.3 When generated

The CLOCK_SOURCE.request service primitive is invoked by a client-resident ClockSource entity. The intent
is to provide the ClockMaster with continuous/accurate updates from a ClockSource-resident clock refer-
ence.

7.2.2.4 Effect of receipt

Upon receipt by the ClockMaster entity, the encapsulated grandTime value is affiliated with the stationTime

snapshot from the previous invocation; the resulting { grandTime, stationTime} affiliation is passed to the
GrandSync entity for redistribution to other ClockSlave and TS entities.

7.3 ClockMaster state machine
7.3.1 State machine definitions

7.3.1.1 AVB identifiers: Assigned constants used to specify AVB frame parameters (see 6.3.2).
AVB_FUNCTION, AVB_MCAST, AVB_TYPE, AVB_VERSION

7.3.1.2NULL: A constant value that (by design) cannot be confused with avalid value.
7.3.1.3 COUNT: A numerical constant equal to the range of the info.frameCount field value.
7.3.1.4 queue values: Enumerated values used to specify shared FIFO queue structures.

Q_CM_SET—The queue identifier associated with received clock-master sync frames.
Q_MS _IND—A GrandSync queue identifier (see 6.3.2).

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 52

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

7.3.2 State machine variables
7.3.2.1 count: A transient value representing the expected value of the next rxInfo.frameCount field value.

7.3.2.2 ePtr: A pointer to an entity data structure with information comprising the following:
precedence—A 14-byte field that specifies the grandmaster sel ection precedence.
rxSaved—Saved parameters from areceived CLOCK _SOURCE.request primitive.
snapShot0—The info.snapShot field value from the last receive-port poke indication.
snapShotl—The value of the ePtr->snapShotO0 field saved from the last poke indication.
synclnterval—The expected rate of clockMaster service-interface invocations.

7.3.2.3 rxInfo: A contents of ahigher-level supplied time-synchronization request, including the following:
frameCount—A value that increments on each CLOCK_SOURCE.request frame transmission.
grandTime—The grandmaster time, when the previous CLOCK_SOURCE.request frame was sent.

7.3.2.4 rxPtr: A pointer to rxinfo storage.

7.3.2.5 stationTime: See 6.3.3.

7.3.2.6 sxPtr: A pointer to the ePtr->rxSaved storage.

7.3.2.7 tsPtr: A pointer to the service-data-unit portion of txlnfo storage.

7.3.2.8 txInfo: Storage for to-be-transmitted CLOCK _SYNC.response parameters (see 6.2.2.2), comprising:
destination_address, source_address, service data_unit

Where service_data_unit comprises:
extraTime, function, grandTime, hopCount, precedence,
protocol Type, local Time, sourcePort, syncinterval, version

7.3.2.9 txPtr: A pointer to txInfo storage.
7.3.3 State machine routines

Dequeue(queue)

Enqueue(queue, info)

SourcePort(entity)

SationTime(entity)

ClockSyncSdu(info)
See 6.3.4.

Contribution from: dvj@alum.mit.edu.
53 This is an unapproved working paper, subject to change.

AVB BRIDGING

7.3.4 ClockMaster state table

JggDvj20050416/D0.718
2007-08-05

The ClockMaster state table encapsulates clock-provided sync information into a MAC-relay frame, as
illustrated in Table 7.1.

Table 7.1—ClockMaster state machine table

Current

Next

state

condition

Row

action

state

START

(rxInfo = Dequeue(Q_CM_SET))
I=NULL

ePtr->snapShot1 = ePtr->snapShot0;
ePtr->snapShot0 = stationTime;

count = (sxPtr->frameCount + 1) % COUNT;
grandTime = rxPtr->grandTime;

*sxPtr = rxInfo;

SEND

stationTime = StationTime(ePtr);

START

SEND

count == sxPtr->frameCount

txPtr->destination_address= AVB_MCAST,;
txPtr->source_address = MacAddress(ePtr);
tsPtr->prototol Type = AVB_TY PE;
tsPtr->function = AVB_FUNCTION;
tsPtr->version = AVB_VERSION;
tsPtr->precedence = ePtr->precedence;
tsPtr->hopCount = 0;

tsPtr->sourcePort = SourcePort(ePtr);
tsPtr->grandTime = grandTime;
tsPtr->extraTime = 0;

tsPtr->local Time = ePtr->snapShot1;
tsPtr->syncinterval = ePtr->syncinterval;
Enqueue(Q_MS _IND, txInfo);

START

Row 7.1-1: Update snapshot values on CLOCK_SOURCE.request request arrival.

Row 7.1-2: Wait for the next change of state.

Row 7.1-3: Sequential requests are forwarded as a CLOCK_SYNC.response to the GrandSync entity.
Row 7.1-4: Nonsequential requests are discarded.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

54

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

7.4 ClockSlave service interfaces
7.4.1 Shared service interfaces

The ClockSlave entity is coupled to the GrandSync entity, via the defined cLOCK_SYNC.response service
interface (see 6.2.2).

7.4.2 CLOCK_TARGET.request service interface
7.4.2.1 Function

Triggers the ClockSlave entity to provide a { grandTime, local Time} association that is synchronized with
the grandmaster clock.

7.4.2.2 Semantics of the service primitive
The semantics of the primitives are as follows:

CLOCK_TARGET.request {
frameCount /I An integrity-check that is incremented each invocation

}

The parameters of the CLOCK_TARGET.request service-interface primitive are described as follows:

7.4.2.2.1 frameCount: An 8-bit field that isincremented on each service-interface invocation.

7.4.2.3 When generated

The CLOCK_TARGET.request service primitive is invoked by a client-resident ClockTarget entity. The intent
isto trigger the ClockSlave's invocation of afollowing cLock _TARGET.indication primitive, thus providing
the ClockTarget entity with arecent { grandTime,stationTime} affiliation.

7.4.2.4 Effect of receipt

Upon receipt by a ClockSlave entity, a copy of the current stationTime value is saved and an invocation of a
following cLock_TARGET.indication primitive is triggered.

7.4.3 CLOCK_TARGET.indication service interface
7.4.3.1 Function
Provides the ClockSync entity with clock-synchronization parameters derived from the reference clock. The
information comprises {frameCount, grandTime} associations. frameCount is supplied by the previous
CLOCK_TARGET.request invocation; grandTime represents the invocation time of that preceding
CLOCK_TARGET.request service primitive.
7.4.3.2 Semantics of the service primitive
The semantics of the primitives are as follows:

CLOCK_TARGET.indication {

frameCount, /I ldentifies the previous CLOCK_TARGET.request invocation
grandTime, /I grandmaster synchronized snapshot.

Contribution from: dvj@alum.mit.edu.
55 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

The parameters of the CLOCK_TARGET.indication service-interface primitive are described as follows:

7.4.3.2.1 frameCount: An 8-hit field that copied from the like-named field of the previous
CLOCK_TARGET.request service-interface invocation.

7.4.3.2.2 grandTime: An 80-bit field that specifies the grandmaster synchronized time within the
ClockSlave entity, when the previous CLOCK_TARGET.request service-interface was invoked.

7.4.3.3 When generated

The invocation of the cLOCK_TARGET.indication service primitive isinvoked by the receipt of a ClockTarget
supplied cLOCK_TARGET.request PDU. The intent is to provide the ClockTarget entity with a recent
{grandTime,stationTime} affiliation.

7.4.3.4 Effect of receipt

Upon receipt by a ClockTarget entity, the { grandTime,stationTime} affiliation is expected to be saved and
(dlong with previously saved copies) used to adjust the rate of the grandmaster synchronized
ClockTarget-resident clock.

7.5 ClockSlave state machine

7.5.1 Function

7.5.2 State machine definitions

7.5.21 NULL: A constant that (by design) cannot be confused with avalid value.

7.5.2.2 queue values: Enumerated values used to specify shared FIFO queue structures.
Q_MS REQ—A GrandSync queue identifier (see 6.3.2).
Q_CS REQ—The queue identifier associated with CLOCK_TARGET.request requests.
Q_CS IND—The queue identifier associated with cCLOCK_TARGET.indication indications.

7.5.3 State machine variables

7.5.3.1 ePtr: A pointer to entity-dependent information, including the following:
rxSaved—A copy of the GrandSync supplied MA_DATAUNIT.request value.
synclnterval—The expected service rate of CLOCK_TARGET.request services.
baseTimer—Recently saved time events, each consisting of the following:
index—Index into the timed[] array, where last times were stored.
range—Number of entries within the timed[] array
timed[range]—Recently saved time events, each consisting of the following:
grandTime—A previously sampled grandmaster synchronized time.
extraTime—The residual error associated with the sampled grandTime value.
stationTime—The station-local time affiliated with the sampled grandTime value.

7.5.3.2 exInfo: A contents of a higher-level supplied time-synchronization request, including the following:
frameCount—A value that increments on each CLOCK_SOURCE.request PDU transfer.

7.5.3.3 nextTime: Storage representing grandTime and extraTime values returned from call to NextTimed().

7.5.3.4 rsPtr: A pointer to the service-data-unit portion of rxInfo.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 56

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

7.5.3.5 rxInfo: A contents of a GrandSync supplied CLOCK _SYNC.response (see 6.2.2), including:
destination_address, source_address, service data_unit

Where service_data_unit comprises.
extraTime, function, grandTime, protocol Type, local Time, version

7.5.3.6 rxPtr: A pointer to rxinfo.

7.5.3.7 rxSyncl nterval: The synchronization interval of this station’s GrandSync-selected clock-slave port.

7.5.3.8 stationTime: See 6.3.3.

7.5.3.9 ssPtr: A pointer to the service-data-unit portion of the ePtr->rxSaved storage

7.5.3.10 sxPtr: A pointer to the ePtr->rxSaved storage

7.5.3.11 timePtr: A pointer to the ePtr->timed[] array storage

7.5.3.12 txInfo: A contents of a ClockSlave supplied cLOCK_TARGET.indication (see 6.2.2), comprising:
frameCount—The saved value of the like named field from the previous cLOCK_TARGET.request PDU.
grandTime—The grandmaster synchronized time sampled during the CLOCK_TARGET.request transfer.

7.5.3.13 txPtr: A pointer to txinfo storage.

7.5.3.14 txSynclnterval: The synchronization interval of this ClockSlave entity.

7.5.4 State machine routines

7.5.4.1 Dequeue(queue): See 6.3.4.

7.5.4.2 Enqueue(queue, info): See 6.3.4.

7.5.4.3 NextSaved(btPtr, ratel nterval, grandTime, extaTime, thisTime):

Saves grandTime, extraTime values associated with a snapshot taken at thisTime, with the saved values

spanning aratelnterval specified interval.

7.5.4.4 NextTimed(btPtr, stationTime, backl nterval):

Returns grandTime and extraTime values associated with a snapshot taken at stationTime, back-interpolated

by a backinterval time, based on previous received-time information saved in the btPtr referenced data

structure.

7.5.4.5 SationTime(entity): See 6.3.4.

7.5.4.6 ClockSyncSdu(info): See 7.3.3.

Contribution from: dvj@alum.mit.edu.
57 This is an unapproved working paper, subject to change.

AVB BRIDGING

7.5.5 ClockSlave state table

JggDvj20050416/D0.718

2007-08-05

The ClockSlave state machine includes a media-dependent timeout, which effectively disconnects a
clock-dlave port in the absence of received clockSync frames, asillustrated in Table 7.2.

Table 7.2—ClockSlave state table

Current

Next

state

condition

Row

action

state

START

(rxInfo = Dequeue(Q_MS_REQ))
I=NULL

TEST

((cxInfo =
Dequeue(Q_CS_REQ)) != NULL

rxSynclnterval = ssPtr->synclnterval;
txSynclnterval = ePtr->synclnterval;
backlnterval =

(3 * rxSyncinterval + txSyncinterval) / 2;
nextTimes =

NextTimed(btPtr, stationTime, backinterval);
txPtr->count = cxInfo.count;
txPtr->grandTime =

nextTimes.grandTime + nextTimes.extraTime;
Enqueue(Q_CS_IND, txInfo);

stationTime = StationTime(ePtr);

START

TEST

ClockSyncSdu(rsPtr)

*sxPtr = *rxPtr;
NextSaved(btPtr, ratelnterval, rsPtr->grandTime;
rsPtr->extraTime, rsPtr->local Time);

START

Row 7.2-1: Thereceived CLOCK_SYNC.response parameters are dequeued for checking.
Row 7.2-2: A clock-dave request generates an affiliated information-providing indication.
The affiliated indication has the sequence-count information provided by the request.

The delivered end-point grandTime value is the sum of delivered grandTime and extraTime values.

The requested content is queued for delivery to the higher-level client.
Row 7.2-3: Wait for the next change-of-conditions.

Row 7.2-4: Vaidated GrandSync entity requests are accepted; its time parameters are saved.

The back-interpolation time is estimated from the synclnterval times of the source and clock dave.

(This back-interpolation time is used by NextTimed(), which provides transmission-time estimates.)
Row 7.2-5: Wait for the next change-of-conditions.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

58

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

8. Ethernet full duplex (EFDX) state machines

8.1 Overview

This clause specifies the state machines that support 802.3 Ethernet full duplex (EFDX) bridges. The
operations are described in an abstract way and do not imply any particular implementations or any exposed
interfaces. There is not necessarily a one-to-one correspondence between the formal specification and the
interfaces in any particular implementation.

8.1.1 EFDX link indications
The duplex-link TimeSyncRxEfdx state machines are provided with snapshots of clockSync-frame recep-

tion and transmission times, as illustrated by the ports within Figure 8.1. These link-dependent indications
can be different for bridge ports attached to alternative media.

GrandSync CLOCK_SYNC.response
i CLOCK_SYNC.indication
/
1y
TS TimeSyncRxEfdx f ‘ TimeSyncTxEfdx
A ~localTime~
LLC A A
MS
MAC relay rxsync ~_j XSync~_|
ISS ISS
802.3 MAC 802.3 MAC
—| Wi
PHY
/LAN/

Figure 8.1—EFDX-link interface model

The rxSync and txSync indications provide a tag (to reliably associate them with MAC-supplied clockSync
frames) and a local Time stamp indicating when the associated clockSync frame was received, as illustrated
within Figure 8.2.

seconds| fraction

count
NN IIIIIII|IIIIIII|IIIIIII|IIIIIII NN

tag localTime

Figure 8.2—Contents of rxSync/txSync indications

Contribution from: dvj@alum.mit.edu.
59 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

8.1.2 Link-delay compensation

Synchronization accuracies are affected by the transmission delays associated with transmissions over links
between bridges. To compensate for these transmission delays, the receive port is responsible for
compensating {grandTime, stationTime} affiliations by the (assumed to be constant) frame-transmission
delay.

The clock-slave entity uses the computed cable-delay measurement and is therefore (in concept) responsible
for initiating such measurements. Cable-delay measurements begin with the transmission of frame F1
between the clock-dave and clock-master stations and conclude with the a clock-master response, a
transmission of frame F2 between the clock-master to clock-slave stations, asillustrated in Figure 8.3.

Clock-master Clock-slave
responder requester
; e e thatTxTime a) frame.localTime = txSnapShot;
b) thisTxTime = frame.localTime; | 5= 7 =~ :) '
) thisRxTime = rxSnapShot; e —— F1— | txSnapShot = stationTime;
rxSnapShot = stationTime; thatRxTime
turnRound roundTrip
c) frame.localTime = txSnapShot ;)]
frame.thatTxTime = thisTxTime; thisTxTime
frame.thatRx_Tlme_z th_|sR>.<T|me; T F2—] d) thisTxTime = frame.localTime;
txSnapShot = stationTime; thisRxTime thisRxTime = rxSnapShot;
thatTxTime = frame.thatTxTime;
increasing thatRxTime = frame.thatRxTime;
v time v rxSnapShot = stationTime;

Figure 8.3—Link-delay compensation

The cable-delay computations are performed in multiple steps, as follows:
a) The F1-frame transmission involves multiple steps:

1) ThetxShapShot value (time of the last F1 transmission) is copied to frame.local Time storage.
2) Remaining fields are copied into frame storage; the frame-storage content is transmitted.
3) ThetxShapShot valueis set to the frame-F1 transmission time, for next step (a) usage.

b) The F1-frame reception involves multiple steps:

1) Theframe.localTime valueis copied to a port-local thisTxTime field, for next step (c) usage.
2) TherxShapShot value (time of the last F1 reception) is copied to a port-local thisRxTime field.
3) TherxShapShot valueis set to the F1-frame reception time, for next step (b) usage.

¢) The F2-frame transmission involves multiple steps:

1) ThetxShapShot value (time of the last F1 transmission) is copied to frame.local Time storage.
2) Thereceive-port thisTxTime valueis copied to frame.thatTxTime storage.
3) Thereceive-port thisRxTime value is copied to frame.thatRxTime storage.
4) Remaining fields are copied into frame storage; the frame-storage content is transmitted.
5) ThetxShapShot valueis set to the frame-F2 transmission time, for next step (c) usage.
d) The F2-frame reception involves multiple steps:
1) Theframe.localTime valueis copied to a port-local thisTxTime field.
2) TherxShapShot value (time of the last F2 reception) is copied to a port-local thisRxTime field.
3) Theframe.thatTxTime valueis copied to a port-local thatTxTime field.
4) The frame.thatRxTime value is copied to aport-local thatRxTime field.
5) TherxShapShot value is set to the F2-frame reception time, for next step (d) usage.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 60

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

At the conclusion of these steps, the values returned to the clock-slave requester include the values below.
(Within Figure 8.3, these values are also illustrated in the center, at their source, using a distinct italic font.)
— thatTxTime. The clock-slave transmit time.
— thatRxTime. The clock-master receipt time.
— thisTxTime. The clock-master transmit time.
— thisRxTime. The clock-slave receipt time.

Based on the preceding listed values, Equation 8.1 defines the computations for computing linkDelay.
Although not explicitly stated, the best accuracy can be achieved by performing these computation every
cycle.

linkDelay = (roundTrip — turnRound) / 2; (8.1
roundTrip = thisRxTime —thatTxTime;

turnRound = (thisTxTime — thatRxTime) * ratesRatio;
Where:
ratesRatio = (deltaRxTime / deltaTxTime);

The value of ratesRatio is necessary to maintain tight accuracies in the presence of significant (+200 PPM)
differences in clock-master/clock-slave timing references and significant (multiple milliseconds) turnRound
delays. Thisvalueis also readily computed from the preceding listed values, as specified by Equation 8.2.

ratesRatio[n] = (thisRxTime[n] — thisRxTime[n-N]) / (thisTXTime[n] — thisTxTime[n-N]); (8.2

NOTE—For 802.3 and other inexpensive interconnects, the processing of slow-rate PDUs is oftentimes performed by
firmware and (due to interrupt and processing delays) the turn-around delays can be much larger than the packet-trans-
mission times.

The cable-delay computations assume the transmission delays associated with frame F1 and frame F2 are
equal and constant. If the duplex links within a span have different propagation delays, these linkDelay
calculations do not correspond to the different propagation delays, but represent the average of the two link
delays. Implementers have the option of manually specifying the link-delay differences via MIB-accessible
parameters, within tightly-synchronized systems where thisinaccuracy might be undesirable.

This cable-delay calculation does not rely on the particular timings of F1 and F2 frame transmissions. These
transmissions can be triggered independently (as opposed to one triggered by the other) and could occur at
different rates (although the accuracies are limited by the slower rate). As a direct benefit of these
independence properties, distinct interlocks or timeouts for expected-but-corrupted-and-not-delivered trans-
Missions are unnecessary.

Furthermore, there is no need to transport F1 and F2 content in distinct frames. The contents of clock-slave
affiliated F1 and clock-master affiliated F2 frames can be merged and transported within the same frame.
Thus, distinct frame types and/or transmission timings are unnecessary; the link-delay calibration protocols
do nothing to prevent the same frame from communicating master-to-slave and slave-to-master link delays,
in addition to the baseline grandmaster timing and selection parameters.

Contribution from: dvj@alum.mit.edu.
61 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

8.2 efdxClockSync frame format
8.2.1 efdxClockSync fields

EFDX clock-synchronization (efdxClockSync) frames facilitate the synchronization of neighboring
clock-master and clock-dave stations. The frame, which is normally sent at 10ms intervals, includes
time-snapshot information and the identity of the network’s clock master, as illustrated in Figure 8.4. The
gray boxes represent physical layer encapsulation fields that are common across Ethernet frames.

6 da — Destination MAC address
6 sa — Source MAC address
2 protocolType — Distinguishes AVB frames from others
1 function — Distinguishes clockSync from other AVB frames
1 version — Distinguishes between clockSync frame versions
1 frameCount — A (sequence number) count of time-sync frames
1 reserved —Reserved for future definitions
2 priority — Priority for grandmaster selection
8 clockiD — ldentify of grandmaster station
2 hopCount — Hop count from the grandmaster
1 period — Specifies the clockSync transmission interval
1 flags — Warnings of impending state changes
2 utcOffset — Leap seconds value

10 grandTime — Transmitter grand-time snapshot (1 cycle delayed)
4 extraTime — Back-prediction error for grandTime computation
6 thisTxTime — Transmitter local-time snapshot (1 cycle delayed)
6 thatTxTime — Opposing link’s frame transmission time
6 thatRxTime — Opposing link’s frame reception time
4 fcs — Frame check sequence

653 bytes total
Figure 8.4—efdxClockSync frame format

NOTE— Existing 1588 time-snapshot hardware captures the values between byte-offset 34 and 45 (inclusive). The
location of the frameCount field (byte-offset 44) has been adjusted to ensure this field can be similarly captured for the
purpose of unambiguously associating clockSync-packet snapshots (that bypass the MAC) and clockSync-packet
contents (that pass through the MAC).

The 48-bit da (destination address), 48-bit sa (source address) field, 16-bit protocol Type, 8-bit function,
8-hit version, 2-byte priority, 8-byte clocklD, 2-byte hopCount, 1-byte priority, 1-byte flags, 2-byte
utcOffset, 80-bit grandTime, and 32-bit extraTime field are specified in 6.2.1.2.

8.2.1.1 frameCount: An 8-hit field that is incremented by one between successive clockSync frame
transmission.

8.2.1.2 thatTxTime: A 48-hit field that specifiesthe local free-running time within the source station, when
the previous clockSync frame was transmitted on the opposing link (see 6.2.1.8).

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 62

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

GRES

o1 o1 U1 01 U1
LERLEEELS

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

8.2.1.3 thatRxTime: A 48-hit field that specifies the local free-running time within the target station, when
the previous clockSync frame was received on the opposing link (see 6.2.1.8).

8.2.1.4 thisTxTime: A 48-bit field that specifies the local free-running time within the neighbor station,
when the previous clockSync frame was transmitted on the incoming link (see 6.2.1.8).

8.2.1.5fcs: A 32-hit (frame check sequence) field that is a cyclic redundancy check (CRC) of the frame.
8.2.2 Clock-synchronization intervals

Clock synchronization involves synchronizing the clock-slave clocks to the reference provided by the grand
clock master. Tight accuracy is possible with matched-length duplex links, since bidirectional frame
transmissions can cancel the cable-delay effects.

Clock synchronization involves the processing of periodic events. Multiple time periods are involved, as

listed in Table 8.1. The clock-period eventstrigger the update of free-running timer values; the period affects
the timer-synchronization accuracy and is therefore constrained to be small.

Table 8.1—Clock-synchronization intervals

Name Time Description

clock-period <50ns | Resolution of timer-register value updates

send-period 10 ms Time between sending of periodic clockSync frames between adjacent stations

slow-period 100 ms | Time between computation of clock-master/clock-slave rate differences

The send-period events trigger the interchange of clockSync frames between adjacent stations. While a
smaller period (1 ms or 100 pus) could improve accuracies, the larger value is intended to reduce costs by
allowing computations to be executed by inexpensive (but possibly slow) bridge-resident firmware.

The slow-period events trigger the computation of timer-rate differences. The timer-rate differences are
computed over two slow-period interval s, but recomputed every slow-period interval. The larger 100 ms (as
opposed to 10 ms) computation interval is intended to reduce errors associated with sampling of
clock-period-quantized slow-period-sized time intervals.

Contribution from: dvj@alum.mit.edu.
63 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

8.3 TimeSyncRxEfdx state machine

8.3.1 Function

The TimeSyncRxEfdx state machine is responsible for monitoring its port’s rxSync indications, receiving
MAC-supplied frames, and sending MAC-relay frames. The sequencing of this state machine is specified by

Table 8.2; details of the computations are specified by the C-code of Annex G.
8.3.2 State machine definitions

8.3.21 LAST_HOP: A constant representing the largest-possible frame.hopCount value.
value—255.

8.3.22 NULL: A constant that (by design) cannot be confused with avalid value.

8.3.2.3 queue values: Enumerated values used to specify shared FIFO queue structures.
Q_MS_IND—The queue identifier associated with MAC frames sent into GrandSync.
Q_ES IND—The queue identifier associated with the received MAC frames.
Q_RX_SYNC—The queue identifier associated with rxSync, sent from the lower levels.

8.3.3 State machine variables

8.3.3.1 cableDelay: Values (possibly scaled integers) representing cable-delay times.

8.3.3.2 count: A transient value representing the expected value of the next rxInfo.frameCount value.

8.3.3.3 cxInfo: A contents of alower-level supplied time-synchronization poke indication, including:
frameCount—The value of the like-named field within the last clockSync packet arrival.
local Time—The value of stationTime associated with the last clockSync packet arrival.

8.3.3.4 cxPtr: A pointer to cxInfo storage.

8.3.3.5 ePtr: A pointer to a data structure that contains port-specific information comprising the following:

frameCount—The value of frameCount within the last received frame.

rated—The ratio of the local-station and remote-station local-timer rates.

snapCount—The value of frameCount saved from the last snapshot indication.

snapShotO—The info.snapShot field value from the last receive-port snapshot indication.

snapShot1l—The value of the ePtr->snapShotO field at the snapshot indication.

times[N]—An array of time groups, where each array elements consists of:
thisTime—The local receive time associated with received time-sync frames.
thatTime—The remote transmit time associated with received time-sync frames.

8.3.3.6 ratesRatio: A variable representing the ratio of this station’s timer to this port’s neighbor timer.

8.3.3.7 roundTrip: The time between transmit-to-neighbor and receive-from-neighbor events.
8.3.3.8 rsPtr: A pointer to the service-data-unit portion of rxinfo storage.

8.3.3.9 rxInfo: Storage for received time-sync PDUs, comprising:
destination_address, source_address, service data_unit

Where service_data_unit comprises:
extraTime, frameCount, function, grandTime, hopCount, local Time,
protocol Type, precedence, that TxTime, thatRxTime, version

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

64

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

8.3.3.10 rxPtr: A pointer to the rxinfo storage.
8.3.3.11 stationTime: See 6.3.3.

8.3.3.12 thisDelay, thatDelay, thatDelay, thisDelta, thisTime, thatTime, tockTime:
Values (possibly scaled integers) representing intermediate local-time values.

8.3.3.13 tsPtr: A pointer to service-data-unit portion of txInfo storage.
8.3.3.14 turnRound: The time between receive-at-neighbor and transmit-from-neighbor events.
8.3.3.15 txInfo: Storage for information sent to the GrandSync entity, comprising:
destination_address, source_address, service data_unit
Where service_data_unit comprises.
extraTime, sourcePort, function, grandTime, hopCount,
local Time, protocol Type, precedence, synclnterval, version
8.3.3.16 txPtr: A pointer to txinfo storage.
8.3.4 State machine routines
8.3.4.1 Dequeue(queue): See 6.3.4.
8.3.4.2 Enqueue(queue, info): See 6.3.4.
8.3.4.3 Min(x, y): Returns the minimum of x and y values.
8.3.4.4 RemoteRate(times): The ratio of local-to-remote local Time rates is computed from samples within
the times array. Each times-array element contains two times:
thisTime - the receive time of the frame.
thatTime - the transmit time of the frame.
8.3.4.5 SourcePort(entity): See 7.3.3.
8.3.4.6 SationTime(entity): See 7.3.3.

8.3.4.7 ClockSyncSdu(info): See 6.3.4.

Contribution from: dvj@alum.mit.edu.
65 This is an unapproved working paper, subject to change.

AVB BRIDGING

8.3.5 TimeSyncRxEfdx state machine table

JggDvj20050416/D0.718

2007-08-05

The TimeSyncRxEfdx state machine associates PHY-provided sync information with arriving clockSync
frames and forwards adjusted frames to the MAC-relay function, asillustrated in Table 8.2.

Table 8.2—TimeSyncRxEfdx state machine table

Current

Next

state

condition

Row

action

state

START

(cxInfo=Dequeue(Q_RX_SYNC))
I=NULL

ePtr->snapShot1 = ePtr->snapShot0;
ePtr->snapShot0 = cxPtr->loca Time;
ePtr->snapCount = cxPtr->frameCount;

match= (rxPtr->frameCount==ePtr->snapCount);

START

(rxInfo=Dequeue(Q_ES IND))
I=NULL

count = (ePtr->rxFrameCount + 1) % COUNT;
ePtr->rxFrameCount = rxPtr->frameCount;

TEST

match

PAIR

stationTime = StationTime(ePtr);

START

TEST

IClockSyncSdu(rsPtr)

Enqueue(Q_CS _IND, rxPtr);

rxPtr->hopCount == LAST_HOP

count != rxPtr->frameCount

match= (rxPtr->frameCount==ePtr->snapCount);

START

PAIR

© | 0| N |0 | bW

ePtr->timeg[0] .thisTime = ePtr->snapShot1,;
ePtr->timeg[1] .thatTime = rsPtr->local Time;
ratesRatio = RemoteRate(ePtr->times);
roundTrip = local Time — ePtr->that TXTime;
turnRound =

rsPtr->local Time — rsPtr->thatRxTime;
cableDelay =

Min(0, roundTrip — (turnRound * ratesRatio));
txPtr->destination_address =

rxPtr->destination_address;
txPtr->source_address = rxPtr->source_address;
tsPtr->protocol Type = rsPtr->protocol Type;
tsPtr->function = rsPtr->function;
tsPtr->version = rsPtr->version;
tsPtr->grandTime = rsPtr->grandTime;
tsPtr->extralime = rsPtr->extraTime;
tsPtr->local Time = ePtr->snapShot1 — cableDelay;
tsPtr->sourcePort = SourcePort(ePtr);
tsPtr->hopCount = rsPtr->hopCount;
tsPtr->syncinterval = ePtr->syncinterval;
Enqueue(Q_MR_HORP, relayFrame);

START

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

66

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

Row 8.2-1: Update snapshot values on clockSync frame arrival.

Row 8.2-2: Initiate inspection of frames received from the lower-level MAC.

Row 8.2-3: Generate a GrandSync PDUs using matching snapshot and frame information.

Row 8.2-4: Wait for the next change-of-state.

Row 8.2-5: The non-clockSync frames are passed through.

Row 8.2-6: Over-aged clockSync frames are discarded.

Row 8.2-7: Non-sequential clockSync frames are ignored.

Row 8.2-8: Associated snapshot and frame information trigger a GrandSync indication generation.

Row 8.2-9: Generate atime-sync GrandSync indication from saved snapshot and frame information.

8.4 TimeSyncTxEfdx state machine
8.4.1 Function

The TimeSyncTxEfdx state machine is responsible for saving time parameters from relayed timedSync
frames and forming clockSync frames for transmission over the attached link.

8.4.2 State machine definitions

8.4.21 NULL: A constant that (by design) cannot be confused with avalid value.

8.4.2.2 queue values: Enumerated values used to specify shared FIFO queue structures.
Q_MR_HOP—The queue identifier associated with frames sent from the relay.
Q_ES REQ—The queue identifier associated with frames sent to the MAC.
Q_TX_SYNC—The queue identifier associated with txSync, sent from the lower levels.

8.4.2.3 T10ms: A constant the represents a 10 msvalue.

8.4.3 State machine variables

8.4.3.1 backinterval: A variable that represents the back-interpolation interval for transmit-time affiliations.

8.4.3.2 cxInfo: A contents of alower-level supplied time-synchronization poke indication, including:
snapCount—The value of the like-named field within the last clockSync packet arrival.
local Time—The value of stationTime associated with the last clockSync packet arrival.

8.4.3.3 dPtr: A pointer this port’s associated TimeSyncRxEfdx-entity storage.

Contribution from: dvj@alum.mit.edu.
67 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

8.4.3.4 ePtr: A pointer to adata structure that contains port-specific information comprising the following:
baseTimer—Recently saved time events, each consisting of the following:
index—Index into the timed[] array, where last times were stored.
range—Number of entries within the timed[] array
timed[range] —Recently saved time events, each consisting of the following:
grandTime—A previously sampled grandmaster synchronized time.
extraTime—The residual error associated with the sampled grandTime value.
stationTime—The station-local time affiliated with the sampled grandTime value.
frameCount—A consistency-check identifier that isincremented on each transmission.
lastTime—The last transmit time, saved for timeout purposes.
rxSaved—A copy of the last received GrandSync parameters.
synclnterval—The expected interval between successive time-sync transmissions.
txSnapCount—The frameCount val ue associated with the last transmission.
txlocal Time—T he stationTime val ue associ ated with the last transmission.

8.4.3.5 rsPtr: A pointer to service-data-unit portion of rxinfo storage.
8.4.3.6 rxInfo: Storage for received time-sync PDUs from the GrandSync entity, comprising:
destination_address, source_address, service data_unit
Where service_data_unit comprises:
extraTime, function, grandTime, hopCount,
precedence, protocol Type, local Time, synclnterval, version
8.4.3.7 rxPtr: A pointer to rxinfo storage.
8.4.3.8 rxSyncl nterval: Represents the sync-interval associated with this station’s clock-slave port.
8.4.3.9 stationTime: See 6.3.3.
8.4.3.10 ssPtr: A pointer to the service-data-unit portion of the ePtr->rxSaved storage
8.4.3.11 sxPtr: A pointer to the ePtr->rxSaved storage.
8.4.3.12 tsPtrl A pointer to service-data-unit portion of txInfo storage.
8.4.3.13 txInfo: Storage for to-be-transmitted time-sync PDUs, comprising:
destination_address, source_address, service data_unit
Where service_data_unit comprises:
extraTime, function, frameCount, grandTime, hopCount, local Time,
precedence, protocol Type, thatRxTime, thatTxTime, version

8.4.3.14 txPtr: A pointer to txinfo storage.

8.4.3.15 txSynclinterval: A variable that represents the sync-interval associated with this clock-master port.

Contribution from: dvj@alum.mit.edu.

This is an unapproved working paper, subject to change. 68

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

8.4.4 State machine routines

8.4.4.1 Dequeue(queue): See 6.3.4.

8.4.4.2 Enqueue(queue, info): See 6.3.4.

8.4.4.3 NextSaved(btPtr, ratel nterval, grandTime, extaTime, thisTime): See 7.5.4.
8.4.4.4 NextTimed(btPtr, stationTime, backl nterval): See 7.5.4.

8.4.4.5 SationTime(entity): See 7.3.3.

8.4.4.6 ClockSyncSdu(info): See 6.3.4.

8.4.5 TimeSyncTxEfdx state machine table

The TimeSyncTxEfdx state machine includes a media-dependent timeout, which effectively disconnects a
clock-slave port in the absence of received clockSync frames, asillustrated in Table 8.3.

Contribution from: dvj@alum.mit.edu.
69 This is an unapproved working paper, subject to change.

AVB BRIDGING

JggDvj20050416/D0.718

Table 8.3—TimeSyncTxEfdx state machine table

2007-08-05

Current

Next

state

condition

Row

action

state

START

(rxInfo = Dequeue(Q_MS_REQ))
I=NULL

TEST

(stationTime — ePtr->lastTime)
>T10ms

ePtr->lastTime = stationTime;

SEND

(cxInfo = Degqueue(Q_TX_SYNC))
I=NULL

ePtr->txloca Time = cxPtr->local Time;
ePtr->txSnapCount = cxPtr->frameCount;

START

stationTime = StationTime(ePtr);
rxSynclnterval = ssPtr->syncinterval;
txSyncinterval = ePtr->synclnterval;
backinterval =

(3* rxSynclinterval + txSyncinterval) / 2;
ratelnterval =

backinterval + (3 * txSyncinterval) / 2;

TEST

ClockSyncSdu(rsptr)

ePtr->rxSaved = rxInfo;
NextSaved(btPtr, ratelnterval ,rsPtr->grandTime,
rsPtr->extraTime, rsPtr->local Time);

START

Enqueue(Q_ES REQ, rxPtr);

SEND

dPtr = PortPair(ePtr);
nextTimes =

NextTimed(btPtr, stationTime, backlnterval);

ePtr->synclnterval, ePtr->timed);
ePtr->txFrameCount =

(ePtr->txSnapCount + 1) % COUNT;
txPtr->destination_address =

sxPtr->destination_address;
txPtr->source_address = sxPtr->source_address;
tsPtr->protocol | D = ssPtr->protocol I D;
tsPtr->function = ssPtr->function;
tsPtr->version = ssPtr->version;
tsPtr->hopCount = ssPtr->hopCount;
tsPtr->frameCount = ssPtr->frameCount;
tsPtr->grandTime = nextTimes.grandTime;
tsPtr->extralime = nextTimes.extraTime;
tsPtr->local Time = ePtr->txlocal Time;
tsPtr->that TxTime = dPtr->thisTxTime;
tsPtr->thatRxTime = dPtr->thisRxTime;
Enqueue(Q_ES REQ, txPtr);

START

Row 8.3-1

: Relayed frames are further checked before being processed.

Row 8.3-2: Transmit periodic clockSync frames.
Row 8.3-3: Update snapshot values on clockSync frame departure.
Row 8.3-4: Wait for the next change-of-state.

Row 8.3-5: The clockSync PDUs are checked further.
Row 8.3-6: The non-clockSync PDUs are passed through.

Row 8.3-7: Active clockSync frames are cable-delay compensated and passed through.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

70

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DD BWWWWWWWWWWNDNNDNNNNNNNREPREPRRPEPRPEPEPRERPRER
NPOOONOUOITAWNRPRPOOONOURRWNPOOONOOUIEAWNLPE

SESEELEEGERE

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

9. Wireless state machines

EDITOR DVJNOTE—This clause is based on indirect knowledge of the 802.11v specifications, as interpreted by the
author, and have not been reviewed by the 802.1 or 802.11v WGs. The intent was to provide a forum for evaluation of
the media-independent MAC-relay interface, while aso triggering discussion of 802.11v design details. As such, this
clause is highly preliminary and subject to change.

Specificaly, we have not resolved the grouping of information that is transferred through the service interfaces
(currently written as all) and the information that would be transferred through standard MAC frames (currently written
as none).

9.1 Overview

This clause specifies the state machines that support wireless 802.11v-based bridges. The operations are
described in an abstract way and do not imply any particular implementations or any exposed interfaces.
There is not necessarily a one-to-one correspondence between the formal specification and the interfacesin
any particular implementation.

9.1.1 Link-dependent indications
The wireless 802.11v TimeSyncR11v state machines are provided with MAC service-interface parameters,

as illustrated within Figure 9.1. These link-dependent indications can be different for bridge ports attached
to alternative media.

GrandSync CLOCK_SYNC.response
i CLOCK_SYNC.indication
AL
/
1y
TS
A ~localTime~ c i
MS —

MAC relay ﬁx service interfaces

ISS ISS
802.3 MAC 802.3 MAC
— PHY y
/LAN/

Figure 9.1—R11v interface model

The rxSync and txSync indications are localized communications between the MAC-and-PHY and are not
directly visible to the a TimeSync state machines. Client-level interface parameters include the timing
information, based on the formats illustrated within Figure 9.2.

‘ seconds | nanoSeconds ‘ ‘ ticks
||| |||||||||||||||||||||||||||||||
grandeTime fastTime

Figure 9.2—Formats of wireless-dependent times

Contribution from: dvj@alum.mit.edu.
71 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

9.1.2 Service interface overview

A sequence of 802.11v TimeSync service interface actions is illustrated in Figure 9.3 and summarized
below:

a) A periodic clock-dave trigger initiates the initial MLME_PRESENCE_REQUEST.request action.

b) The clock-master gets an MLME_PRESENCE_REQUEST.indication upon request receipt.
The clock-slave gets an MLME_PRESENCE_REQUEST.confirm when the ack is returned.

¢) The clock-master processes the MLME_PRESENCE_REQUEST.indication parameters, returning them
in MLME_PRESENCE _RESPONSE.request parameters for the clock-slave station.

d) The clock-slave gets an MLME_PRESENCE_RESPONSE.indication upon response receipt.
The clock- master gets an MLME_PRESENCE_RESPONSE.confirm when the ack is returned.

Clock-master Clock-slave
responder requester

request tl |« — - MLME_PRESENCE_REQUEST.request
2 (@]
la—
MLME_PRESENCE_REQUEST.indication - — -3\(b)

UEST t
Provides: t2 and 3. ack 4] _ p MLME_PRESENCE_REQUEST.confirm

' Provides: t1 and t4.
|

MLME_PRESENCE_RESPONSE.request - — | response
Supplied: t2, t3—t2 and grandeTime. [(c) o
PP 9 ™| _ » MLME_PRESENCE_RESPONSE.indication
(d)y—" Provides: t2, t3—t2 and grandeTime.
. [4—ack
MLME_PRESENCE_RESPONSE.cONnfirm e — |
increasing
v time v

Figure 9.3—802.11v time-synchronization interfaces
The properties of these service interfaces are summarized below:

MLME_PRESENCE_REQUEST.request

Generated periodically by the clock-slave entity.

Triggers a (Figure 9.3a) request to fetch clock-master resident timing parameters.
MLME_PRESENCE_REQUEST.indication

Generated after receiving a (Figure 9.3a) request.

Provides t2 and t3 timing information to the clock-master entity.
MLME_PRESENCE_REQUEST.confirm

Generated after the (Figure 9.3b) request-ack is returned.

Provides timel and time4 timing information to the clock-slave entity.

Confirms compl etion of the request transmission.

MLME_PRESENCE_RESPONSE.request

Generated shortly after processing areceived (Figure 9.3a) request

Triggers a (Figure 9.3-c) response to update clock-slave resident timing parameters.
MLME_PRESENCE_RESPONSE.indication

Generated in response to receiving a (Figure 9.3c) response.

Provides time2, time3—time2, and grandeTime information to the clock-save entity.
MLME_PRESENCE_RESPONSE.confirm

Generated after the (Figure 9.3d) ack is returned.

Confirms compl etion of the response transmission.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 72

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

9.2 Service interface definitions
9.2.1 MLME_PRESENCE_REQUEST.request
9.2.1.1 Function

The service interface triggers the sending of a (Figure 9.3a) request from the clock-slave requester to the
clock-master responder. A snapshot of the transmit timeis also saved for deferred transmission/processing.

9.2.1.2 Semantics of the service primitive
The semantics of the primitives are as follows:

MLME_PRESENCE_REQUEST.request {
other_arguments /I Arguments for other purposes

}

9.2.1.3 When generated
Generated periodically by areceive TS port as the first phase of atime-sync information transfer.
9.2.1.4 Effect of receipt

Upon receipt by atransmit TS port, an MLME_PRESENCE_REQUEST.indication is invoked; times of the arriv-
ing (Figure 9.3a) request and departing (Figure 9.3b) request-ack are both passed within this indication.

9.2.2 MLME_PRESENCE_REQUEST.indication

9.2.2.1 Function

The receipt of a (Figure 9.3a) reguest from the clock-slave requester triggers the return of an (Figure 9.3b)
request-ack from the clock-master port. The transfer of an MLME_PRESENCE_REQUEST.indication to the
clock-master provides snapshots of the (Figure 9.3a) request-receipt time as well as the following (Figure
9.3b) ack-transmit time.

9.2.2.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MLME_PRESENCE REQUEST.indication {

other_arguments, /I Arguments for other purposes
time t2, /I Arrival time of request
time t3 /I Departure time of request-ack

}

9.2.2.3 When generated
Generated by the receipt of a (Figure 9.3a) request during the first phase of atime-sync transfer.
9.2.2.4 Effect of receipt

Upon receipt, the times of the arriving (Figure 9.3a) request and (Figure 9.3b) request-ack are both saved for
deferred processing.

Contribution from: dvj@alum.mit.edu.
73 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

9.2.3 MLME_PRESENCE_REQUEST.confirm
9.2.3.1 Function
The receipt of a (Figure 9.3b) request-ack at the clock-dave requester triggers the invocation of the
MLME_PRESENCE REQUEST.confirm service interface. The transmit time of the original (Figure 9.3a) request
and the receive time of the recent (Figure 9.3b) request-ack are both provided.
9.2.3.2 Semantics of the service primitive
The semantics of the primitives are as follows:

MLME_PRESENCE_REQUEST.indication {

other_arguments, /I Arguments for other purposes

time t1, /I Departure time of request
time t4 /I Arrival time of confirm

}

9.2.3.3 When generated
Generated by the receipt of a (Figure 9.3b) request-ack during the initial phases of atime-sync transfer.
9.2.3.4 Effect of receipt

Upon receipt, the transmit time of the previous (Figure 9.3a) request and receive time of the recent
(Figure 9.3b) request-ack are both saved for deferred processing.

9.2.4 MLME_PRESENCE_RESPONSE.request

9.2.4.1 Function

After the initiadl phases, a clock-slave requester triggers the transfer of an
MLME_PRESENCE_RESPONSE.request. The transmit time of the original (Figure 9.3a) request, the transmit
time of the recent (Figure 9.3b) request-ack, and the current time-sync related information are all included in
the service primitives.

9.2.4.2 Semantics of the service primitive

The semantics of the primitives are as follows:

MLME_PRESENCE_RESPONSE.request {
other_arguments, /I Arguments for other purposes

time_t2 /I Arrival time of request
time t32, /I Turn-round time
grande_time /I Current media-dependent time

}

9.2.4.3 When generated

Triggered at the clock-master by the servicing of an MLME_PRESENCE_REQUEST.indication, indicating the
completion of theinitial time-sync phase.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 74

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

9.2.4.4 Effect of receipt

Upon receipt, an MLME_PRESENCE_RESPONSE.indication is invoked, to provide the clock-dave with suffi-
cient information to send a GrandSync PDU.

9.2.5 MLME_PRESENCE_RESPONSE.indication
9.2.5.1 Function

Additional information is provided to a clock-slave port. Along with previous information (saved earlier for
deferred processing), the clock-slave has sufficient information to send a GrandSync PDU.

9.2.5.2 Semantics of the service primitive
The semantics of the primitives are as follows:

MLME_PRESENCE_RESPONSE.indication {
other_arguments, /I Arguments for other purposes

time_t2 /I Arrival time of request
time t32, /I Turn-round time
level _time, /I Current media-dependent time

}

9.2.5.3 When generated

Triggered at the clock-dave by the receipt of a (Figure 9.3c) response, nearing the completion of the final
time-sync phases.

9.2.5.4 Effect of receipt

Upon receipt, the clock-dave is provided with sufficient information to send a GrandSync PDU.
9.2.6 MLME_PRESENCE_RESPONSE.confirm

9.2.6.1 Function

Confirmation is provided to the clock-master, confirming clock-dave has sufficient information to send a
GrandSync PDU.

9.2.6.2 Semantics of the service primitive
The semantics of the primitives are as follows:

MLME_PRESENCE_RESPONSE.confirm {
other_arguments, /I Arguments for other purposes

}

9.2.6.3 When generated

Triggered at the clock-master by the receipt of a (Figure 9.3-d) response-ack, at the completion of the final
time-sync phases.

Contribution from: dvj@alum.mit.edu.
75 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

9.2.6.4 Effect of receipt

Upon receipt, the clock-master is provided with atime-sync success status.

9.3 TimeSyncRxR11v state machine

9.3.1 Function

The TimeSyncRxR11v state machine consumes primitives provided by the MAC service interface and (in

response) generates frames for the GrandSync entity.

9.3.2 State machine definitions

9.3.21 NULL: A constant that (by design) cannot be confused with avalid value.

9.3.2.2 queue values: Enumerated values used to specify shared FIFO queue structures.
Q_MS _IND—Queue identifier associated with the GrandSync receive port.
Q_S1 REQ—Queue identifier for MLME_PRESENCE_REQUEST.request parameters.
Q_S1_CON—Queue identifier for MLME_PRESENCE_REQUEST.confirm parameters.
Q_S2 IND—Queueidentifier for MLME_PRESENCE_RESPONSE.indication parameters.

9.3.3 State machine variables

9.3.3.1 backTime: A variable representing the lapsed time since the remote request-ack transmission.

9.3.3.2 conl: Values returned within the MLME_PRESENCE _REQUEST.request service primitive:
time_t1—A local-timer snapshot at the (Figure 9.3a) request transmission.
time_t4—A local-timer snapshot at the (Figure 9.3b) request-ack reception.

9.3.3.3ind2: Values returned within the MLME_PRESENCE_RESPONSE.indication service primitive:
grandeTime—A remote snapshot of grandTime at the request-ack transmission.
time_t2—A remote-timer snapshot at the (Figure 9.3a) request reception.
time_t3—A remote-timer snapshot at the (Figure 9.3b) request-ack transmission.

9.3.3.4 ePtr: Pointsto entity-specific storage, comprising the following:
lastTime—The time of the last request transmission, for pacing periodic transmissions.
roundTrip—Saved (conl.time t4—conl.time t4) value.
rsinfo—Saved grandmaster selection values.
rxFastTimed—Saved args2.fastTimed value.
local Time—Saved conl.time t4 value.
synclnterval—The sync-interval associated with this clock-slave port.
9.3.3.5 grandTime: An variable representing the normalized/synchronized grandmaster time.
9.3.3.6 lapseTime: An variable representing the lapsed time since the request-ack reception.
9.3.3.7 local Time: A variable representing the calibrated one-way link delay.
9.3.3.8 radioDelay: An variable representing the round-trip transmission delay.

9.3.3.9 radioTime: An variable representing the current time, in media-specific units.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

76

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

GRES

o1 o1 U1 01 U1
LERLEEELS

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

9.3.3.10 reql: A set of values returned within the MLME_PRESENCE_REQUEST.request service primitive,
consisting of other (unrelated) parameters.

9.3.3.11 stationTime: See 6.3.3.
9.3.3.12 rsPtr: A pointer to the rsinfo portion of ePtr referenced storage.
9.3.3.13 turnRound: Represents the difference between local time-sync transmit and receive times.
9.3.3.14 turnStart: An variable representing the remote time-sync transmit time.
9.3.3.15 txInfo: Storage for information sent to the GrandSync entity, comprising:
destination_address, source_address, service data_unit
Where service_data_unit comprises.
extraTime, sourcePort, function, grandTime, hopCount,
local Time, protocol Type, precedence, synclnterval, version
9.3.3.16 txPtr: A pointer to txinfo storage.
9.3.4 State machine routines
9.3.4.1 Dequeue(queue): See 6.3.4.
9.3.4.2 Enqueue(queue, info): See 6.3.4.
9.3.4.3 R11vTime(entity): Returnsthe local media-dependent free-running timer.
9.3.4.4 SourcePort(entity): See 7.3.3.

9.3.4.5 SationTime(entity): See 6.3.4.

9.3.4.6 ClockSyncSdu(info): See 6.3.4.

Contribution from: dvj@alum.mit.edu.
77 This is an unapproved working paper, subject to change.

AVB BRIDGING

9.3.5 TimeSyncRxR11v state table

JggDvj20050416/D0.718

2007-08-05

The TimeSyncRxR11v state machine consumes MA C-provided service-primitive information and forwards
adjusted frames to the MAC-relay function, asillustrated in Table 9.1.

Table 9.1—TimeSyncRxR11v state machine table

Current

Next

state

condition

Row

action

state

START

(stationTime — ePtr->lastTime)
> ePtr->syncinterval

ePtr->lastTime = stationTime;
reql = SetupReql();
Enqueue(Q_S1 REQ, reql);

(conl = Dequeue(Q_S1_CON))
I= NULL

ePtr->local Time = conl.time_t4;
ePtr->roundTrip =
conl.time t4 —conl.time t1;

START

(ind2 = Dequeue(Q_S2_IND))
I=NULL

turnStart = rxPtr->time_t2;
turnRound = rxPtr->time_t32;

SINK

stationTime = StationTime(ePtr);
radioTime = R11vTime(ePtr);

START

SINK

linkDelay= (ePtr->roundTrip—turnRound) / 2;
lapseDelay= (radioTime — ePtr->loca Time);
backTime =

R1lvToStation(lapseDelay + linkDelay);
grandTime =

GrandeToGrand(rxptr->grandeTime);
txPtr->destination_address= AVB_MCAST;
txPtr->source_address= TBD;
tsPtr->protocol Type = AVB_TYPE;
tsPtr->function = AVB_FUNCTION;
tsPtr->version = AVB_VERSION;
tsPtr->precedence = rsPtr->precedence;
tsPtr->sourcePort = SourcePort(ePtr);
tsPtr->hopCount = rsPtr->hopCount;
tsPtr->grandTime = grandTime;
tsPtr->extraTime = rsPtr->extraTime;
tsPtr->local Time = stationTime — backTime;
Enqueue(Q_MS_IND, txPtr);

START

Row 9.1-1: Requests are sent at a periodic rate.

Row 9.1-2: Savethe timesthat are available when the request-ack returns.

Row 9.1-3: Capture the parameters when the MLME_PRESENCE_RESPONSE.indication returns.

Row 9.1-4: Update times while waiting for state changes.

Row 9.1-5: Send accumul ated/supplemented information to the GrandSync entity.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

78

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

GRES

o1 o1 U1 01 U1
LERLEEELS

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

9.4 TimeSyncTxR11lv state machine
9.4.1 Function

The TimeSyncTxR11v state machine consumes GrandSync-generated frames, to maintain estimates of the
current (grandTime,stationTime} and {errorTime,stationTime} affiliations. The TimeSyncTxR11lv state
machine al so provides time-synchronization information through the MAC service interface, in response to
clock-dlave initiated requests.

9.4.2 State machine definitions
9.4.21 NULL: A valuethat (by design) cannot be confused with avalid value.

9.4.2.2 queue values: Enumerated values used to specify shared FIFO queue structures.
Q_MS REQ—The queue identifier associated with frames sent from the GrandSync entity.
Q_S1 IND—Queueidentifier for MLME_PRESENCE_REQUEST.indication parameters.
Q_S2 REQ—Queue identifier for MLME_PRESENCE_RESPONSE.request parameters.
Q_S2 ACK—Queue identifier for MLME_PRESENCE_RESPONSE.confirm parameters.

9.4.3 State machine variables

9.4.3.1 backinterval: A variable that represents the back-interpolation interval for transmit-time affiliations.
9.4.3.2 btPtr: A pointer to the ePtr->baseTimer storage.

9.4.3.3 con2: Values returned within the MLME_PRESENCE_RESPONSE.confirm service primitive:

9.4.3.4 ePtr: A pointer to the entity-specific storage containing the following:
baseTimer—Recently saved time events, each consisting of the following:
index—Index into the timed[] array, where last times were stored.
range—Number of entries within the timed[] array
timed[range] —Recently saved time events, each consisting of the following:
grandTime—A previously sampled grandmaster synchronized time.
extraTime—The residual error associated with the sampled grandTime value.
stationTime—The station-local time affiliated with the sampled grandTime value.
lastTime—The last transmit time, saved for pacing transmissions.
rxSaved—A copy of the last received GrandSync parameters.
synclnterval—The expected interval between successive time-sync transmissions.

9.4.3.5ind1: Values returned within the MLME_PRESENCE_REQUEST.indication service primitive:
time_t2—A local snapshot at the time of (Figure 9.3a) request reception.
time_t3—A local snapshot at the time of (Figure 9.3b) request-ack transmission.

9.4.3.6 radioTime: A variable representing the media-dependent station-local time.

9.4.3.7 ratel nterval: A variable representing the time interval over which the grandTime rate is measured.

9.4.3.8 req2: Values provided to the MLME_PRESENCE_REQUEST.request service primitive:
grandeTime—A local snapshot of the grandTime as the request-ack transmission.
time_t2—Previoudly saved ind1.time_t2 value.
time_t32—Previously saved (indl.time_t3-indl.time t2) value.

9.4.3.9 rsPtr: A pointer to service-data-unit portion of rxinfo storage.

Contribution from: dvj@alum.mit.edu.
79 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

9.4.3.10 rxInfo: Storage for received time-sync PDU from the GrandSync entity, comprising:
destination_address, source_address, service data_unit
Where service_data_unit comprises.
extraTime, function, grandTime, hopCount,
precedence, protocol Type, local Time, synclnterval, version
9.4.3.11 rxPtr: A pointer to rxinfo storage.
9.4.3.12 rxSyncl nterval: Represents the sync-interval associated with this station’s clock-slave port.
9.4.3.13 ssPtr: A pointer to the service-data-unit portion of the ePtr->rxSaved storage
9.4.3.14 stationTime: A shared value representing current time. There is one instance of this variable for
each station. Within the state machines of this standard, thisis assumed to have two components, as follows:
seconds—An 8-bit unsigned value representing seconds.
fraction—An 40-bit unsigned value representing portions of a second, in units of 240 second.
9.4.3.15 sendTime: Representsthe local time estimate of the remote request-ack transmission time.
9.4.3.16 sxPtr: A pointer to the ePtr->rxSaved storage.
9.4.3.17 timeT2: A variable that represents the request receipt time.
9.4.3.18timeT3: A variable that represents the request-ack transmit time.
9.4.3.19 txSynclnterval: A variable that represents the sync-interval associated with this port.
9.4.4 State machine routines
9.4.4.1 Dequeue(queue): See 6.3.4.
9.4.4.2 Enqueue(queue, info): See 6.3.4.
9.4.4.3 NextSaved(btPtr, ratel nterval, grandTime, extaTime, thisTime): See 7.5.4.
9.4.4.4 NextTimed(btPtr, stationTime, backl nterval): See 7.5.4.
9.4.4.5 SationTime(entity): See 7.3.3.

9.4.4.6 ClockSyncSdu(info): See 6.3.4.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 80

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718

2007-08-05

9.4.5 TimeSyncTxR11v state table

WHITE PAPER CONTRIBUTION TO

NOTE—This state machine is preliminary; sequence timeouts have not been considered.

The TimeSyncTxR11v state machine includes a media-dependent timeout, which effectively disconnects a
clock-dlave port in the absence of received timedSync frames, asillustrated in Table 9.2.

Table 9.2—TimeSyncTxR11v state table

Current . Next
(o]
. vd .
state condition action state
START | (rxInfo = Dequeue(Q_MS REQ)) 1| — SINK
I=NULL
(ind1 = Dequeue(Q_S1_IND)) 2 | timeT2 =indltime_t2; SEND
I=NULL timeT3 = ind1.time_t3;
(con2 = Dequeue(Q_S2_CON)) 3| — START
I=NULL
— 4 | stationTime = StationTime(ePtr); START
radioTime = R11vTime(ePtr);
rxSyncinterval = ssPtr->synclnterval;
txSyncinterval = ePtr->syncinterval;
backinterval =
(3* rxSynclinterval + txSynclnterval) / 2;
ratel nterval =
backinterval + (3 * txSyncinterval) / 2;
SINK | ClockSyncSdu(rsPtr) 5 | ePtr->rxSaved = rxInfo; SERVE
NextSaved(btPtr, ratelnterval, rsPtr->grandTime,
rsPtr->extraTime, stationTime);
— 6 | Enqueue(Q_ES REQ, rxPtr); START
SEND | — 7 | sendTime = stationTime— WAIT2
((radioTime —timeT2) * RADIO_TIME);
nextTimes =
NextTimed(btPtr, stationTime, backInterval);
reg2.time_t2 =timeT2;
reg2.time_t32 = timeT3 —timeT2;
reg2.grandeTime =
GrandToR11v(nextTimes.grandTime);
/I 1f possible for extraTime.
reg2.extralime = nextTimes.extralime;
Enqueue(Q_S2_REQ), reg2);
Row 9.2-1: GrandSync generated frames are further checked before being processed.
Row 9.2-2: Save parameters from a service-interface primitive call.
Row 9.2-3: The final acknowledge provides a completion indication.
Row 9.2-4: Wait for the next change-of-state.
Row 9.2-5: Parameters from clockSync PDUs are saved.
Row 9.2-6: The contents of non-clockSync PDUs are passed through.
Row 9.2-7: Provide parameters for the MLME_PRESENCE _RESPONSE.response interface.
Contribution from: dvj@alum.mit.edu.
81 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

10. Ethernet passive optical network (EPON) state machines

NOTE—This clause is based on indirect knowledge of the Ethernet-PON (EPON) specifications, as interpreted by the
author, and have not been reviewed by the 802.1 or 802.3 WGs. The intent was to provide a forum for evaluation of the
GrandSync interfaces, while also triggering discussion of EPON design details. As such, the contents are highly
preliminary and subject to change.

10.1 Overview

This clause specifies the state machines that support Ethernet passive optical network (EPON) based
bridges. The operations are described in an abstract way and do not imply any particular implementations or
any exposed interfaces. There is not necessarily a one-to-one correspondence between the formal specifica-
tion and the interfaces in any particular implementation.

The EPON topology, asillustrated in Figure 10.1.

‘ optical line terminal (OLT) ‘

N 1
| — — |

‘ onu[0] ‘ ‘ onu[l] ‘ ‘ onu[N-2] ‘ ‘ onu[N-1] ‘

optical network units (ONU)

Figure 10.1—EPON topology

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 82

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

10.1.1 Link-dependent indications

The TimeSyncEpon state machines have knowledge of network-local synchronized ticksTime timers. With
this knowledge, the TimeSyncEpon state machines can operated on frames received from the LLC, as
illustrated in Figure 10.2. Link-dependent indications could be required for bridge ports attached to alterna-
tive media

GrandSync CLOCK_SYNC.response
i CLOCK_SYNC.indication
/
1y
TS TS TimeSyncRxEpon * * TimeSyncTxEpo
~localTime~
LLC LLC
—MS MS
MAC relay

ISS ISS
EPON MAC ~ticksTime~ EPON MAC

PHY
/LAN/

Figure 10.2—EPON interface model

The local Time values are represented as timers that are incremented once every 16 nsinterval, asillustrated
on the left side of Figure 10.3. Each synchronized local timer is roughly equivalent to a 6-bit sec (seconds)
field and a 26-bit fraction (fractions of second) field timer, asillustrated on the right side of Figure 10.3.

‘ nanoseconds16 ‘ sec fraction
IIIIIII|IIII_III|I_IIIIII|IIIIIII IIIIIIIII!IIlIIIIIIIl_IIIIIIIlI
tickTime (approximate equivalent)

Figure 10.3—Format of EPON-dependent times

The EPON MAC is supplied with frame transmit/receive snapshots, but these are transparent-to and
not-used-by the TimeSync state machine. Instead, these are used to synchronize the ticksTime values in
associated MACs and the TimeSyncEpon state machines have access to these synchronized ticksTime val-
ues.

10.1.2 Link-delay compensation

The synchronized-clock accuracies are influenced by the transmission delays between ports. To compensate
for these transmission delays, the recelve port is normaly responsible for compensating
{grandTime, ticksTime} affiliations by the (assumed to be constant) frame transmission delay.

The EPON MAC provides access to a subnet-synchronized media-dependent ticksTime timer. Thus, the
{grandTime, ticksTime} affiliation specified the transmitter remains valid within the receiver and
transmission-delay compensation (in this sense) is unnecessary.

However, each time-sync related GrandSync PDU includes an {grandTime, stationTime} affiliation,
wherein stationTime represents a recent snapshot of a shared station-local clock. To provide such an
affiliation, the transmission delay (measured as a ticksTime difference) is scaled and subtracted from the
stationTime that is sampled when the conversion is performed. Thus, no additional receiver snapshot
hardware is required.

Contribution from: dvj@alum.mit.edu.
83 This is an unapproved working paper, subject to change.

AVB BRIDGING

JggDvj20050416/D0.718

10.2 timeSyncEpon frame format

2007-08-05

The timeSyncEpon frames facilitate the synchronization of neighboring clock-master and clock-slave sta-
tions. The frame, which is normally sent at 10 ms intervals, includes time-snapshot information and the
identity of the network’s clock master, asillustrated in Figure 10.4. The gray boxes represent physical layer
encapsulation fields that are common across Ethernet frames.

®w N R P PPN

N P PN

10

4

4

8

4

da

sa

protocolType

function

version

frameCount

reserved

priority

clockiD

hopCount

period

flags

utcOffset

grandTime

extraTime

ticksTime

reserved

fcs

64 bytes total

— Destination MAC address

— Source MAC address
— Distinguishes AVB frames from others

— Distinguishes clockSync from other AVB frames

— Distinguishes between clockSync frame versions
— A (sequence number) count of time-sync frames
—Reserved for future definitions

— Priority for grandmaster selection

— ldentify of grandmaster station

— Hop count from the grandmaster
— Specifies the clockSync transmission interval
— Warnings of impending state changes

— Leap seconds value

— Transmitter grand-time snapshot (1 cycle delayed)
— Back-prediction error for grandTime computation
— Transmitter local-time snapshot (1 cycle delayed)

— Reserved for future extensions to this standard

— Frame check sequence

Figure 10.4—timeSyncEpon frame format

The 48-bit da (destination address), 48-bit sa (source address) field, 16-bit protocol Type, 8-bit function,
8-bit version, 2-byte priority, 8-byte clocklD, 2-byte hopCount, 1-byte priority, 1-byte flags, 2-byte
utcOffset, 80-bit grandTime, and 32-bit extraTime field are specified in 6.2.1.2..

10.2.1 ticksTime: A value representing local timein units of a 16 nstimer ticks, asillustrated in Figure 10.5.

MSB

LSB

ticks

I 1
32 bits

Figure 10.5—tickTime format

Contribution from: dvj@alum.mit.edu.

This is an unapproved working paper, subject to change.

84

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

10.3 TimeSyncRxEpon service interface primitives
10.3.1 ES_UNITDATA.indication
10.3.1.1 Function

Provides the TimeSyncRxEpon entity with clock-synchronization parameters derived from arriving
time-sync frames.

10.3.1.2 Semantics of the service primitive
The semantics of the primitives are as follows:

ES UNITDATA.indication {

destination_address, /I Destination address

source_address, // Optional

priority, /I Forwarding priority

service data unit, /I Delivered content

{ /I Contents of the service data_unit
protocol Type, /I Distinguishes AVB frames from others
function, /I Distinguishes between clockSync and other AV B frames
version, /I Distinguishes between clockSync frame versions
priority, /I Precedence for grandmaster selection
clockiD, /I Precedence for grandmaster selection
hopCount, I/ Distance from the grandmaster station
portlD, /I ldentifies the source port
interval, /I Nominal clockSync transmission interval
flags, /I Control flags
utcOffset, /I Difference between UTC and TAI timescales
grandTime, /I Global-time snapshot (1-cycle delayed)
extraTime, /I Accumulated grandTime error
ticksTime /I Local-time snapshot (1-cycle delayed)

}

}

The parameters of the ES_UNITDATA.indication are described as follows:
The 48-bit destination_address, 48-bit source_address, and 8-bit priority field are specified in 6.2.1.2.

The service_data unit consists of subfields; for content exchanged with the GrandTime protocol entity,
these fields include the following.

The 16-bit protocolType, 8-bit function, 8-bit version, 14-byte precedence, 80-bit grandTime,
32-hit extraTime, and 8-bit hopCount fields are specified in 6.2.1.2.

10.3.1.2.1 frameCount: An 8-bit consistency-check field that increments on successive frames.

10.3.1.2.2 ticksTime: A 32-hit field that specifies the local free-running time within this subnet, when the
previous clockSync frame was received (see 10.2.1).

Contribution from: dvj@alum.mit.edu.
85 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

10.3.1.3 When generated

The service primitive is generated upon the receipt of a time-sync related frame delivered from the MAC.
The intent is to facilitate reformatting and snapshot-time adjustment before the content of that frame is
delivered to the ClockMaster and TS entities.

10.3.1.4 Effect of receipt

The service primitive invokes processing of time-sync related content and forwarding of unrelated content.

For time-sync related content, the processing included reformatting and compensation for receive-link
transmission delays.

10.4 TimeSyncRxEpon state machine

10.4.1 Function

The TimeSyncRxEpon state machine is responsible for receiving MAC-supplied frames, converting their
media-dependent parameters, and sending normalized MAC-relay frames. The sequencing of this state
machine is specified by Table 10.1; details of the computations are specified by the C-code of Annex G.
10.4.2 State machine definitions

10.4.2.1 NULL: A valuethat (by design) cannot be confused with avalid value.

10.4.2.2 queue values: Enumerated values used to specify shared FIFO queue structures.

Q_MS IND—Associated with the GrandSync entity (see 6.3.2).
Q_ES IND—The queue identifier associated with the received MAC frames.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 86

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

10.4.3 State machine variables

10.4.3.1 ePtr: A pointer to a entity-specific data structure comprising the following:
synclnterval—The expected interval between time-sync frame transmissions.

10.4.3.2 backTime: Represents the time lapse between transmission of reception of the clockSync frame.
10.4.3.3 rsPtr: A pointer to the service-data-unit portion of the rxinfo storage.
10.4.3.4 rxInfo: A storage location for received service-interface parameters, comprising:
destination_address, source_address, service data_unit
Where service_data_unit comprises.
extraTime, function, grandTime, hopCount,
precedence, protocol Type, ticksTime, version
10.4.3.5 rxPtr: A pointer to the rxinfo storage location.
10.4.3.6 tsPtr: A pointer to the service-data-unit portion of the txinfo storage.
10.4.3.7 txInfo: A storage location for to-be-transmitted cLock _syNc.indication parameters, comprising:
destination_address, source_address, service data unit
Where service_data_unit comprises:
extraTime, function, grandTime, hopCount, precedence,
protocol Type, local Time, ticksTime, version
10.4.3.8 txPtr: A pointer to the txInfo storage location.
10.4.4 State machine routines
10.4.4.1 Dequeue(queue): See 6.3.4.
10.4.4.2 Enqueue(queue, info): See 6.3.4.
10.4.4.3 SourcePort(entity): See 7.3.3.

10.4.4.4 TicksTime(entity): Returns the station’s shared media-dependent subnet-synchronized timer.
This 32-bit timer is incremented once at the end of each 16 nsinterval.

10.4.4.5 TicksToTime(ticks): Returns the stationTime duration corresponding to the argument time duration.

10.4.4.6 ClockSyncSdu(info): See 6.3.4.

Contribution from: dvj@alum.mit.edu.
87 This is an unapproved working paper, subject to change.

AVB BRIDGING

JggDvj20050416/D0.718

10.4.5 TimeSyncRxEpon state machine table

2007-08-05

The TimeSyncRxEpon state machine associates PHY-provided sync information with arriving clockSync
frames and forwards adjusted frames to the MAC-relay function, asillustrated in Table 8.2.

Table 10.1—TimeSyncRxEpon state machine table

Current . Next
o
. [vd .
state condition action state
START | (rxInfo= 1| — TEST
Dequeue(Q RX_MAC)) != NULL
— 2 | stationTime = StationTime(ePtr); START
ticksTime = EponTime(ePtr);
TEST | ClockSyncSdu(rsPtr) 3 | *rxPtr =rxiInfo; SYNC
— 4 | Enqueue(Q_MS IND, txInfo); START
SYNC | rsPtr->hopCount != LAST_HOP 5 | backTime = ticksTime — rsPtr->ticksTime); START
compTime=
stationTime —TicksToTime(backTime);
txPtr->destination_address =
rxPtr->destination_address;
txPtr->source_address = rxPtr->source_address;
tsPtr->protocol Type = rsPtr->protocol Type;
tsPtr->function = rsPtr->function;
tsPtr->version = rsPtr->version;
tsPtr->precedence = rsPtr->precedence;
tsPtr->grandTime = rsPtr->grandTime;
tsPtr->extralime = rsPtr->extralime;
tsPtr->local Time = compTime;
tsPtr->sourcePort = SourcePort(ePtr);
tsPtr->hopCount = frame.hopCount;
tsPtr->synclnterval = ePtr->syncinterval;
Enqueue(Q_MS _IND, txInfo);
— 6 | —
Row 10.1-1: Initiate inspection of frames received from the lower-level MAC.
Row 10.1-2: Wait for the next frame to arrive.
Row 10.1-3: The clockSync frames are checked further.
Row 10.1-4: The non-clockSync frames are passed through.
Row 10.1-5: Active clockSync frames are adjusted for transfer delays and passed through.
Row 10.1-6: Overly-aged clockSync frames are discarded.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 88

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

10.5 TimeSyncTxEpon service interface primitives
10.5.1 ES_UNITDATA.request
10.5.1.1 Function

Provides the EPON entity with clock-synchronization parameters for constructing departing time-sync
frames.

10.5.1.2 Semantics of the service primitive
The semantics of the primitives are as follows:

ES_UNITDATA.request

{
destination_address, /I Destination address
source_address, // Optional
priority, /I Forwarding priority
service data unit, /I Delivered content
{ /I Contents of the service data_unit
protocol Type, /I Distinguishes AVB frames from others
function, /I Distinguishes between clockSync and other frames
version, /I Distinguishes between clockSync frame versions
precedence, /I Precedence for grandmaster selection
grandTime, /I Global-time snapshot (1-cycle delayed)
extraTime, /I Accumulated grandTime error
hopCount, I/ Distance from the grandmaster station
ticksTime /I Local-time snapshot (1-cycle delayed)
}
}

The parameters of the MA_UNITDATA.request are described in 10.3.1.2.
10.5.1.3 When generated

The service primitive is generated at a periodic rate, for the purposes of synchronizing the grandTime values
resident in other stations.

10.5.1.4 Effect of receipt

The service primitive triggers the transmission of a clockSync frame on the affiliated port.

Contribution from: dvj@alum.mit.edu.
89 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

10.6 TimeSyncTxEpon state machine

10.6.1 Function

The TimeSyncTxEpon state machine is responsible for modifying time-sync CLOCK_SYNC.response

parameters to form clockSync frames for transmission over the attached link.
10.6.2 State machine definitions
10.6.2.1 NULL: A valuethat (by design) cannot be confused with avalid value.

10.6.2.2 queue values: Enumerated values used to specify shared FIFO queue structures.
Q_MS REQ—Associated with the GrandSync entity (see 6.3.2).
Q_ES REQ—The queue identifier associated with frames sent to the MAC.

10.6.2.3 T10ms: A constant the represents a 10 ms value.
10.6.3 State machine variables
10.6.3.1 backl nterval: Represents the back-interpolation interval for transmit-time affiliations.

10.6.3.2 ePtr: A pointer to aentity-specific data structure comprising the following:
baseTimer—Recently saved time events, each consisting of the following:
index—Index into the timed[] array, where last times were stored.
range—Number of entries within the timed[] array
timed[range]—Recently saved time events, each consisting of the following:
grandTime—A previously sampled grandmaster synchronized time.
extraTime—The residual error associated with the sampled grandTime value.
stationTime—The station-local time affiliated with the sampled grandTime value.
lastTime—The last PDU-transmit time; used to space periodic transmissions.
rxSaved—A copy of the last received GrandSync parameters.
syncl nterval—The expected interval between time-sync frame transmissions.

10.6.3.3 rsPtr: A pointer to the service-data-unit portion of rxinfo storage.

10.6.3.4 rxInfo: Storage for the contents of GrandSync PDUs, comprising:
destination_address, source_address, service data_unit

Where service_data_unit comprises:
extraTime, function, grandTime, hopCount, precedence,
protocol Type, local Time, syncinterval, version

10.6.3.5 rxPtr: A pointer to the rxinfo storage.

10.6.3.6 rxSynclnterval: Represents the sync-interval associated with this station’s clock-slave port.

10.6.3.7 stationTime: See 6.3.3.
10.6.3.8 ssPtr: A pointer to the service-data-unit portion of the ePtr->rxSaved storage
10.6.3.9 sxPtr: A pointer to the ePtr->rxSaved storage.

10.6.3.10 tsPtr: A pointer to the service-data-unit portion of txInfo storage.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

90

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

10.6.3.11 txI nfo: Storage for ato-be-transmitted MAC frame, comprising:
destination_address, source_address, service data_unit

Where service_data_unit comprises.
extraTime, function, grandTime, hopCount,
protocol Type, precedence, ticksTime, version

10.6.3.12 txPtr: A pointer to the txInfo storage.

10.6.3.13 ticksTime: A 32-bit shared value representing EPON media-dependent time; incremented every
16 ns.

10.6.4 State machine routines

10.6.4.1 Dequeue(queue): See 6.3.4.

10.6.4.2 Enqueue(queue, info): See 6.3.4.

10.6.4.3 NextTimed(btPtr, stationTime, backl nterval): See 7.5.4.
10.6.4.4 SourcePort(entity): See 7.3.3.

10.6.4.5 SationTime(entity): See 6.3.4.

10.6.4.6 TicksTime(entity): See 10.4.4.

10.6.4.7 ClockSyncSdu(info): See 6.3.4.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 91

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

AVB BRIDGING

JggDvj20050416/D0.718

10.6.5 TimeSyncTxEpon state machine table

The TimeSyncTxEpon state machine includes a media-dependent timeout, which effectively disconnects a

clock-dlave port in the absence of received timeSyncEpon frames, as illustrated in Table 10.2.

Table 10.2—TimeSyncTxEpon state machine table

2007-08-05

Current . Next
(o]
. @ .
state condition action state
START | (rxInfo=Dequeue(Q_ MS REQ)) | 1 | — SINK
I= NULL
(stationTime — ePtr->lastTime) 2 | ePtr->lastTime = stationTime; SEND
>T10ms
— 3 | stationTime = StationTime(ePtr); START
ticksTime = TicksTime(ePtr);
SINK ClockSyncSdu(rsPtr) 4 | ePtr->rxSaved = rxInfo; START
— 5 | Enqueue(Q_ES REQ, rxPtr);
SEND | — 6 | rxSynclnterval = ssPtr->syncinterval; START
txSynclnterval = ePtr->synclnterval;
backlInterval =
(3* rxSyncinterval + txSynclnterval) / 2;
nextTimes =
NextTimed(btPtr, stationTime, backInterval);
txPtr->destination_address =
sxPtr->destination_address;
txPtr->source_address = sxPtr->source_address,
tsPtr->protocol Type = ssPtr->protocol Type;
tsPtr->function = ssPtr->function;
tsPtr->version = ssPtr->version;
tsPtr->precedence = ssPtr->precedence;
tsPtr->hopCount = ssPtr->hopCount;
tsPtr->grandTime = nextTimes.grandTime;
tsPtr->extralime = nextTimes.extralTime;
tsPtr->ticksTime = ticksTime;
Enqueue(Q_ES REQ, txPtr);
Row 10.2-1: Relayed frames are further checked before being processed.
Row 10.2-2: Transmit periodic clockSync frames.
Row 10.2-3: Wait for the next change-of -state.
Row 10.2-4: The clockSync PDU is saved and processed further.
Row 10.2-5: Non-clockSync PDUs are retransmitted in the standard fashion.
Row 10.2-6: Format and transmit the media-specific clockSync frame.
Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 92

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

Annexes

Annex A
(informative)
Bibliography

[B1] IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.*

[B2] IEEE Std 802-2002, |IEEE Standards for Local and Metropolitan Area Networks: Overview and
Architecture.

[B3] IEEE Std 801-2001, IEEE Standard for Local and Metropolitan Area Networks: Overview and
Architecture.

[B4] IEEE Std 802.1D-2004, IEEE Standard for Local and Metropolitan Area Networks: Media Access
Control (MAC) Bridges.

[B5] IEEE Std 1394-1995, High performance serial bus.

[B6] IEEE Std 1588-2002, IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems.

[B7] IETF RFC 1305: Network Time Protocol (Version 3) Specification, Implementation and Analysis,
David L. Mills, March 19922

[B8] IETF RFC 2030: Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI, D. Mills,
October 1996.

1| EEE publications are available from the Institute of Electrical and Electronics Engineers, 445 Hoes Lane, PO. Box 1331, Piscataway,
NJ08855-1331, USA (http://standards.ieee.org/).

2ETF publications are avail able via the World Wide Web at http://www.ietf.org.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 93

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

Annex B
(informative)

Time-scale conversions

B.1 Overview

For historical reasons, time is specified in avariety of ways aslisted in Table B.1. GPS, PTPR, and TAI times
are based on values yielded by atomic clocks and advance on each second. NTP and UTC times are similar,
but are occasionally adjusted by one leap-second, to account for differences between the atomic clocks and
the rotation time of the earth.

Table B.1—Time-scale parameters

Timescale
Parameter GPS PTP TAI NTP uTC
approximate 1980-01-06 1970-01-01 1972-01-01* 1900-01-01 1972-01-01*
epoch 1999-08-22
representation weeks.seconds seconds YYYY-MM-DD seconds YYYY-MM-DD
hh:mm:ss hh:mm:ss
rollover (years) 19.7 8,925,513 10,000 136.19 10,000
leapSeconds no yes
Notes:

* The TAI time when TAI and UTC were first specified to deviate by only integer seconds.
(Thereisno true epoch for the TAl and UTC time scales.)
GPS global positioning satellite
NTP Network Time Protocol
PTP Precision Time Protocol (commonly used in POSIX)
TAIl International Atomic Time (from the French term Temps Atomique International)
UTC Coordinated Universal Time (a compromise between the English and French):
English speakers wanted the initials of their language: CUT for "coordinated universal time"
French speakers wanted theinitials of their language: TUC for "temps universel coordonné”.

B.2 TAl and UTC

TAIl and UTC areinternational standards for time based on the Sl second; both are expressed in days, hours,
minutes and seconds. TAI is implemented by a suite of atomic clocks and forms the timekeeping basis for
other time scales in common use. The rate at which UTC time advances is normally identical to the rate of
TAI. An exception is an occasion when UTC is modified by adding or subtracting leap seconds.

Prior to 1972-01-01, corrections to the offset between UTC and TAIl were made in fractions of a second.
After 1972-01-01, leap-second corrections are applied to UTC preferably following second 23:59:59 of the
last day of June or December. As of 2006-01-01, TAIl and UTC times differed by +33 seconds.

In POSIX based computer systems, the common time conversion agorithms can produce the correct
I SO 8601-2004 printed representation format “YYYY-MM-DD hh:mm:ss” for both TAl and UTC.

Contribution from: dvj@alum.mit.edu.
94 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

The PTP epoch is set such that a direct application of the POSIX algorithm to a PTP time-scale timestamp
yields the ISO 8601-2004 printed representation of TAI. Subtracting the current leapSeconds value from a
PTP timestamp prior to applying the POSIX a gorithm yields the 1ISO 8601-2004 printed representation of
UTC. Conversely, applying the inverse POSIX algorithm and adding leapSeconds converts from the 1SO
8601-2004 printed form of UTC to the form convenient for generating a PTP timestamp.

Example: The POSIX agorithm applied to a PTP timestamp value of 8 seconds yields 1970-01-01 00:00:08
(eight seconds after midnight on 1970-01-01 TAI). At this time the value of leapSeconds was approximately
8 seconds. Subtracting this 8 seconds from this time yields 1970-01-01 00:00:00 UTC.

Example: The POSIX agorithm applied to a PTP timestamp value of 0 seconds yields 1970-01-01 00:00:00
TAI. At this time the value of |eapSeconds was approximately 8 seconds. Subtracting this 8 seconds from
thistime yields 1969-12-31 23:59:52 UTC.

B.3 NTP and GPS

Two standard time sources of particular interest in implementing PTP systems: NTP and GPS. Both NTP
and GPS systems are expected to provide time references for calibration of the grandmaster supplied PTP
time.

NTP represents seconds as a 32 bit unsigned integer that rolls-over every 232 seconds = 136 years, with the
first such rollover occurring in the year 2036. The precision of NTP systems is usualy in the millisecond
range.

NTP is a widely used protocol for synchronizing computer systems. NTP is based on sets of servers, to
which NTP clients synchronize. These servers themselves are synchronized to time serversthat are traceable
to international standards.

NTP provides the current time. In NTP version 4, the current leapSeconds value and warning flags marking
indicating when aleapSecond will be inserted at the end of the current UTC day. The NTP clock effectively
stops for one second when the leap second isinserted.

GPS time comes from a global positioning satellite system, GPS, maintained by the U.S. Department of
Defense. The precision of GPS system is usually in the 10-100 ns range. GPS system transmissions
represent the time as { weeks, secondslnWeek} , the number of weeks since the GPS epoch and the number of
seconds since the beginning of the current week.

GPS also provides the current leapSeconds value, and warning flags marking the introduction of a leap
second correction. UTC and TAI times can be computed solely based the information contained in the GPS
transmissions.

GPS timing receivers generally manage the epoch transitions (1024-week rollovers), providing the correct
time (YYYY-MM-DD hh:mm:ss) in TAl and/or UTC time scales, and often also local time; in addition to
providing the raw GPS week, second of week, and leap second information.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 95

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718

2007-08-05

B.4 Time-scale conversions

Previoudly discussed representations of time can be readily converted to/from PTP time based on a constant
offsets and the distributed leapSeconds value, as specified in Table B.2. Within Table B.2, all variables

WHITE PAPER CONTRIBUTION TO

represent integers; ‘/’ and ‘%' represent ainteger divide and remainder operation, respectively.

Table B.2—Time-scale conversions

ta

name

format

PTP valueth:

GPS

weeks:seconds

tb = ta.seconds + 315964 819 +
(gpsRollovers* 1024 + taweeks) * (7 * DAY SECS);

taweeks = (tb — 315964 819) / (7 * DAY SECS);
tadays = (tb — 315964819) % (7 * DAY SECS);

TAI

date{ YYYY,MM,DD} : time{ hh,mm,ss}

tb = DateToDays(" 1970-01-01", ta.date) * DAY SECS +
((tatime.hh * 24) + tatime.mm) *60) + tatime.ss;

secs = th % DAY SECS;

ta.date = DaysToDate(* 1970-01-01", tb / DAY SECS);
tatime.hh = secs/ 3600;

ta.time.mm = (secs % 3600)/60;

ta.time.ss = (secs % 60);

NTP

seconds

tb = (ta+leapSeconds)—2208988800;

ta = (ta—leapSeconds) +2208988800;

uTC

date{ YYYY,MM,DD} : time{ hh,mm,ss}

tb = DateToDays(* 1970-01-01", ta.date) * DAY SECS +
((tatime.hh * 24) + tatime.mm) *60) + tatime.ss +
leapSeconds;

tc = tb — leapSeconds;

secs = tc% DAY SECS;

ta.date = DaysToDate(* 1970-01-01", tc/ DAY SECS);
ta.time.hh = secs/ 3600;

ta.time.mm = (secs % 3600)/60;

ta.time.ss = (secs % 60);

Note:

gpsRollovers Currently equals 1; changed from O to 1 between 1999-08-15 and 1999-08-22.

DAY SECS The number of seconds within aday: (60* 60* 24).
leapSeconds Extra seconds to account for variationsin the earth-rotation times: 33 on 2006-01-01.
DateToDays For arguments DateToDays(past, present), returns days between past and present dates.
DaysToDate For arguments DaysToDate(past, days), returns the current date, days after the past date.

96

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

B.5 Time zones and GMT

The term Greenwich Mean Time (GMT) once referred to mean solar time at the Royal Observatory in
Greenwich, England. GMT now commonly refers to the time scale UTC; or the UK winter time zone
(Western European Time, WET). Such GMT references are strictly speaking incorrect; but nevertheless
quite common. The following representations correspond to the same instant of time:

18:07:00 (GMT), commonplace usage 13:07:00 (Eastern Standard Time, EST)
18:07:00 (UTC) 1:07 PM (Eastern Standard Time, EST)
18:07:00 (Western European Time, WET) 10:07:00 (Pacific Standard Time, PST)

6:07 PM (Western European Time, WET) 10:07 AM (Pacific Standard Time, PST)

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 97

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

Annex C
(informative)

Reclocked clockSync requirements

C.1 Cascaded clock considerations

C.1.1 Cascading causes sync-interval bunching

The naive approach towards forwarding time-synchronization information is to quickly propagate
time-reference snapshots through successive stations. Unfortunately, relatively smal (Y% interval)
residence-time delays per station can cause significant bunching, asillustrated in Figure C.1.

10 ms 0.0-2.5ms degraded
intervals ...delays... intervals

-—@5 L= L= —@-)r L= L= —G)r

75-125ms 0.0-27.5ms

intervals intervals

Figure C.1—Cascading causes sync-interval bunching

Techniques for avoiding such bunching are well known and practiced in the form of reclocked synchronous
circuits. For example, Ethernet stations accept (baud-rate) information at a closely matched input clock rate,
reclock the datawith alocal reference, and regenerate information without degraded jitter performance.

C.1.2 Reclocking eliminates sync-interval bunching

Applying these techniques to clock-sync transmission is straightforward. Rather than quickly forwarding
these frames, their information is saved. That saved information is then forwarded in the same periodic
fashion, based on local-station timing, as illustrated in Figure C.2. While such reclocked systems more
susceptible to gain-peaking/whiplash effects, inherent design and verification simplicities favor their use.

10 ms degraded
intervals intervals

-—@5 L= L= —@-)r L= L= —@-)r

75-125ms 75-125ms

intervals intervals

Figure C.2—Reclocking eliminates sync-interval bunching

Contribution from: dvj@alum.mit.edu.
98 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

C.1.3 Reclocking localizes sync-interval properties

The reclocked sync-interval strategy is compatible with bridged mixed-media systems. The persistent or
transient sync-interval rate of an intermediate (perhaps longer or more power sensitive) link could be less
than the rate assumed for the clock-master, asillustrated in the center of Figure 3.3. Similarly, wireless links
could base their timing events on triggers initiated by the clock-slave station, asillustrated in the right side
of Figure 3.3.

10 ms degraded
intervals intervals

-—-> - - Fo S~ = - _=__>

7.5-125ms 37.5-425ms 7.5-125ms

master intervals long intervals slave intervals

Figure 3.3—Reclocking localizes sync-interval properties

Other flow-through clocking designs would require specia “boundary clock” architectures to support such
mixed systems. With the interval retiming strategy, the additional (specification and implementation)
complexities of such boundary-clock architectures are easily avoided.

C.2 Sampling offset/rate conversion

Each clock-master port is responsible for using its received { grandTime,extraTime,rcTime} affiliations to
derive distinct {grandTimel,extraTimel,txTime} affiliations that are transmitted to its neighbor. Since the
values of rcTime and txTime are (by convention) coupled to the receive and transmit times, this update
involves generation of {grandTime,extraTime,rcTime} triads by resampling within the array of previously
saved { grandTime,extraTime,rcTime} triads.

C.2.1 Forward extrapolation inaccuracies

A typical design approach (and that used by IEEE Std 1588) views the received {grandTimercTime}
affiliations as points on a curve, sampled at received-snapshot times rc[n]. The objective is to generate the
distinct set of {grandTimel,txTime} affiliations by extrapolating from a distinct set of receive-snapshot
timesrc[n], asillustrated in Figure 3.4.

grandTime s

rc[n-N] rc[n] txTime stationTime

Figure 3.4—Extrapolation for grandTime

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 99

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

Extrapolation techniques exhibit gain peaking at frequencies whose wavelength is twice the { rc[n-N],rc[n]}
slope-averaging interval, because the extrapolated val ue can exceed what would have been the sampled time
value. A cascade of multiple stations emphasizes the gain-peaking inaccuracies, allowing errors to
accumulate in an O(N?) fashion.

C.2.2 Forward interpolation inaccuracies

To reduce gain-peaking effects, the resampling computation can be migrated to a safe-interpolation domain.
This involves subtracting a backTime constant from txTime, yielding a new time tbTime, for which a less
gain-peaking sensitive interpolation is viable, as illustrated in Figure C.5. In concept, the stale (but not
incorrect) {grandTime,rcTime} affiliations could be passed to the terminal clock-slave stations, wherein a
single extrapol ation-to-the-future accumulation could be performed. A preferred technique is to compensate
the interpolation result on an per-station basis as the time-reference flows towards the clock-slave station, as
discussed in the following subclauses.

grandTime T

@
-

: backTime

rc[n-N] tbTime rc[n] txTime stati%nTime

Figure C.5—Extrapolation for grandTime

C.2.3 Backward grandTime interpolation

A more-scalable backward-interpolation approach also views the received { grandTime,rcTime} affiliations
as points on a curve. The objective is to generate the distinct set of {grandTimel,txTime} affiliations by
interpolating within adistinct set of { grandTime, rcTime} points on the curve, asillustrated in Figure C.6.

A extraTimeB
grandTime —
/,//’/’/ }Tbacleme T *
<backTime grandIimel
n rc[n-&N-l)] thTime rc[n] txTime statiohTime=
Figure C.6—Interpolation for grandTimeA
rateRatio = (grandTime[n] — grandTime[n-N]) / (rc[n] —rc[n-N]) 3.1
grandTimel[m] = grandTime[n] + rateRatio * ((txTime — backTime) — rc[n]) + backTime; (3.2
backTime is a constant (sync-interval dependent) value.
extraTimel[m] = (rateRatio — ONE) * backTime; (3.3

Contribution from: dvj@alum.mit.edu.
100 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

The advantage of this technique is the separation of grandTimelm] and extralm] components. The
interpolation process eliminates gain-peaking for the grandTime[m] value, thus reducing error effects when
passing through multiple bridges. The sideband extraTime signal remains significant, and istherefore carried
through bridges, so that the cumulative grandTimed[m]+extraTime[m] value can be passed to the end-point
application.

From an intuitive perspective, the whiplash-free nature of the back-in-time interpolation is attributed to the
use of interpolation (as opposed to extrapolation) protocols. Interpolation between input values never
produces a larger output value, as would be implied by a gain-peaking (larger-than-unity gain) algorithm. A
disadvantage of back-in-time interpolation is the requirement for a side-band extraTime communication
channel, over which the difference between nominal and rate-normalized backTime values can be
transmitted.

C.2.4 Backward extraTime Averaging

An averaging (rather than backward-interpolation) approach is applied to the received { extraTime, rcTime}
affiliations as points on a curve, sampled at received-snapshot times rc[n]. The {extraTimetx[m|} affilia-
tions are produced by averaging recently observed extraTime values, asillustrated in Figure C.7.

extraTime A
[)
averageValue °
[)
[)
| | extraTimeA
- N values o ¢
| | | »
rc[n-(N-1)] rcf] tX[m] stationTime
Figure C.7—Interpolation of extraTimeD
extraTimeA[m] = (extraTime[n—(N-1)] + ... extraTime[n]) / N (3.9
extraTimel|m] = extraTimeA[m]+ extraTimeB[m]; (3.5

The to-be-transmitted value of extraTimel[m] consists of a contribution extraTimeA (accumulated from pre-
vious stations's grandTime interpolations) and a contribution errorTimeB (coming from this station’'s
grandTime interpolation). Note that the averaging of extraA valuesis effectively alow-pass filtering process
that removes noise without causing a gain-peaking frequency response.

NOTE—For simplicity and scalability, the computed extraTimel time is based on N, a fixed number of samples, where
N is a convenient power-of-two in size.

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 101

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

QWO ~NOoOUTA~,WNEPE

WRNNNNNNNNNNRERR B R R R PR
SODXVNOITRWNROOWONOUNWN P

31
32
33
34
35
36
37
38
39
40
41

GRES

46
47

49
50
51
52
53
54

JggDvj20050416/D0.718 WHITE PAPER CONTRIBUTION TO
2007-08-05

Annex D
(informative)

Simulation results (preliminary)

D.1 Simulation environment

This annex describes several simulations performed with the intent of comparing time-extrapolation and
time-interpolation algorithms. To reduce possibilities of code-conversion errors, the simulation model
executes the C code of Annex G. Simulation time is based on a 128-bit systemTime, represented by
64-bit seconds and fractions-of-second components, to ensure that precision and range are not constraining
factors.

The simulation consists of bridgeCount identical super-bridge components, as illustrated in Figure D.1. For
generality and uniformity, each bridge includes ClockMaster and ClockSlave entities. The smallest MAC
address is assigned to the left-most station; for other stations, the address is incremented for each sequential
right-side bridge. The simulations assumed bridgeCount values of 8 (the assumed AVB diameter) and 64
(areasonable IEEE 802.17 ring diameter).

’4 bridgeCount = 8, 64 »{
10ms tick 10ms samples
ClockSource ClockSink CIockSource CIockSlnk ClockSource) CIOCkSInk
(ClockMaster) (GrandSync) (ClockSlave) (CIockMaste) (GrandSync) (CIockSIave) (CIockMaste) (Grandsync) (CIockSIave)

[1]])) 4 L 3

LLC H Z

‘ ‘_) MAC relay I ’ ‘ | MAC relay I ’ ‘ l MAC relay ’
| 4ons [| MAC MAC]
NG) } ticks " G f CENGY] P)
/TN (J (J /ian/
- delay = 500ns -
a) Clock master b) Clock bridge... c) Clock slave

Figure D.1—Time-synchronization flows

The transmit portion of the TS component (emulated by the DuplexTxExec routine) introduces a random
delay of no more than 2.5 ms, thus emulating delays consistent with the 10 ms sync-frame transmission rate.
A 20 ns sampling clock ambiguity (corresponding to 25 MHZz) is incorporated into the MAC component
(emulated by the DupMacTXExec routine).

The cable is modeled as a symmetric 500ns delay, corresponding to a cable length of approximately 100
meters.

Station clock accuracies are assigned randomly/uniformly within the range of the allowed +100 PPM
deviation from the simulation’s emul ated/exact systemTime reference.

NOTE—PIease be tolerant of the editor of this document, who just downloaded the gnuplot application and fft4 library
today. Theseinitial cut-and-paste of plots are primitive (to be improved, when EPS or other formats are understood) and
no noise-spectrum plots (to better illustrate gain peaking) are currently available. Improvements expected soon...

Contribution from: dvj@alum.mit.edu.
102 This is an unapproved working paper, subject to change.

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

D.2 Initialization transients

D.2.1 Cascaded 8 stations

A significant expected initialization transient is observed when all stations simultaneously start operations,
asillustrated in Figure D.2. This can be contributed to inaccurate initial estimates of receiver’s link-delay
and transmitter’s rate estimations. The transient delays (although significant) are much less than expected
from designs based on many-sample grandmaster rate-syntonization delays within bridges.

4e-06 w
"valuelnt8b" ——
306 |\ -
206 [| .
1e-06 - | | .
| | \
e e
(
-1e-06 4 \ -

-26-06 7‘ “ 4

-3e-06 L | | | | I I I

Figure D.2—Startup transients with 8 stations

D.2.2 Cascaded 64 stations
The length of the initialization transient increases when the number of bridges is increased to 64, as

illustrated in Figure D.3. The much-longer duration of such transientsis perhaps tolerable, but illustrates the
desire to avoid extrapolation-based on many-sample grandmaster rate-syntonization delays within bridges.

le-05

T
"valuelnt64b" ——

50-06 |- //\ . :

-5e-06 |- / i
-1e-05 |- -

/
-1.5e-05 |- \/ i

-2e-05 ! ! ! ! ! ! !
0 0.5 1 15 2 25 3 35 4

Figure D.3—Startup transients with 64 stations

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 103

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

D.3 Steady-state interpolation errors

D.3.1 Time interpolation with 8 stations

Simulations indicate modest peak-to-peak errors for 8-bridge topologies when interpolation-based protocols
are used, asillustrated in Figure D.4.

1.5e-07

"valuelnt8b" ——

le-07

5e-08

o

-5e-08

-1e-07 -

-1.5e-07 L L L L
50 60 70 80 90 100

Figure D.4—Time interpolation with 8 stations

D.3.2 Time interpolation with 64 stations
Simulations indicate modest peak-to-peak error increases for 64-bridge topologies (as expected to 8-bridge

topologies) when interpolation-based protocols are used, as illustrated in Figure D.5. The data is consistent
with less-than-linear expectations, due to statistical averaging and intermediate interpolation filtering.

4e-07

b bl
i (i il L i

Figure D.5—Time interpolation with 64 stations

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 104

P OO~NOOUOTA,WNPE

o

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

D.4 Steady-state extrapolation errors

D.4.1 Time extrapolation with 8 stations

Simulations indicate approximately twice the errors for 8-bridge topologies when extrapolation-based
protocols (as opposed to interpolation-based protocols) are used, asillustrated in Figure D.6.

4e-07
"valueExt8b" ——

3e-07 B
2e-07

le-07

-1e-07

-2e-07

-3e-07 —

-4e-07 I I I I
50 60 70 80 90 100

Figure D.6—Time extrapolation with 8 stations

D.4.2 Time extrapolation with 64 stations
Simulations indicate significantly larger peak-to-peak errors for 64-bridge topologies when

extrapolation-based protocols (as opposed to interpolation-based protocols) are used, as illustrated in
Figure D.7.

8e-05

"valueExt64b" ——

6e-05

4e-05

2e-05 H

50 60 70 80 90 100

Figure D.7—Time extrapolation with 64 stations

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 105

= ©O© 00N O WNPOOVCO~NOUURAWNRPRPROOO~NOOOPM~,WDNEO

BREE&EIEHEREN

L&

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

Annex E
(informative)

Bridging to IEEE Std 1394

To illustrate the sufficiency and viability of the AVB time-synchronization services, the transformation of
|EEE 1394 packetsisillustrated.

E.1 Hybrid network topologies

E.1.1 Supported IEEE 1394 network topologies

This annex focuses on the use of AVB to bridge between IEEE 1394 domains, asillustrated in Figure E.1.
The boundary between domains is illustrated by a dotted line, which passes through a SerialBus adapter

station.
b &5_%@@ -
— = S raL=—=]
5 O o— Rl

IEEE 1394 | IEEE 802.3

Figure E.1—IEEE 1394 leaf domains

E.1.2 Unsupported IEEE 1394 network topologies

Another approach would be to use IEEE 1394 to bridge between IEEE 802.3 domains, as illustrated in
Figure E.2. While not explicitly prohibited, architectural features of such topologies are beyond the scope of
this working paper.

O T I =
qeEnge e G0 F
LT T
g4 : I__CLI | —

IEEE 802.3 ! IEEE 1394 ' |EEE 802.3

Figure E.2—IEEE 802.3 leaf domains

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 106

P OO~NOOUOTA,WNPE

o

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

E.1.3 Time-of-day format conversions

The difference between AVB and |EEE 1394 time-of-day formats is expected to require conversions within
the AVB-to-1394 adapter. Although multiplies are involved in such conversions, multiplications by con-
stants are simpler than multiplications by variables. For example, a conversion between AVB and
|EEE 1394 involves no more than two 32-bit additions and one 16-bit addition, asillustrated in Figure E.3.

MSB LSB

seconds fraction
|||

%

b = (a*125)>>7;

cycles ‘ fraction ‘
|||||||||||||||||||||||||||

Notes: d = (c*3)>>6;

Two 32-bit additions for b: Y
b = ((a<<7) - (a<<2) + &) »> 7;)
One 16-bit additions for d:
4= (c<<2) +¢) >> 6, |

seconds‘ cycleCount ‘ cycleOffset ‘
I T | IIIIIII|IIIIIIIIIIIII

Figure E.3—Time-of-day format conversions

E.1.4 Grandmaster precedence mappings

Compatible formats allow either an |EEE 1394 or | EEE 802.3 stations to become the network’s grandmaster
station. While difference in format are present, each format can be readily mapped to the other, asillustrated
in Figure E.4:

MSB LSB
‘ sp | systemID | macAddressHi | pad | macAddressLo ‘
111 L1l | | | | | | | | | | | | | | | | | | |

1 | eui64 ‘

| | | | | | | | | | | | | | | | |
—= ;

‘ sp ‘ systemID | macAddressHi | pad | macAddressLo ‘

Figure E.4—Grandmaster precedence mapping

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 107

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

Annex F
(informative)

Time-of-day format considerations

To better understand the rationale behind the ‘extended binary’ timer format, various possible formats are
described within this annex.

F.1 Possible time-of-day formats

F.1.1 Extended binary timer formats

The extended-binary timer format is used within this working paper and summarized herein. The 64-bit
timer value consist of two components. a 40-bit seconds and 40-bit fraction fields, as illustrated in
Figure F.1.

MSB LSB

seconds fraction
IIIIIIIIIIIIII|IIII!II|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!IIIIIIIIIIIIIIII

0 bits 40 bits

Figure F.1—Global-time subfield format

The concatenation of 40-bit seconds and 40-hit fraction field specifies an 80-bit time value, as specified by
Equation F.1.

time = seconds + (fraction / 2%°) (F1)
Where:

seconds is the most significant component of the time value.
fraction is the less significant component of the time value.

F.1.2 IEEE 1394 timer format

An alternate “ 1394 timer” format consists of secondCount, cycleCount, and cycleOffset fields, as illustrated
in Figure F.2. For such fields, the 12-bit cycleOffset field is updated at a 24.576MHz rate. The cycleOffset
field goes to zero after 3071 is reached, thus cycling at an 8kHz rate. The 13-bit cycleCount field is
incremented whenever cycleOffset goesto zero. The cycleCount field goesto zero after 7999 isreached, thus
restarting at a 1Hz rate. The remaining 7-bit secondCount field isincremented whenever cycleCount goesto
zero.

MSB LSB
secondCount cycleCount cycleOffset

1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7 bits 13 bits 12 bits

Figure F.2—IEEE 1394 timer format

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 108

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

AVB BRIDGING JggDvj20050416/D0.718
2007-08-05

F.1.3 IEEE 1588 timer format

|EEE Std 1588-2002 timer format consists of seconds and nanoseconds fields components, as illustrated in
Figure F.3. The nanoseconds field must be less than 10°; adistinct sign bit indicates whether the time repre-
sents before or after the epoch duration.

MSB LSB

seconds ‘SH nanoSeconds
|||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||

F— == === === = = A
|

Legend: s:sign
Figure F.3—IEEE 1588 timer format

F.1.4 EPON timer format

The IEEE 802.3 EPON timer format consists of a 32-bit scaled nanosecond value, as illustrated in
Figure F.4. Thisclock islogically incremented once each 16 nsinterval.

MSB LSB

nanoTicks
1 1

seconds = nanoTicks/62500000

Figure F.4—EPON timer format

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change. 109

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

AVB BRIDGING

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

JggDvj20050416/D0.718
2007-08-05

110

A DB WWWWWWWWWWNDNNDNNNNNNNRPEPEEPRPEPRPEPRPPRPRPEPRPOONOOOPRMAWNLE
P OOOO~NOOPRAWNPOOONOODUR_ARWNPEPOOO~NOOPMWDNEO

SEBEELNEHRED

o1 O]
W

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
Annex G

(informative)

C-code illustrations

NOTE—This annex is provided as a placeholder for illustrative C-code. Locating the C code in one loca-
tion (as opposed to distributed throughout the working paper) is intended to simplify its review, extraction,
compilation, and execution by critical reviewers.

Also, placing this code in a distinct Annex allows the code to be conveniently formatted in 132-character
landscape mode. This eliminates the need to truncate variable names and comments, so that the resulting
code can be better understood by the reader.

This Annex provides code examplesthat illustrate the behavior of AVB entities. The code in this Annex is purely for informational purposes, and should not be construed
as mandating any particular implementation. In the event of a conflict between the contents of this Annex and another normative portion of this standard, the other

normative portion shall take precedence.

The syntax used for the following code examples conforms to ANSI X3T9-1995.

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

11

0
1
12
13
14
5
6
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

P RPO0O0O~NOOPM~WNLE

=

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

/] kK ke ok ok ok ko ok ok ok Kk ok ok ok ok kK ko ok ok ok Kk ko ok ok ok ko ok ok ok ok o o ok ok ok ko ok ok ok ok o o ok ok ok ko ok ok ok ko o ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ko ok ok ok ok ok ok kK ko ok k Xk ok kR K kR Rk
1 1 1 1
// 1 2 3 4 5 6 7 8 9 0 1 2 3
//3456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012

LR R R R R R S S S R R R S R R R R R R S R R R R R R S R R R S S S RS E R R R R R R R R R R EE SRS EEEEEREEEREREEEEEEEESEES]

~
~

KKk KKK KKKk KKKk kK kkkkkkkkkkkkkk*k*kkkkx**%% by Dr. David V James, 2007-05-18 ***kkkkkkkkkhhhdkkhhhakkkhhhdkkhhhdkkhhhhdkkdhhrsssk
B R

NOTE--The following code is portable with respect to endian ordering,
but (for clarity and simplicity) assumes availability of 64-bit integers.

TBDs:
Active:
Suggested changes for clarity (anonymous reviewer 2007-05-11):
Separate partition for the bulk of header
Make TBDs explicit
Consider name change: state machines => queue service routines
Better use of spaces and comments
FFT and spectrum analysis via utilities or piped process
Completed:
Initial checks to be more descriptive, as in “GroupAsserts”
Consistent terminology: backInterval
Sequence of tests within looks, possibly with “serviced”, as in:
for (checkForMore = TRUE; checkForMore == TRUE;) {
if (something) {
checkForMore = TRUE;

} // for(;;) ends here
Ports=>queues, from a naming perspective
Separate initialization from routines
rating => rateRatioO, etc. for similar name usage
matched to something more descriptive, as in “countsAreEqual”
Ethernet-duplex, Ethernet-pon, more descriptive names to be used

N N T T T N N N T N N
N N N N T N

#include <assert.h>
#include <stdio.h>

#include <stdlib.hs>
#include <string.hs>
#include “avbHead.h”

R R R R R R R R R R RS SRR R R SRR R R R R R R R R R R R EEEEEEEEEEEEEEREEREEREEREEESEESEESEESEERESES]
Time formats used within this simulation are listed below.

The layout is half scale; each '+’ mark represents a byte boundary,

not a bit-boundary (as is true in other narrow-format conventions.

The high-level timings are based on largeTime and smallTime values.

~
~

largeTime
B i e i e e e R
| seconds | fraction
e e e T i Tt Tt S T e

Used for: Simulation time base
Features: Near-infinite resolution and range

T T T N N N
A N YN

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

112

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

smallTime

R e ek T P s
| seconds | fraction
e e e

Used for: Station-local time base
Features: Nearly-a-day range; near femto-second resolution

R R R S R R R R R R R R R S R R R S S R R R S S R R R R R NS S e e R EEE RS

Time formats used within application-specific frames include a
* grandTime - never-overflows globally-synchronized time

//

//

//

//

//

//

//

//

//

//

//

// * localTime - per-station locally-managed time

// * tinyTime - extra part of grandTime (a small value)
// * ticksTime - an application-specific variant of localTime
// :

// grandTime

// Bt e e R
// \ seconds | fraction

// B e i e et ek TS
// Used for: Frames, grandmaster time synchronization

// Features: Thousands-of-years range; pico-second resolution
// :

// localTime

// e e e e S
// | sec]| fraction

// R et e e
// Used for: Frames, cable-delay measurements

// Features: Minutes of range; pico-second resolution

/7 :

// tinyTime

// 4 om -4
// | subfraction

// 4 om -4
// :

// Used for: Sideband grandTime error accumulation

// Features: Minutes of range; pico-second resolution

// :

// ticksTime

// Rl e e
// | tickCounts |
// B e it et}
// Used for: Exists on 802.3-EPON, 802.1lv-Radio

// Features: Sufficient range; nano-second-like resolution
//

//

R R R R S R R R R R R R R R S R R R S R S R R R R R R S RS R EEE R

0
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

P RPO0O0O~NOOPM~WNLE

// hAhkhkhkhkhkhkhkhkhkhkhkdhhkhkhkhkhkhkdhhkhkhkhkhkhkdkhkhkhkhkhkhkh kb hkhkdk bk bbbk dhk kb hkhkhhhdkhkhkhkhkdhkddhkhkhkhkdhdkhkdkhkhkhkhdhdhdxddx
// *khkhkkhkhkdkhkhkhkhkdkhdhdhkhkhkhkhkdhhkhhkhdxdxdx*x Assumed integer Values khkkhkkhhkdhhkdhkhkhkhkhkhhdkhkhkhkhkhhhhdkkdxkhhx
// R R SRS R R R R SRS EE SRS E SRS R R RS RS R R R R R RS R EEERE R R R RERRERERRRERRRRRRRERRRRRRREREREREREEEEEEEESEESSES]
// typedef unsigned char uint8 _t; // l-byte integer
// typedef unsigned short uintlé_t; // 2-byte integer
// typedef unsigned int uint32 t; // 4-byte unsigned integer
// typedef unsigned long long uinté4 t; // 8-byte unsigned integer
Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 113

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

// typedef signed char int8_t; // l-byte signed integer

// typedef signed short intlé_t; // 2-byte signed integer

// typedef signed int int32 t; // 4-byte signed integer

// typedef signed long long inte4 t; // 8-byte signed integer

// R R RS R EEEEEEEEEEEEEEREEEEREREEEEEEESEEEEEEEEEEEEEEESEESEESEES
// *xxxxxxx Revise timeSync frame parameters as the actual values become known ki
// R R R R e R R S R R R R R R R R R R S RS R R R S R EEEE S
// Unique identifier values

#define AVB_ MCAST 0 // Neighbor multicast address

#define AVB_PROTOCOL 0 // The protocolType for AVB

#define AVB FUNCTION 0 // The timeSync function

#define AVB VERSION 1 // The timeSync version

#define DEFAULT DUPLEX RX RANGE 16
#define DEBUG 0
// Generic macro definitions

#define ARRAY SIZE (x) (sizeof (x)/sizeof (x[0]))
#define BITS (type) (8 * sizeof (type))

#define CLIP RATE(x, y) (((x) > SMALL ONE + (y)) ? \
(SMALL_ONE + (y)) : (((x) < (SMALL_ONE - (y)) ? SMALL ONE - (y) : (x)))) Clip within specified rate
#define CLIP SIZE(x, y) ((x) > (y) ? (y) : ((x) < (-(y)) ? (-(y)) : (x))) Clip within specified value

#define CLOCK MASTER PORT ID 255

#define COUNT 256

#define EXTRA 16

#define FULL 1

#define LAST HOP 255

#define LARGE 10ms SmallToLarge (SMALL_ 10ms)
#define LARGE HALF (ONE << 63)

#define LARGE TOCK (ONE << 62)

Clock-master port identifier
Number of frameCount values

Queue-full error status
Largest hop-count value

NN NN
NN NN

#define MASK(bits) ((ONE << bits) - 1)

#define MASK32 (ONES >> 32)

#define MAX(a, b) ((a) > (b) ? (a) : (b)) // Maximum value definition
#define MIN(a, b) ((a) > (b) ? (b) : (a)) // Minimum value definition
#define MTU SIZED 2048 // Maximum-sized transfer
#define OK 0 // Non-error status

#define ONE ((uinté64 t)1) // Wide “1” constant
#define ONES (~(uinté64 t)O0) // Wide “FF..FF” constant
#define PLUS(a, b, c¢) (((a) + (b) + (c)) % (c))

#define PON_TICK TIME (DivideSmall(16 * (ONE << 32), 1000000000))
#define PPM100 ((SMALL ONE * 100) / 1000000)

#define PPM250 ((SMALL_ONE * 250) / 1000000)

#define RADIO TICK TIME DivideSmall(l << (32 - 9), 1000000000 >> 9)
#define RESIDENCE DELAY ((SMALL ONE + RandomMagOne()) / 800)
#define SMALL 10ms (SMALL ONE / 100)

#define SMALL_ONE ((inté64_t) (ONE << 48))

#define TESTING_OUI ((uinté64_t)O0Xcabled << 24)

#define TLIMIT 255

#define WIDE_MIN(a, b) (WideCompare((a), (b)) <= 0 ? (a) : (b))

Scaled 100PPM fraction.
Scaled 250PPM fraction.
Ratio radio-ns to localTime
A 2.5ms max residence time
A 10ms smallTime interval
Scaled fraction for 1.0

NN
NN

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

114

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

#define CommonCheck (comPtr) (assert (comPtr != NULL), \
assert (comPtr->rootLink != NULL), assert(comPtr-s>pairLink != NULL))

#define SetRxQueuelPtrs (comPtr, ptr0) (CommonCheck (comPtr), \
assert (comPtr->rxPortCount == 1), ptr0 = &(comPtr->rxPortPtr[0]))

#define SetRxQueue2Ptrs(comPtr, ptr0, ptrl) (CommonCheck (comPtr), \
assert (comPtr->rxPortCount == 2),

ptr0 = &(comPtr->rxPortPtr[0]), ptrl = &(comPtr->rxPortPtr[1l]))
#define SetRxQueue3Ptrs(comPtr, ptr0, ptrl, ptr2) (CommonCheck (comPtr), \

assert (comPtr->rxPortCount == 3), ptr0 = &(comPtr->rxPortPtr[0]), \

ptrl = &(comPtr->rxPortPtr[l]), ptr2 = &(comPtr->rxPortPtr[2]))
#define SetTxQueuelPtrs (comPtr, ptr0) (CommonCheck (comPtr), \

assert (comPtr->txPortCount == 1), ptr0 = &(comPtr->txPortPtr[0]))

#define SetTxQueue2Ptrs(comPtr, ptr0, ptrl) (CommonCheck (comPtr), \
assert (comPtr->txPortCount == 2),
ptr0 = &(comPtr->txPortPtr[0]), ptrl = &(comPtr->txPortPtr[1l]))

#define RxPortPtr (comPtr, count) (&(comPtr->rxPortPtr [count]))
#define StationTime (comPtr) (comPtr->smallTime)
#define SystemTime (comPtr) (comPtr->largeTime)
#define TxPortPtr (comPtr, count) (&(comPtr->txPortPtr[count]))

#define PrecedenceToEuié4 (a) (a.lower)

#define SizePlus(set) (sizeof(set) + EXTRA)

#define LargeToSmall (a)
#define SmallToLarge (a)
#define SmallToGrand (a)
#define SmallToLocal (a)
#define SmallAsLocal (a)
#define TinyToGrand (x)
#define TinyToSmall (a)
#define TinyToLarge (a)

typedef enum {
INTERPOLATE,
EXTRAPOLATE
} GuessMode;

enum {
FALSE,
TRUE,
WAIT

7

enum {
BODY,
LIST,
BOTH

7

enum {
TALK QUIET,

WideExtract (a, 16)

WideShift (SignedToWide (a), -16)
WideShift (SignedToWide (a), 8)

((a) >> 8)

((a) & (ONES >> 8))
(SignedToWide ((int64 t) (x)))
(((int64_t) (a)) << 8)
(SignedToWide (((int64_t) (a)) << 24))

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

115

0

P RPO0O0O~NOOPM~WNLE

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05

TALK GSYNC,
TALK_FRAME

7

enum {
VOCAL QUIET,
VOCAL_ DEBUG,
VOCAL_PAIRS

7

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

// Field extract/deposit definitions
#define FieldToSigned (fPtr, field) \

FrameToValue ((uint8 t *) (&(fPtr->field)), sizeof (fPtr->field), TRUE)

// Convert field to signed

#define FieldToUnsign (fPtr, field) \

FrameToValue ((uint8 t *) (&(fPtr->field)), sizeof (fPtr->field), FALSE)
field) \

#define WideToFrame (value, fPtr,

// Convert field to unsigned

ValueToFrame (value, (uint8 t *) (&(fPtr->field)), sizeof (fPtr->field)) // Convert field to unsigned
#define LongToFrame (value, fPtr, field) \
ValueToFrame (SignedToWide (value), (uint8 t *) (&(fPtr->field)), sizeof (fPtr->field))

#define DeQueue(a, b) Dequeue(a,
#define EnQueue(a, b) Enqueue(a,

typedef struct {
uint64 t upper;
uinté64_t lower;
} WideUnsigned;

#ifndef AVB TIMES

#define NLIMIT 63

typedef struct {
int64_t upper;

uint64 t lower;
} WideSigned;

typedef int32 t TicksTime;
typedef inté64 t SmallTime;
typedef WideSigned LargeTime;
#endif

typedef uint8 t Boolean;
typedef uint8 t Port;
typedef uints8_t Class;
typedef uint8 t HopCount ;
typedef uintlé t Variance;
typedef int32 t TinyTime;
typedef inté64 t LocalTime;
typedef WideSigned GrandTime;
typedef WideSigned Precedence;
typedef WideUnsigned Preference;

(uint8_t *)b, sizeof (*b))
(uint8 _t *)b, sizeof (*b))

// Double-precise integers
// More significant portion
// Less significant portion

Double-precise integers
More significant portion
Less significant portion

NN
NN

Link-dependent time
Local time reference
General 128-bit timers

NN
NN

True or false

Received port number

1588: clock class

1588: distance from GM

1588: clock error variance
Extra part of GM time
Compacted SmallTime

1588: grandmaster time
Fields {priorities,clockID}
Fields {precedence, hops,port}

N
N e Y

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

116

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

[/] kR ke ok ok ok ke ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ko ko ko ko ko ko ko ko ok ok ok k ok
[/ KRKKKKKKKKKKKKKKKK KKK KAk Ak k% Communication components kkkkkkkokkokokokokokokokokokokokok ok ok ok ok ok ok ok ok ok ok
[] Kkk

typedef struct {
LargeTime largeTime;
SmallTime extraTime;
SmallTime smallTime;
uintlé_t extraCount;
} BaseTimes;

typedef struct {
GrandTime grandTime;
TinyTime extraTime;
GrandTime totalTime;
} NextTimes;

Grandmaster synchronized

Extra part for largeTime
Station’s free-running

Count of extra-values sampling

Time-result collection
Grandmaster synchronized
Side-band extra values
Precise grandTime+extraTime

[]k Rk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok sk ok sk ok sk ok ok ok ok ok ok ko k ok
[/ Kxkxkxkxkkkkkkkkkkkkkkkkkxkxkxxx* Formal interface exchanges *xxkkkkkkkkkkkkhhhhhhhhhhhhhhk
[] Kkk

typedef struct {
uint8_t frameCount [1] ;
uints8_t grandTime [10] ;
} ClockMasterSet;

typedef struct {
uint8_t frameCount [1] ;
} ClockSlaveReq;

typedef struct {
uint8_t frameCount [1] ;
uints8_t grandTime [10] ;
} ClockSlaveRes;

typedef struct {
uint8_t protocolType [2];
uint8 t function([1];
uint8_t version[1];
uint8 t precedence[14];
uint8_t grandTime[10];
uint8_t extraTime[4];
uint8 t sourcePort[1];
uint8_ t hopCount [1] ;
uint8_t smallTime[8];
uint8_t syncIntervall[6];

} SyncSduData;

typedef struct {

uint8_t destination_address|[6];
uints8_t source_address [6];
uint8_t priority[1];

SyncSduData service data_ unit;

N
S YN

/
/
/
/
//

NN

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

Sequential consistency check
Received grandmaster time

Sequential consistency check

Sequential consistency check
Provided grandmaster time

Time-sync frame parameters
Protocol identifier
Identifies timeSync frame
Specific format identifier
Grandmaster precedence
Grandmaster time

Extra part of grandTime
Transmit sequence number
GM hop-count distance
Local-time reference
Opposite-link transmit time

MS UNITDATA.request
Destination address
Source address
Delivery priority
Data content

117

0

P RPO0O0O~NOOPM~WNLE

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05
} GrandSyncReq;

typedef struct {

uint8_t destination_address|[6];
uints8_t source_address[6];
uint8_t priority[1];

SyncSduData service data_ unit;
} GrandSyncInd;

typedef struct {

uints8_t protocolType[2] ;
uint8_t function([1];
uint8 t version[1];
uints8_t precedence [14] ;
uint8_t grandTime [10] ;
uint8 t extraTime [4];
uints8_t frameCount [1] ;
uints8 t hopCount [1] ;
uint8_t localTime [6] ;
uints8_t thatTxTime [6] ;
uint8 t thatRxTime [6] ;

} EfdxSduData;

typedef struct {

uint8 t dal[6];

uints8_t sal6];

uints8 t protocolType [2] ;
uint8 t function[1];
uints8_t version[1l];
uints8 t precedence [14] ;
uint8_t grandTime [10] ;
uints8_t extraTime [4] ;
uint8_t frameCount [1] ;
uints8 t hopCount [1] ;
uints8_t localTime [6] ;
uints8_t thatTxTime [6] ;
uints8_t thatRxTime [6] ;
uints8_t fes 4] ;

} EfdxMacFrame;

typedef struct {

uint8_t destination_address|[6];
uint8_t source_address[6] ;
uints8_t priority[1];
EfdxSduData service data_ unit;

} EfdxMacInd;
typedef EfdxMacInd EfdxMacReq;

typedef struct {
uints8_t frameCount [1] ;
uint8_t smallTime [8] ;
} EfdxRxInfo;

typedef struct {
uint8_t frameCount [1] ;

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

MS UNITDATA.indication
Destination address
Source address
Delivery priority

Data content

N
NN

Time-sync frame parameters
Protocol identifier
Identifies timeSync frame
Specific format identifier
Grandmaster precedence
Grandmaster time

Extra part of grandTime
Transmit sequence number

GM hop-count distance
Transmitted timeSync time
Opposite-link transmit time
Opposite-link received time

N N N U
N N

Time-sync frame parameters
Destination address

Source address

Protocol identifier
Identifies timeSync frame
Specific format identifier
Grandmaster precedence
Grandmaster time

Extra part of grandTime
Transmit sequence number

GM hop-count distance
Transmitted timeSync time
Opposite-link transmit time
Opposite-link received time
Opposite-link received time

T T T N N N
RN Y NN

Time-sync frame parameters
Destination address

Source address

Delivery priority

/ Efdx service-data-unit

NN
NSNS

// Sequential consistency check
// Common station-local time

// Sequential consistency check

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

118

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05

uint8_t smallTime [8] ;
} EfdxTxInfo;

typedef struct {
uint8_t protocolType[2];
uint8 t function[1];
uint8 t version[1];
uint8_t precedence[14];
uint8_t grandTime[10];
uint8 t extraTime [4];
uint8_t frameCount [1];
uint8 t hopCount [1];
uint8 t ticksTime [4];

} SyncSduEpon;

typedef struct {

uints8_t destination address[6];
uint8 t source_address [6] ;
uint8 t priority[1];

SyncSduEpon service data_unit;
} EponMacInd;
typedef EponMacInd EponMacReq;

typedef struct {
uint32_t reserved;
} RllvInfolReq;

typedef struct {
uint32 t ticksTime2;
uint32_t ticksTime3;
} RllvInfollInd;

typedef struct {
uint32 t ticksTimel;
uint32 t ticksTime4;
} RllvInfolCon;

typedef struct {
uint32 t ticksTime4;
uint32_t roundTrip;
GrandTime levelTime;
TinyTime extraTime;
Precedence precedence;
HopCount hopCount;

} RllvInfo2Req;

typedef R1llvInfo2Reqg R1llvInfo2Ind;
typedef struct {

uint32_t reserved;
} RllvInfo2Con;

~
~

T N N N
N

NN
NN

NN NN
NN

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Common station-local time

Time-sync frame parameters
Protocol identifier
Identifies timeSync frame
Specific format identifier
Grandmaster precedence
Grandmaster time

Extra part of grandTime
Transmit sequence number
GM hop-count distance
Local timing reference

Time-sync frame parameters
Destination address

Source address

Delivery priority

Efdx service-data-unit

Reserved

Received snapshot
Transmit snapshot

Transmit snapshot
Received snapshot

Received snapshot
Duration snapshot
Grandmaster like

Extra part of levelTime
Grandmaster error
Grandmaster error

// Reserved

0

P RPO0O0O~NOOPM~WNLE

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

// R R R R R R R S R R R S R R R R R R R S R R R R R S S R EE S
// PR SRR S S S SRR S S SRR R R R R R EEEEEEE RS Defined entities IR R R R R R R RS R R EEEES

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change. 119

JggDvj20050416/D0.718, 2007-08-05

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

// R R R R R R S R R R S R R R R R R R S R S R R R S S e R EEEE S

enum {
Q RX00 LAST,
Q_TX00 LAST = 0

7

enum {
Q RX01_BASE,
Q_RX11 LAST,
Q_TX01 BASE
Q_TX11 LAST

1]
o

}i

enum {
Q RX02 BASE,
Q_RX12 NEXT,
Q RX22 LAST,
Q TX02 BASE
Q_TX12 NEXT,
Q TX22 LAST

I
o

}i

enum {
Q RX03 BASE,
Q_RX13_ NEXT,
Q RX23_ PLUS,
Q RX33 LAST,
Q_TX03_BASE
Q TX13 NEXT,
Q_ TX23 NEXT,
Q_TX33 LAST

1]
o

}i

[] KER KAk Kk kKKK kk kKKK kkkkkkkkkk k% GrandSynNc entity FEFEkkhkkkkkkhkkkkkkk kA kkk kA Ak Kk kA Kk

typedef struct {

Precedence precedence;
Port sourcePort;
HopCount hopCount;
SmallTime syncInterval;

} GrandSyncSaved;

typedef struct {
Common common ;
LocalTime lastTime;
GrandSyncSaved rxSaved;
} GrandSyncEntity;

/ GrandSync entity state
// Grandmaster precedence
// Source-port identifier
// Synchronization interval
// Synchronization interval

// GrandSync entity state
// Common simulation state
// Timeout, set on activity
// Saved indication

// IR R SRS S S S SRR S S SRR R R RS EEEEEEEEES clockMaster entity EEE R EEEE R RS R R EEEEESS

typedef struct {
Common common ;

uints8_t rxFrameCount ;

// Client-clock master
// Common simulation state
// Consistency-check count

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

120

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718,

Precedence
SmallTime
SmallTime
SmallTime

2007-08-05
precedence;

syncInterval;

snapShot0;
snapShot1l;

} ClockMasterEntity;

// khhhkhkhkh*x Clockslave

typedef struct {
SmallTime
} ClockSlaveSaved;

typedef struct {
Boolean
uintleée t
uintleé_t
SmallTime
BaseTimes

} BaseTimer;

typedef struct {
Common
uint8_t
SmallTime
SmallTime
SmallTime
ClockSlaveSaved
BaseTimer

} ClockSlaveEntity;

// IR R RS S S S S S SRS SRR R EEEEEEEEEE RS

typedef struct {
SmallTime
SmallTime

} PastTimes;

typedef struct {
Boolean
uintlé_t
uintlée t
SmallTime
PastTimes

} RxTimer;

typedef struct {

Common

Boolean

LocalTime
uintleée_t
uintleé_t
SmallTime
SmallTime

syncInterval;

validated;
headIndex;
tailIndex;
interval;

times[64];

common ;
frameCount;

syncInterval;

snapShot0;
snapShotl;
rxSaved;

baseTimer;

thisTime;
thatTime;

validated;
headIndex;
taillIndex;
interval;

times[64];

common ;
txReady;
syncInterval;
snapCount ;
frameCount;
snapShoto0;
snapShotl;

!/

NN
NN

R
NN

NN

/
/
/

NN
NN

NN
NN

/7

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Grandmaster precedence
Synchronization interval
Recent snapshot

Remote snapshot

entity khkkhkkkhkkxkx

Client-clock slave

Client-clock slave
Validated; operational
Recent interval index
Oldest interval index
Rate-averaging interval
txTimes value array

Client-clock slave
Common simulation info
Consistency-check count
Synchronization interval
Recent snapshot

Remote snapshot

Saved rx information
Receive-time history

duplex-Ethernet %%k ko o o o o o o ok ok ok ok ok ok ok ok ok ok ok

EFDX receive
Saved previous snapshot
Saved previous thisTxTime

EFDX receive

Validity indication
Recent interval index
Oldest interval index
Rate-averaging interval
Larger than ever needed

EFDX receive

Common simulation info
Cable-delay valid
Clock-master’s tockTime

The indication’s frameCount

The timeSync’s frameCount
This frame’s arrival time
Past frame’s arrival time

121

0

P RPO0O0O~NOOPM~WNLE

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

LocalTime thisTxTime; // Frame transmission time
LocalTime thisRxTime; // Frame reception time
LocalTime thatRxTime; // Frame reception time
EfdxMacInd savedInd; // Received timeSync indication
RxTimer rxTimer; // For computing rateRatio (new)

} EfdxRxEntity;

typedef struct { // EFDX transmit
uinté4 t da; // destination address
uinté4 t sa; // source_ address
uintleé_t type; // Received protocolType
uints8 t function; // Specified function (AVB)
uints8 t version; // Version number in AVB
WideSigned precedence; // Grandmaster preference
HopCount hopCount ; // Grandmaster distance
SmallTime syncInterval; // Sync transmit interval

} EfdxTxSaved;

typedef struct { // EFDX transmit
Common common ; // Common simulation info
GuessMode guessMode ; // Estimating next value
Boolean rxReady; // Sinking rx initialized
Boolean txReady; // Sending tx initialized
SmallTime execTime; // Next transmission time
SmallTime lastTime; // Periodic transmission time
uint8_t frameCount; // The timeSync frame count
SmallTime syncInterval; // Sync interval duration
EfdxTxSaved rxSaved; // Received GrandSync request
uint8_t sxSnapCount ; // Received MAC snapshot
SmallTime sxSnapTimed; // Received MAC snapshot
BaseTimer baseTimer; // Receive-time history

} EfAxTxEntity;

[/ kEkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk 802,11V radio rkkkkskokkokkok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

typedef struct {

Common
LocalTime
TicksTime

} R11vRxEntity;

typedef struct {
WideSigned

HopCount
SmallTime

} R1lvTxSaved;

typedef struct {

Common

LocalTime
LocalTime
LocalTime

R1llvTxSaved
BaseTimer

common ;
syncInterval;
turnRound;

precedence;
hopCount ;
syncInterval;

common ;
syncInterval;
pastTime;
lastTime;
rxSaved;
baseTimer;

S S S S

802.11v wireless receive
Common simulation info
Clock-master’s tockTime
Turn-round delay times

802.11v wireless transmit
Grandmaster preference
hopCount

802.11v wireless transmit
Common simulation info
Clock-master’s tockTime
Back-interpolation time
Last transmission

Saved parameters
Receive-time history

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05

TicksTime
TicksTime
TicksTime
TicksTime
TicksTime
Boolean

snapShot1l;
roundTrip;
rxTurnRound;
snapShot4;
rxRoundTrip;
respondNow ;

} R11vTxEntity;

NN
N N

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Saved ticksTimel

Saved ticksTime4-ticksTimel
Turn-round delay times
Saved ticksTime4

Saved ticksTime4-ticksTimel

[] Frk KAk KKk kkkkKkkkkkkKkkkkkx*k%%% Ethernet-PON entity ****kkhxkskhhhrrkdkhhrrskhhrs

typedef struct {
Common common ;
LocalTime syncInterval;
} EponRxEntity;
typedef struct {
uinté64_t da;
uinté64_t sa;
Precedence precedence;
HopCount hopCount ;
SmallTime syncInterval;
} EponTxSaved;
typedef struct {
Common common ;
LocalTime syncInterval;
SmallTime lastTime;
EponTxSaved rxSaved;
BaseTimer baseTimer;

} EponTxEntity;

// External control parameters
GuessMode argGuessMode = INTERPOLATE;
SmallTime argMegaHertz = 0;

uintlé_t argBridgeCount = 10;
uint32_t argFirstSecs = 0;

uint32_t argFinalSecs = 150;
uint32_ t argVocalType = VOCAL DEBUG;

// Standard st
Common
Common
Common
Common
Common
Common
Common
Common
Common
Common

ate-machine routines

*GrandSyncExec (Common *, char *);
*ClockMasterExec (Common *, char *);
*ClockSlaveExec (Common *, char *);
*EfdxRxExec (Common *, char *);
*EfdxTxExec (Common *, char *);
*EfdxSpanExec (Common *, char *);
*R11vRxExec (Common *, char *);

,
*R11vTxExec (Common *, char *);
*EponRxExec (Common *, char *);
*EponTxExec (Common *, char *);

Contribution from

NN

/
/
/

Etherent-PON receive
Common simulation info
Clock-master’s tockTime

Ethernet-PON transmit
destination_address
source_address
Grandmaster precedence
hopCount

Ethernet-PON transmit
Common simulation info
Clock-master’s tockTime
Last time checkpoint

Receive-time history

: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

123

0

P RPO0O0O~NOOPM~WNLE

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05

void
Boolean
Common

Port
TicksTime
TicksTime

SmallTime
void
NextTimes

CommonChecks (Common *, uintlé t, uintlé t);
PortsCheck (Common *, char *);
*CommonCreate (Common *, uintlé t,
Common * (Common *, char *), uintlé_t, uintlé_t, uintlée t);
PortID (Common *) ;
EponTime (EponRxEntity *);
R11vTime (R11vRxEntity *);

NextRate (RxTimer *, SmallTime, SmallTime, SmallTime, SmallTime) ;

NextSaved (BaseTimer *, SmallTime, SmallTime, LargeTime, SmallTime, SmallTime) ;

NextTimed (BaseTimer *, SmallTime, SmallTime) ;

// A minimalist double-width integer library

int

int
int64 t
WideSigned
WideSigned
WideSigned
WideSigned
WideSigned

int64_t
int64 t
SmallTime

double
GrandTime
double
SmallTime
double
LargeTime
TinyTime
double
double

WideCompare (WideSigned, WideSigned) ;
WideCompareUnsigned (WideUnsigned, WideUnsigned) ;
WideExtract (WideSigned, uint8 t);

WideAddition (WideSigned, WideSigned) ;
WideSubtract (WideSigned, WideSigned) ;

WideShift (WideSigned, intlé t);

WideNegate (WideSigned) ;

WideMultiply (int64 t, inté4 t);

DivideSmall (int64_t, inté64_t);
MultiplySmall (int64 t, inté4 t);
ClockTicks (int64 t, uinté64 t);

LargeToFloat (LargeTime) ;
LargeToGrand (LargeTime) ;
LocalToFloat (LocalTime) ;
LocalToSmall (LocalTime) ;
GrandToFloat (GrandTime) ;
GrandToLarge (GrandTime) ;
SmallToTiny (SmallTime) ;
SmallToFloat (SmallTime)

TinyToFloat (TinyTime) ;

7

// Other routines

uint64 t
Precedence
WideSigned
Preference
GrandTime
GrandTime
uint64 t
SmallTime
WideSigned
Boolean
void

Entry
uint32 t
Boolean
void
void

Eui48ToEui64 (uint64 t);
FieldsToPrecedence (uint8 t, uint8 t, uintlé t, uint8 t, uinté64 t);
FrameToValue (uint8_ t *, uintlé_t, Boolean);
FormPreference (WideSigned, uint8 t, uint8 t);
GrandToLevel (GrandTime) ;

LevelToGrand (GrandTime) ;

MacAddress (Common *) ;

RandomMagOne () ;

SignedToWide (int64_t) ;

TimeSyncSdu (SyncSduData *) ;

ValueToFrame (WideSigned, uint8 t *, uintlé t);

*Bequeue (RxPort *);

Dequeue (RxPort *, wvoid *, unsigned) ;
Enqueue (TxPort *, void *, unsigned) ;
SleepOnRoot (Common *, LargeTime) ;
SleepOnBase (Common *, LocalTime) ;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

124

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

char *StrPair (char *, char *, char *, uintlé _t);

// R R R R R R R S R R R R R R R R R R R S R S R R S S e e R EEEE S

[] FrkxkEkFkAkkkkkkkkkkkkkkkkxk %% GrandSync state-machine routine **kxkkkkkkkkkkkhkrkkkkkhk kA k*
[Kkk

Common *GrandSyncInit (Common *, char *);

// Sets common state to allow grandTime values to be back-interpolated

// arguments:

// comPtr - associated state-maintaining data structure

// name - initialization trigger and assigned entity name

Common *

GrandSyncExec (Common *comPtr, char *name)
uint8 t rxInfo[SizePlus (GrandSyncInd)], txInfo[SizePlus(GrandSyncReq)];
GrandSyncEntity *ePtr = (GrandSyncEntity *)comPtr;
GrandSyncInd *rxPtr = (GrandSyncInd *)rxInfo;
GrandSyncReq *txPtr = (GrandSyncReq *)txInfo;
GrandSyncSaved *sxPtr = &(ePtr->rxSaved) ;
SyncSduData *rsPtr = &(rxPtr->service_data_unit);
SyncSduData *tsPtr = &(txPtr->service data_unit);
RxPort *rxQueuePtr;
TxPort *txQueuePtr;

GrandTime rxGrandTime;

Preference test, past;

Precedence rxPrecedence;

SmallTime nextTime, rxSmallTime, rxSyncInterval, stationTime;

TinyTime rxExtraTime;
HopCount rxHopCount ;
Port rxSourcePort;

uinté64_t macAddress;

uint32_t sized;

uintlée t accelerated, count, hopCount;
Boolean serviced, better;

if (name != NULL) // Initialization
return (GrandSyncInit (comPtr, name)) ;

SetRxQueuelPtrs (comPtr, rxQueuePtr) ;

SetTxQueuelPtrs (comPtr, txQueuePtr) ;

do {
serviced = FALSE;
// R RS RS S SRR SRS EEE R SRS E R R R SR SRR R EER R R RE R SRR REEER R RRRRRRERRREEREEEEEEEEESEESSES

// ***x* Processing arriving GrandSync MA UNITDATA.indication parameters ***¥xxx
// R R R R R R R R R R R S R R S S R S R S S R S S R EEEE S

stationTime = StationTime (comPtr) ; // Station’s localTime

sized = DeQueue (rxQueuePtr, &rxInfo) ; // Check rx queue

if (sized == sizeof (GrandSyncInd) && TimeSyncSdu((SyncSduData *)rsPtr)) { // Verify parameters
serviced = TRUE;
rxPrecedence = FieldToUnsign (rsPtr, precedence) ; // Precedence value
rxHopCount = FieldToUnsign (rsPtr, hopCount) .lower; // Hop-count distance
rxSourcePort = FieldToUnsign (rsPtr, sourcePort) .lower; // Received port identifier
rxGrandTime = FieldToSigned (rsPtr, grandTime) ; // Grandmaster time
rxExtraTime = FieldToSigned (rsPtr, extraTime) .lower; // Extra part of grandTime

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

125

0
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

P RPO0O0O~NOOPM~WNLE

JggDvj20050416/D0.718, 2007-08-05

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

rxSmallTime = FieldToSigned (rsPtr, smallTime) .lower;
rxSyncInterval = FieldToUnsign (rsPtr, syncInterval) .lower;
test = FormPreference (rxPrecedence, rxHopCount, rxSourcePort) ;
past = FormPreference (sxPtr->precedence, sxPtr->hopCount, sxPtr->sourcePort) ;
better = rxSourcePort == sxPtr->sourcePort || WideCompareUnsigned (test, past) <= 0;
if (rxHopCount != LAST HOP && better) {

ePtr->lastTime = stationTime;

count = sxPtr->hopCount;

sxPtr->precedence = rxPrecedence;

sxPtr->sourcePort = rxSourcePort;

sxPtr->hopCount = rxHopCount;
sxPtr->syncInterval = rxSyncInterval;

accelerated = 1 + (LAST HOP + rxHopCount) / 2;

hopCount = MIN(LAST HOP, rxHopCount > count ? accelerated

rxHopCount + 1) ;

// IR R R R S R R R R R S R EE RS

// **xxx%x% Create and transmit MA UNITDATA.indication parameters *xx*%¥*
// EEE SR SRR SRS RS EE SR SRS R RS EEEE SRR EEERE R RERRERE R RRRRERRREREREEEEEEEEEEEEESES]

macAddress = MacAddress (comPtr) ;

LongToFrame (AVB_MCAST,
LongToFrame (macAddress,
LongToFrame (AVB_PROTOCOL,
LongToFrame (AVB_FUNCTION,
LongToFrame (AVB_VERSION,
WideToFrame (rxPrecedence,
LongToFrame (hopCount,
LongToFrame (rxSourcePort,
WideToFrame (rxGrandTime ,
LongToFrame (rxExtraTime,
LongToFrame (rxSmallTime,
LongToFrame (rxSyncInterval,
EnQueue (txQueuePtr, txPtr);

}

assert (sxPtr->syncInterval != 0);

txPtr, destination address) ;
txPtr, source_address) ;
tsPtr, protocolType) ;
tsPtr, function);
tsPtr, version) ;

tsPtr, precedence) ;
tsPtr, hopCount) ;
tsPtr, sourcePort) ;
tsPtr, grandTime) ;
tsPtr, extraTime) ;
tsPtr, smallTime) ;
tsPtr, syncInterval);

nextTime = ePtr->lastTime + 4 * sxPtr->syncInterval;

if ((stationTime - nextTime) >= 0)
serviced = TRUE;

sxPtr->precedence.upper = sxPtr->precedence.lower = ONES;
sxPtr->hopCount = sxPtr-s>sourcePort = 0XFF;

ePtr->lastTime = stationTime;

// printf (“GrandSync (timeout) :\n”);

} while (serviced == TRUE);
assert ((nextTime - stationTime) > 0);
SleepOnBase (comPtr, nextTime) ;

return (NULL) ;

}

Common *
GrandSyncInit (Common *oldPtr, char *string)
Common *comPtr;

{

T T N N N
NN SOOI I I I NN,

Internal station time
Sync-interval time

Test preference

Past preference

This one is better
and is also valid
Update timeout timer
Saved hopCount value
Saved GM values

Accelerated aging
if receiver is aged

Neighbor multicast address
This port’s MAC address
The AVB protocol

The timeSync frame in AVB
This version number
Create new precedende
Create GM distance

Create port indentifier
Echo grandTime

Echo extraTime

Echo localTime

Echo synch interval
Enqueue the result;

Consistency check
Timeout threshold
Timeout actions

Worst precedence &
worst tie-breakers
Resets the timeout

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

126

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05

GrandSyncEntity *ePtr;
GrandSyncSaved *sxPtr;

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

char temp [TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

comPtr = CommonCreate (oldPtr, sizeof (GrandSyncEntity), &GrandSyncExec, TYPE ENTITY, Q RX11 LAST, Q TX11l LAST);

if (comPtr != NULL) {
ePtr = (GrandSyncEntity *)comPtr;
sxPtr = &(ePtr->rxSaved) ;

sxPtr->syncInterval

SMALL 10ms;

sxPtr->precedence.upper = sxPtr->precedence.lower = ONES;

nextPtr = StrPair (strncpy(temp, string, TLIMIT), name, data, NLIMIT);
for (; nextPtr != NULL && name[0] != ‘\0’; nextPtr = StrPair (nextPtr, name, data, NLIMIT)) {

if (strcmp (name,

“name”) == 0)

strcpy (comPtr->name, data);

else if (strcmp(name, “rx0”) == 0)
assert (comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
else if (strcmp(name, “tx0”) == 0)

assert (comPtr->txPortCount > 0), strcpy(comPtr->txPortPtr[0].name, data);

assert (PortsCheck (comPtr, nextPtr) == TRUE) ;

}

return (comPtr) ;

// R R R R S R R R R S S S R R R R R R R R R R R R R R R R RS R EE R

[] *kkxkkkxkkkkkkkkkxkkxkkx ClockMaster state-machine routines ****kkkkkkkkkkkhkkkhkkkkkkk*
[k Rk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok sk ok sk ok sk ok ok ok ok ok ok ok ok ok ok ko k ok k ok k ok ok ok ok ok ok ok ok ok ok

Common *ClockMasterInit (Common *, char ¥*);
// Provide the clock source information, retransmits to GrandSync
// arguments:

// comPtr - associated state-maintaining data structure

// name - initialization trigger and assigned entity name

Common *

ClockMasterExec (Common *comPtr, char *name) {
uint8_t cmInfo[SizePlus(ClockMasterSet)], txInfo[SizePlus (GrandSyncInd)];
ClockMasterEntity *ePtr = (ClockMasterEntity *)comPtr;
ClockMasterSet *rxPtr = (ClockMasterSet *)cmInfo;
GrandSyncInd *txPtr = (GrandSyncInd *)txInfo;
SyncSduData *tsPtr = &(txPtr->service data unit);
RxPort *rxQueuePtr;
TxPort *txQueuePtr;

GrandTime grandTime;
SmallTime stationTime;
uint64_t macAddress;
uint32 t sized;

uintlé_t count, frameCount;
uints8_t portID;

Boolean serviced;

if (name != NULL)
return (ClockMasterInit (comPtr, name)) ;
SetRxQueuelPtrs (comPtr, rxQueuePtr) ;

// The entity name
// for initialization

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

127

0

P RPO0O0O~NOOPM~WNLE

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05
SetTxQueuelPtrs (comPtr, txQueuePtr) ;

macAddress = MacAddress (comPtr) ;
portID = PortID(comPtr) ;

do {

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

serviced = FALSE;
// R R SRS R R EE SRS EEE R SRS EE R R SR SRR REER R RERER R R REREEERERERRRRRREREREREREEREEEEEEEEESEESSES

// **xxx Processing arriving GrandSync clock-master indication parameters *xxxi*
// R R R R R R R R R R R S R S S R S S R S S R EEEEES]
stationTime = StationTime (comPtr) ;
sized = DeQueue (rxQueuePtr, rxPtr);
if (sized > 0) {

serviced = TRUE;

assert (sized == sizeof (ClockMasterSet)) ;
ePtr->snapShotl = ePtr->snapShot0;

ePtr->snapShot0 = stationTime;

count = (ePtr->rxFrameCount + 1) % COUNT;

frameCount = FieldToUnsign (rxPtr, frameCount) .lower;
grandTime = FieldToSigned (rxPtr, grandTime) ;
ePtr->rxFrameCount = frameCount;

if (count == frameCount) {

// IR R R R R R R R R S R EEE RS

// ***x*%* Creation and transmit of MA UNITDATA.indication parameters ***xxxx
// R R SRS RS SRS RS EE R R R RS R RS REEEE SRR R RRE R R RERER R R RRRREREREERERREREREEEEEEEEESEESERESRS]

LongToFrame (AVB_MCAST, txPtr, destination address) ;
LongToFrame (macAddress, txPtr, source_address) ;
LongToFrame (AVB_PROTOCOL, tsPtr, protocolType);
LongToFrame (AVB_FUNCTION, tsPtr, function);
LongToFrame (AVB_VERSION, tsPtr, version) ;
WideToFrame (ePtr->precedence, tsPtr, precedence) ;
LongToFrame (0, tsPtr, hopCount) ;
LongToFrame (portID, tsPtr, sourcePort) ;
WideToFrame (grandTime, tsPtr, grandTime) ;
LongToFrame (ePtr->snapShotl, tsPtr, smallTime) ;
LongToFrame (0, tsPtr, extraTime) ;

LongToFrame (ePtr->syncInterval, tsPtr, syncInterval);

// TBD: fcs, priority, ...
EnQueue (txQueuePtr, txPtr);

}

} while (serviced == TRUE) ;
return (NULL) ;

Common *
ClockMasterInit (Common *oldPtr, char *string) {
Common *comPtr;

ClockMasterEntity *ePtr;
uint64_t macAddress;
char temp [TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

comPtr = CommonCreate (oldPtr, sizeof (ClockMasterEntity), &ClockMasterExec,

T T N N N
N N e N

Neighbor multicast address
This port’s MAC address
The AVB protocol

The timeSync frame in AVB
This version number
Create new precedence
Initial GM distance
Create port indentifier
Report grandTime

Report smallTime

Initial extraTime
Sync-frame interval

Enqueue the result;

TYPE RX PORT, Q RX11l LAST, Q TX1l LAST);

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

if (comPtr != NULL) {
macAddress = MacAddress (comPtr) ;
comPtr->portID = CLOCK MASTER PORT ID;
comPtr->portLink = comPtr;
ePtr = (ClockMasterEntity *)comPtr;
ePtr->syncInterval = SMALL 10ms;
ePtr->precedence.upper = 0;
ePtr->precedence.lower = Eui48ToEuié4 (macAddress) ;

nextPtr = StrPair (strncpy(temp, string, TLIMIT), name, data, NLIMIT);

// Get MAC address
// Set port identifier

for (; name[0] != ‘\0’; nextPtr = StrPair (nextPtr, name, data, NLIMIT)) {
if (strcmp(name, “name”) == 0)
strncpy (comPtr->name, data, NLIMIT) ;
else if (strcmp(name, “rx0”) == 0)
assert (comPtr->rxPortCount >= 1), strcpy(comPtr->rxPortPtr[0] .name, data);
else if (strcmp(name, “tx0”) == 0)
assert (comPtr->txPortCount >= 1), strcpy(comPtr->txPortPtr[0] .name, data);
assert (PortsCheck (comPtr, nextPtr) == TRUE) ;

}

return (comPtr) ;

// R R R R R R R R S S R R R R R R R R R R R R R R R RS R EEREE

[/ kEkkkkkkkkkkkkkkkkkkkkk*k ClockSlave state-machine routines **kkkkkkkkkkkkkkkkkkkkkkkx
[] Kkkkhkkkkkkk*

Common *ClockSlaveInit (Common *, char ¥*);
// Generates a GrandSync indication, after being triggered
// arguments:

// comPtr - associated state-maintaining data structure

// name - initialization trigger and assigned entity name

Common *

ClockSlaveExec (Common *comPtr, char *name) {
uint8 t sxInfo[SizePlus(ClockSlaveReq)], rxInfo[SizePlus (GrandSyncReq)],
ClockSlaveEntity *ePtr = (ClockSlaveEntity *)comPtr;
ClockSlaveSaved *rcPtr = &(ePtr->rxSaved) ;
BaseTimer *btPtr = &(ePtr->baseTimer) ;
ClockSlaveReq *sxPtr = (ClockSlaveReq *)sxInfo;
GrandSyncReq *rxPtr = (GrandSyncReq *)rxInfo;
ClockSlaveRes *txPtr = (ClockSlaveRes *)txInfo;
SyncSduData *rsPtr = &(rxPtr->service data unit);
RxPort *cxPortPtr, *rxQueuePtr;
TxPort *txQueuePtr;

NextTimes nextTimes;
LargeTime systemTime;
GrandTime grandTime;

txInfo[SizePlus (ClockSlaveRes)] ;

SmallTime backInterval, rateInterval, smallTime, stationTime, syncInterval;

TinyTime extraTime;
uint32_t sized;
uints8_t frameCount;
Boolean serviced;
if (name != NULL)

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

// The entity’s name

0
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

P RPO0O0O~NOOPM~WNLE

JggDvj20050416/D0.718, 2007-08-05
return (ClockSlavelInit (comPtr, name)) ;

SetRxQueue2Ptrs (comPtr, rxQueuePtr, cxPortPtr);
SetTxQueuelPtrs (comPtr, txQueuePtr) ;
stationTime = StationTime (comPtr) ;
do {
serviced = FALSE;
systemTime = SystemTime (comPtr) ;
backInterval = (3 * rcPtr-s>syncInterval + ePtr-ssyncInterval) / 2;
rateInterval = backInterval + (3 * ePtr-s>syncInterval) / 2;

// R R R R S R R R R R R S S R S R R S R R S R S R EEES

// **xxxxx Processing arriving GrandSync ClockSlave.request parameters *xxxxxxxx
// R R E R R R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEREEREEEEEREREEEEEREEREEEEEREEEEEESEEREEREEEES]

sized = DeQueue (cxPortPtr, sxPtr);

if (sized != 0)
serviced = TRUE;
assert (sized == sizeof (ClockSlaveReq)) ;
frameCount = FieldToUnsign(sxPtr, frameCount) .lower;
nextTimes = NextTimed (btPtr, stationTime, backInterval) ;

grandTime = nextTimes.totalTime;
LongToFrame (frameCount, txPtr, frameCount) ;
WideToFrame (grandTime, txPtr, grandTime) ;
EnQueue (txQueuePtr, txPtr);

}

// R R R R S R R R R R R S S R R S S R S R S R S e R EEEE

// **xxx%% Processing arriving GrandSync MA UNITDATA.request parameters ****xxxx
// R R R R R R R R R R RS R SRR R R R SRR R R R R R R R EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEESESESES]
sized = DeQueue (rxQueuePtr, rxPtr);
if (sized == sizeof (GrandSyncReq) && TimeSyncSdu((SyncSduData *)rsPtr)) {
serviced = TRUE;
syncInterval = FieldToSigned (rsPtr, syncInterval) .lower;

(
grandTime = FieldToSigned (rsPtr, grandTime) ;
extraTime = FieldToSigned (rsPtr, extraTime) .lower;
smallTime = FieldToSigned (rsPtr, smallTime) .lower;

rcPtr->syncInterval = syncInterval;
NextSaved (btPtr, ePtr-ssyncInterval, rateInterval, GrandToLarge (grandTime),

} while (serviced == TRUE);
return (NULL) ;

}

Common *
ClockSlavelInit (Common *oldPtr, char *string) {
Common *comPtr;
ClockSlaveEntity *ePtr;
BaseTimer *btPtr;
char temp [TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

// for initialization

// Tag from the request
// Associated grandTime
// Enqueue the result;

TinyToSmall (extraTime), smallTime) ;

// Return tagged indication

comPtr = CommonCreate (oldPtr, sizeof (ClockSlaveEntity), &ClockSlaveExec, TYPE TX PORT, Q RX22 LAST, Q TX11l LAST);

if (comPtr != NULL) ({
ePtr = (ClockSlaveEntity *)comPtr;
ePtr->syncInterval = SMALL_ 10ms;
ePtr->rxSaved.syncInterval = SMALL 10ms;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

130

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

btPtr = &(ePtr->baseTimer) ;
btPtr->validated = 0;
btPtr->headIndex = btPtr->taillIndex = 0;

nextPtr = StrPair (strncpy(temp, string, TLIMIT), name, data, NLIMIT);

for (; name[0] != ‘\0’; nextPtr = StrPair (nextPtr, name, data, NLIMIT)) {
if (strcmp(name, “name”) == 0)
strncpy (comPtr->name, data, NLIMIT) ;
else if (strcmp(name, “rx0”) == 0)
assert (comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
else if (strcmp(name, “rxl”) == 0)
assert (comPtr->rxPortCount > 1), strcpy(comPtr->rxPortPtr[1l].name, data);
else if (strcmp(name, “tx0”) == 0)

assert (comPtr->txPortCount >= 1), strcpy(comPtr->txPortPtr[0] .name, data);

assert (PortsCheck (comPtr, nextPtr) == TRUE) ;

}

return (comPtr) ;

// R R R R R R R R R R R R R R R R R R RS RS E R R R R R R R R R R R R EEEEEEEEEEEEEEEREEEEREEEEEEEEEEEEEESES]

[/ *xxxxxxxxxxxxxxxxxxxx*x Ethernet-duplex state-machine routines *xkkkkkkkkkkhhkhhhhhhhhk
[] Kkkkkkkkkkkkkkkkkkkkkkkkokkk ok *

Common *EfdxRxInit (Common *, char *);
// Receives duplex-Ethernet SDUs, retransmits them to GrandSync

// arguments:
// comPtr - associated state-maintaining data structure
// name - initialization trigger and assigned entity name
Common *
EfdxRxExec (Common *comPtr, char *name)
uint8_t rxInfo [MTU SIZED], txInfo[MTU SIZED], sxInfo[SizePlus (EfdxRxInfo)];
EfdxRxEntity *ePtr = (EfdxRxEntity *)comPtr;
RxTimer *btPtr = &(ePtr->rxTimer) ;
EfdxRxInfo *sxPtr = (EfdxRxInfo *)sxInfo;
EfdxMacInd *rxPtr = (EfdxMacInd *)rxInfo;
GrandSyncInd *txPtr = (GrandSyncInd *)txInfo;
EfdxSduData *rsPtr = &(rxPtr->service data unit);
SyncSduData *tsPtr = &(txPtr->service data_ unit);

EfdxMacInd *dxPtr = &(ePtr->savedInd) ;

EfdxSduData *dsPtr = &(dxPtr->service data unit);

RxPort *rxQueuePtr, *sxQueuePtr;

TxPort *txQueuePtr;

Precedence precedence;

GrandTime grandTime;

SmallTime cableDelay, compRxTime, rateRatio, smallTime, stationTime, thisRxTime, thisTxTimed;
LocalTime roundTrip, thatTxTime, thatRxTime, thisTxTime, turnRound, turnRound0;
TinyTime extraTime;

uint64 t da, sa;

uint32_t sized;

uintleé_t frameCount, protocol, rxHeadSize, snapCount, txHeadSize;
uint8_t function, guess, hopCount, portID, version;
Boolean countsAreEqual, serviced;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

131

0

P RPO0O0O~NOOPM~WNLE

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05

if (name != NULL)

return (EfdxRxInit (comPtr,
SetRxQueue2Ptrs (comPtr, rxQueuePtr,
SetTxQueuelPtrs (comPtr, txQueuePtr) ;

portID PortID (comPtr) ;
countsAreEqual = 0;
do

stationTime = StationTime (comPtr) ;

serviced = FALSE;

name)) ;
sxQueuePtr) ;

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

// The entity’s name
// for initialization.

// Station’s localTime

// R R R R R R R R R R R R S S R S R S S R S R S R EEEEEES

[/ Frkxkkkkkkxkkkkk*x* Processing arriving timeSync snapshots ***kkxk*kkkxkkkkkhk
[] Kkk

sized = DeQueue (sxQueuePtr,

if

}

(sized != 0)

serviced = TRUE;

&sxInfo) ;

assert (sized == sizeof (EfdxRxInfo)) ;

snapCount = FieldToUnsign (sxPtr, frameCount) .lower;
smallTime = FieldToUnsign (sxPtr, smallTime) .lower;
ePtr->snapShotl = ePtr->snapShot0;

ePtr->snapShot0 = smallTime;
ePtr->snapCount = snapCount;

countsAreEqual = (snapCount == ePtr->frameCount) ;

// R R R R S S R R R R R R S R S R R S R R R S R EE RS

[/ Frkxkkkkkkkkkkkkx*%% Processing arriving timeSync frames **kkkkkkkkkkkkkkkkkx
[] Kkkkkkkkkkkkkkkkkkkkkkkkkkkokkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkkhkkkkkkk

sized = Dequeue (rxQueuePtr,

if

}

if

(countsAreEqual == TRUE)

serviced = TRUE;

rxPtr, sizeof (rxInfo));

(sized 1= 0)

serviced = TRUE;

if (sized == sizeof (EfdxMacInd) && TimeSyncSdu((SyncSduData *)rsPtr)) // Any timeSync frame
frameCount = FieldToUnsign (rsPtr, frameCount) .lower; // has an actual and
guess = (ePtr->frameCount + 1) % COUNT; // expected frameCount
ePtr->frameCount = frameCount; // Update frameCount
if (frameCount == guess) // An expected frame

bcopy (rxPtr, dxPtr, sizeof (EfdxMacInd)) ; // Save valid frames

\ countsAreEqual (frameCount == ePtr->snapCount) ; // Enable processing

} else
da = FieldToUnsign (rxPtr, destination address) .lower; // Extract destination
sa = FieldToUnsign (rxPtr, source_address) .lower; // Extract source
LongToFrame (da, txPtr, destination address); // Deposit destination
LongToFrame (sa, txPtr, source address) ; // Deposit source
rxHeadSize = (void *)rsPtr - (void *)rxPtr; // Received header size
txHeadSize = (void *)tsPtr - (void *)txPtr; // Transmit header size
bcopy (rsPtr, tsPtr, - rxHeadSize) ; // Copy entire SDU
Enqueue (txQueuePtr, txPtr, sized + txHeadSize - rxHeadSize) ; // Engqueue the contents

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

132

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

countsAreEqual = FALSE;

da = FieldToUnsign (dxPtr, destination address) .lower;
sa = FieldToUnsign (dxPtr, source_ address) .lower;
protocol = FieldToUnsign (dsPtr, protocolType) .lower;
function = FieldToUnsign (dsPtr, function) .lower;

version = FieldToUnsign (dsPtr, version) .lower;

precedence = FieldToUnsign(dsPtr, precedence) ;

hopCount = FieldToUnsign (dsPtr, hopCount) .lower;

frameCount = FieldToUnsign(dsPtr, frameCount) .lower;

thatTxTime = FieldToSigned(dsPtr, thatTxTime) .lower;

thatRxTime = FieldToSigned(dsPtr, thatRxTime) .lower;

grandTime FieldToSigned(dsPtr, grandTime) ;

extraTime = FieldToSigned(dsPtr, extraTime) .lower;

thisTxTime = FieldToSigned(dsPtr, localTime) .lower;

thisRxTime = ePtr->snapShotl;

ePtr->thisTxTime = thisTxTime; // Saved for transmit
ePtr->thisRxTime = SmallToLocal (thisRxTime) ; // over returning link

if (ePtr->thatRxTime != thatRxTime)
ePtr->thatRxTime = thatRxTime;
ePtr->txReady = TRUE;

thisTxTimed = thisRxTime - LocalToSmall (SmallToLocal (thisRxTime) - thisTxTime) ;
if (ePtr->txReady == TRUE)

rateRatio = NextRate (btPtr, thisRxTime, thisTxTimed, ePtr->syncInterval, btPtr->interval);
else

rateRatio = SMALL_ONE;

if (btPtr->validated != TRUE || ePtr->txReady != TRUE)

hopCount = LAST HOP;
roundTrip = LocalToSmall (ePtr->thisRxTime - thatTxTime) ; // Round-trip delay
turnRound0 = LocalToSmall (thisTxTime - thatRxTime) ; // Turn-around delay
turnRound = MultiplySmall (turnRound0O, rateRatio) ; // Normalized turnRound
cableDelay = MAX (0, roundTrip - turnRound) / 2; // Cable-delay computed
compRxTime = thisRxTime - cableDelay; // Cable-delay adjustment

// IR R R R R S R R R R R S R R S RS

/] F*rxxFxxxkxkxk%x Update revised service-data-unit parameters ** &k & k& xkxkxx
// dAhkhkhkhkdhhkhkhkhkdhhkdhkdhhkhkhkhkdhkhhhdhkhkhhkdhhdhkdkhhkdhhdhkdkhhkdhhdhhdhkhkhhkdhkdhkdkhkhkdhhdkhkdhkhrhhdhdxhx

LongToFrame (da, txPtr, destination address) ; // The destination address
LongToFrame (sa, txPtr, source_ address); // The source address
LongToFrame (protocol, tsPtr, protocolType) ; // The protocol identifier
LongToFrame (function, tsPtr, function); // The function identifier
LongToFrame (version, tsPtr, version); // The function identifier
WideToFrame (precedence, tsPtr, precedence); // GM selection precedence
LongToFrame (hopCount, tsPtr, hopCount) ; // GM hop-count distance
LongToFrame (portID, tsPtr, sourcePort) ; // Source-port identifier
WideToFrame (grandTime, tsPtr, grandTime) ; // grandTime at snapShot
LongToFrame (extraTime, tsPtr, extraTime) ; // Next extraTime value
LongToFrame (compRxTime, tsPtr, smallTime) ; // Transmitted frame time
LongToFrame (ePtr->syncInterval, tsPtr, syncInterval); // Sync transmit interval
EnQueue (txQueuePtr, txPtr); // Enqueue the result

} while (serviced == TRUE);
return (NULL) ;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

133

0

P RPO0O0O~NOOPM~WNLE

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
}

Common *
EfdxRxInit (Common *oldPtr, char *string) {
Common *comPtr;
EfdxRxEntity *ePtr;
RxTimer *btPtr;
char temp [TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

comPtr = CommonCreate (oldPtr, sizeof (EfdxRxEntity), &EfdxRxExec, TYPE RX PORT, Q RX22 LAST, Q TX1l LAST);
if (comPtr != NULL)

ePtr = (EfdxRxEntity *)comPtr;

ePtr->syncInterval = SMALL 10ms;

ePtr->snapCount = ePtr->frameCount = -1;

ePtr->txReady = FALSE;

btPtr = &(ePtr->rxTimer) ;
btPtr->validated = FALSE;
btPtr->interval = SMALL 10ms * 20;
btPtr->headIndex = btPtr->taillIndex = 0;

nextPtr = StrPair (strncpy(temp, string, TLIMIT), name, data, NLIMIT);

for (; name([0] != ‘\0’; nextPtr = StrPair (nextPtr, name, data, NLIMIT)) {
if (strcmp(name, “name”) == 0)
strcpy (comPtr->name, data);
else if (strcmp(name, “rx0”) == 0)
assert (comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
else if (strcmp(name, “rxl1l”) == 0)
assert (comPtr->rxPortCount > 1), strcpy(comPtr->rxPortPtr[1l].name, data);
else if (strcmp(name, “tx0”) == 0)

assert (comPtr->txPortCount > 0), strcpy(comPtr->txPortPtr[0].name, data);

assert (PortsCheck (comPtr, nextPtr) == TRUE) ;

}

return (comPtr) ;

SmallTime
NextRate (RxTimer *btPtr, SmallTime thisRxTime, SmallTime thisTxTime, SmallTime intervalO, SmallTime intervall)

PastTimes *timePtr;

SmallTime rateRatioO, rateRatiol, thatDelta, thisDelta;
uintlé_t headIndex, taillIndex, lastIndex, limit;
uint8_t i;

assert (btPtr != NULL) ; // Verify the pointer
timePtr = btPtr->times; // Array value pointer
limit = ARRAY SIZE(btPtr->times); // Array-size limits
if (btPtr->headIndex == btPtr->taillndex) { // Unitialized array
assert (btPtr->validated == FALSE) ; // has no validated
btPtr-s>headIndex = 1, btPtr->taillIndex = 0; // Initialize index
timePtr [0] .thisTime = thisRxTime; // and tail-indexed
//

timePtr[0] .thatTime = thisTxTime; data values

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

134

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

headIndex =
lastIndex =
assert (head

if ((timePt

btPtr->
} btPtr->
timePtr [hea
timePtr [hea
if (btPtr->

return (

for (i = 0;
tailInd
if (tai

bre
if (th
bre

}

tailIndex =

thisDelta =
thatDelta =
assert (that
rateRatio0
rateRatiol
return(rate

}

Common *EfdxTxI
// Receives Gra
// arguments:

// comPtr -
// name -
Common *

btPtr->headIndex; // The head and last
PLUS (headIndex, -1, limit); // index values within
Index < limit && lastIndex < limit); // the circular buffer
r [headIndex] .thatTime - timePtr[lastIndex].thatTime) > (intervalo / 2)) { // Time to advance
headIndex = headIndex = PLUS (headIndex, 1, limit); // increment headIndex
validated = TRUE; // Set when ready
dIndex] .thisTime = thisRxTime; // Save received time
dIndex] .thatTime = thisTxTime; // Save transmit time
validated == FALSE) // Until times change,
SMALL_ONE) ; // assume slope==

i < 2; i += 1, btPtr->taillndex = taillndex) ({ // Check tailIndex twice
ex = PLUS (btPtr->tailIndex, 1, limit); // Next tailIndex value
lIndex == headIndex) // The tailIndex can
ak; // never equal headIndex
isTxTime - timePtr[tailIndex].thatTime <= intervall) // Update taillIndex if
ak; // range is maintained
btPtr->tailIndex;

thisRxTime - timePtr[tailIndex] .thisTime; // Received interval
thisTxTime - timePtr[tailIndex] .thatTime; // Transmit interval
Delta != 0); // Must have changed

= DivideSmall (thisDelta, thatDelta) ; // Compute the rate

= CLIP_RATE (rateRatioO, PPM250) ; // Clip within 250PPM

Ratiol) ;
nit (Common *, char *);
ndSync SDUs, retransmits them as duplex-Ethernet SDUs

associated state-maintaining data structure
initialization trigger and assigned entity name

EfdxTxExec (Common *comPtr, char *name)

uint8_t txI
EfdxTxEntit
BaseTimer
GrandSyncRe
EfdxTxSaved
EfdxMacReq
SyncSduData
EfdxSduData
EfdxTxInfo
EfdxRxEntit
RxPort *
TxPort *
NextTimes
GrandTime
SmallTime
LocalTime
TinyTime
uintleée t

nfo [MTU_SIZED], rxInfo[MTU_SIZED], sxInfo[SizePlus(EfdxTxInfo)];

y *ePtr = (EfdxTxEntity *)comPtr;
*btPtr = &(ePtr->baseTimer) ;

g *rxPtr = (GrandSyncReq *)rxInfo;
*rcPtr = &(ePtr->rxSaved) ;
*txPtr = (EfdxMacReq *)txInfo;
*rsPtr = &(rxPtr->service data unit);
*tsPtr = &(txPtr->service data unit);
*gxPtr = (EfdxTxInfo *)sxInfo;

y *dPtr;

rxQueuePtr, *sxQueuePtr;

txQueuePtr;

nextTimes;

grandTime;

backInterval, execTime, nextTime, ratelInterval, smallTime, stationTime, wakeTime;

localTime;
extraTime;
rxHeadSize, txHeadSize, size, sized;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

135

0

P RPO0O0O~NOOPM~WNLE

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05
Boolean

if (

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

serviced;

name != NULL)
return (EfdxTxInit (comPtr, name)) ;

// The entity name
// for initialization.

SetRxQueue2Ptrs (comPtr, rxQueuePtr, sxQueuePtr) ;
SetTxQueuelPtrs (comPtr, txQueuePtr);

assert ((dPtr = (EfdxRxEntity *)comPtr-s>pairLink) != NULL) ;

do {

// Associated receiver

serviced = FALSE;

stationTime = StationTime (comPtr) ;

backInterval = (3 * rcPtr->syncInterval + ePtr-ssyncInterval) / 2;
rateInterval = backInterval + (3 * ePtr-s>syncInterval) / 2;

// Station’s localTime

// R R R R R R R R R R R S R S R R S R S S R S e RS R EEE S

[/ FExxEkAAKKR KKKk **x% Processing arriving timeSync snapshots ****xxkskkkxksdkkrxx
// R RS RS S SRR SRS EEE R SRS EE R R SR SRR REEE R R R RERER R R R REEERERERRRRRRRRREREEREEREEEEEESEESSES
sized = DeQueue (sxQueuePtr, &sxInfo) ;
if (sized != 0)
serviced = TRUE;
assert (sized == sizeof (EfdxTxInfo)) ;
ePtr->sxSnapCount = FieldToUnsign (sxPtr, frameCount) .lower;
ePtr->sxSnapTimed = FieldToUnsign (sxPtr, smallTime) .lower;
ePtr->txReady = TRUE;

}

// khkhkdhkhkhhkhkhkhkdhkdhhkhhkhkhhkdhhkdhkhhkhhdhhdhhdhhhhdhhdhhhkhhhdhkdhhkhkdhhdhhkdkhkhkdhhdhhdkhkhrhkhdhdhdhhdhdk
[/ F**xxxkkkkxxkk%* Processing arrived MS DATAUNIT.request frames *x**kkxxxkkkkxx
// EEE SRS RS EE SRS EEE R SRS EE R R SR SRR REEE R R R RER R R R REERRERERRRRRRRRRREEREEEEEEEEESEESSES
sized = DeQueue (rxQueuePtr, &rxInfo) ;
if (sized != 0)

serviced = TRUE;

if (sized != sizeof (GrandSyncReq) || !TimeSyncSdu(rsPtr)) ({
LongToFrame (rcPtr->da, txPtr, destination address);
LongToFrame (rcPtr->sa, txPtr, source_address);

rxHeadSize = (void *)rsPtr - (void *)rxPtr;
txHeadSize = (void *)tsPtr - (void *)txPtr;

bcopy (rsPtr, tsPtr, sized - rxHeadSize) ;
size = sized + txHeadSize - rxHeadSize;
Enqueue (txQueuePtr, txPtr, size);
} else {

rcPtr->da =
rcPtr->sa =
rcPtr->type =
rcPtr->function =
rcPtr->version =

FieldToUnsign (rxPtr,
FieldToUnsign (rxPtr,
FieldToUnsign (rsPtr,
FieldToUnsign (rsPtr,
FieldToUnsign (rsPtr,
rcPtr->hopCount = FieldToUnsign (rsPtr,
rcPtr->precedence = FieldToUnsign (rsPtr,
rcPtr->syncInterval = FieldToUnsign (rsPtr,

grandTime = FieldToSigned (rsPtr,
extraTime = FieldToSigned (rsPtr,
smallTime = FieldToSigned (rsPtr,

destination_address) .lower;
source_address) .lower;
protocolType) .lower;
function) .lower;
version) .lower;
hopCount) .lower;
precedence) ;
syncInterval) .lower;
grandTime) ;
extraTime) . lower;
smallTime) . lower;

NextSaved (btPtr, ePtr-s>syncInterval, ratelnterval,
GrandToLarge (grandTime), TinyToSmall (extraTime), smallTime) ;

// The destination_ address
// The source_address

// Received header size

// Transmit header size

// Copy entire SDU

// Size of enqueued frame
// Enqueue for transmission

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

136

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

// if (ePtr->guessMode == EXTRAPOLATE)
// ePtr->execTime = stationTime + RESIDENCE DELAY;

}

// R R R R S R R R R R R S S R S R S S R S R S R EEEEEES

[/ *xxxxxxxxxxxxxxxx*x* Dreparing transmitted timeSync frames *xkkkkkkkkkkkkkkkkk
[/ kR ok sk ok sk ok o ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK

nextTime = ePtr->lastTime + ePtr->synclInterval;

if ((stationTime - nextTime) >= 0) // Next sync transmission
serviced = TRUE;
ePtr->lastTime = nextTime; // Restart 10ms timer

ePtr->execTime = stationTime + RESIDENCE DELAY;
execTime = ePtr->execTime;
if ((stationTime - execTime) >= 0)

serviced = TRUE;

ePtr->execTime = stationTime + LARGE TOCK; // Indefinite future
ePtr->frameCount = (ePtr->frameCount + 1) % COUNT; // Incremented counter
if (!ePtr->txReady)

ePtr->sxSnapTimed = (stationTime - ePtr->syncInterval);

localTime = SmallToLocal (ePtr->sxSnapTimed) ;

switch (ePtr->guessMode) {

case INTERPOLATE:
nextTimes = NextTimed (btPtr, ePtr->sxSnapTimed, backInterval) ;
break;

case EXTRAPOLATE:
nextTimes = NextTimed (btPtr, ePtr->sxSnapTimed, (SmallTime)O0) ;

break;
LongToFrame (rcPtr->da, txPtr, destination_ address) ; The destination address
LongToFrame (rcPtr->sa, txPtr, source_address) ; The source_ address
LongToFrame (AVB_PROTOCOL, tsPtr, protocolType) ; The protocol identifier
LongToFrame (AVB_FUNCTION, tsPtr, function); The basic function
LongToFrame (AVB_VERSION, tsPtr, version); and version identifier
WideToFrame (rcPtr->precedence, tsPtr, precedence) ; Grandmaster precedence
LongToFrame (rcPtr->hopCount, tsPtr, hopCount) ; The ~GM distance.
LongToFrame (ePtr->frameCount, tsPtr, frameCount) ; Source-port identifier

WideToFrame (nextTimes.grandTime, tsPtr, grandTime) ;
LongToFrame (nextTimes.extraTime, tsPtr, extraTime) ;

grandTime at snapShot
Next extraTime value

T T T T N N
N Y

LongToFrame (localTime, tsPtr, localTime) ; Transmitted frame time
LongToFrame (dPtr->thisTxTime, tsPtr, thatTxTime); Opposing transmit time
LongToFrame (dPtr->thisRxTime, tsPtr, thatRxTime) ; Opposing received time
| EnQueue (txQueuePtr, txPtr); Enqueue the result
wakeTime = (execTime - nextTime) > 0 ? nextTime : execTime;
} while (serviced == TRUE);

assert ((wakeTime - stationTime) > 0);
SleepOnBase (comPtr, wakeTime) ;
return (NULL) ;

}

Common *
EfdxTxInit (Common *oldPtr, char *string)

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

137

0

P RPO0O0O~NOOPM~WNLE

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Common *comPtr;
EfdxTxEntity *ePtr;
BaseTimer *btPtr;
EfdxTxSaved *rcPtr;
char temp [TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

comPtr = CommonCreate (oldPtr, sizeof (EfdxTxEntity), &EfdxTxExec, TYPE TX PORT, Q RX22 LAST, Q TX11l LAST);

if (comPtr != NULL) ({
ePtr = (EfdxTxEntity *)comPtr;
rcPtr = &(ePtr->rxSaved) ;
ePtr->syncInterval = rcPtr->syncInterval = SMALL 10ms;

ePtr->guessMode = INTERPOLATE;

rcPtr->precedence.upper = rcPtr->precedence.lower = ONES;
rcPtr->hopCount = OXFF;

btPtr = &(ePtr->baseTimer) ;
btPtr->validated = 0;
btPtr->headIndex = btPtr->taillIndex = 0;

nextPtr = StrPair (strncpy(temp, string, TLIMIT), name, data, NLIMIT);

for (; name[0] != ‘\0’; nextPtr = StrPair (nextPtr, name, data, NLIMIT)) ({
if (strcmp(name, “name”) == 0)
strncpy (comPtr->name, data, NLIMIT) ;
else if (strcmp(name, “rx0”) == 0)
assert (comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
else if (strcmp(name, “rxl1l”) == 0)
assert (comPtr->rxPortCount > 1), strcpy(comPtr->rxPortPtr[1l].name, data);
else if (strcmp(name, “tx0”) == 0)

assert (comPtr->txPortCount > 0), strcpy(comPtr->txPortPtr[0].name, data);

else if (strcmp(name, “guessMode”) == 0)
ePtr->guessMode = atoi(data) ;
assert (PortsCheck (comPtr, nextPtr) == TRUE) ;

}

return (comPtr) ;

The NextTimed() routine computes grandTime based on current txTime and
previously sampled rxTimes information. The computation effect is:

1) Step back in time by a duration backInterval, to tbTime

2) Interpolate between rxTimes[n-N] and rxTimes[n+0], yielding tiTime

3) Extrapolate the tiTime forward, assuming slope==1, yielding grandTime

4) Extrapolate the tiTime forward, assuming rateRatio, yielding totalTime

The rateRatio is the ratio of grandTime to stationTime changes.

5) Forward {extraTime = totalTime - grandTime) along with grandTime.
The incoming extraTime is also filtered, but not extrapolated forward:

1) Step back in time by a duration backInterval, to tbTime

2) Interpolate between rxTimes [n-N] and rxTimes[n+0], yielding extraTime
The value of of backInterval is based on worst-case latencies:

T T N
N N N N N Y

backInterval = (3 * thatInterval + thisInterval) / 2

thatInterval - is the syncInterval for the selected clock-slave

thisInterval - is the syncInterval for this clock-master port
NextTimes

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

138

P O0O~NOO O, WNER

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

NextTimed (BaseTimer *btPtr, SmallTime txTime, SmallTime backInterval)

}

BaseTimes *timePtr = btPtr->times;

BaseTimes thisTimes, pastTimes;

NextTimes nextTimes;

LargeTime largeTimeO, largeTimel;

SmallTime deltaTime, extraDelta, extraTimeO, extraTimel, extraTime2, extraTime3,
grandDelta, rateRatioO, rateRatiol, smallDelta, weight;

uintleé_t headIndex, tailIndex, extraCount, i;

assert (btPtr != NULL) ;
headIndex = btPtr->headIndex;
tailIndex = btPtr->taillndex;
thisTimes = timePtr [headIndex];
pastTimes = timePtr[taillIndex];

grandDelta = LargeToSmall (WideSubtract (thisTimes.largeTime, pastTimes.largeTime)) ;
extraDelta = thisTimes.extraTime - pastTimes.extraTime;
smallDelta = thisTimes.smallTime - pastTimes.smallTime;
if (smallDelta == 0)
grandDelta = smallDelta = 2 * SMALL 10ms;
extraDelta = 0;

}

weight = DivideSmall ((txTime - backInterval) - thisTimes.smallTime, smallDelta);
rateRatio0 = DivideSmall (grandDelta, smallDelta) ;
rateRatiol = CLIP_RATE (rateRatioO, PPM250) ;
deltaTime = MultiplySmall ((rateRatiol - SMALL ONE), backInterval) ;
if (rateRatiol != rateRatio0)
grandDelta = MultiplySmall (rateRatiol, smallDelta) ;

largeTime0 = WideAddition (thisTimes.largeTime, SmallToLarge (MultiplySmall (grandDelta, weight)));
largeTimel = WideAddition(largeTimeO, SmallToLarge (backInterval)) ;

// Average the accumulated extraTime values...

extraTime0 = extraCount = 0;

for (i = taillndex; ; i = PLUS(i, 1, ARRAY SIZE (btPtr->times))) {
extraTime0 += timePtr[i] .extraTime;
extraCount += timePtr[i] .extraCount;

if (i == headIndex)
break;
assert (headIndex == tailIndex || extraCount != 0);
extraTimel = (extraCount != 0) ? (extraTimeO / extraCount) : 0;
extraTime2 = extraTimel + deltaTime;
extraTime3 = CLIP_SIZE(extraTime2, (SMALL ONE / 256) - 1);

nextTimes.grandTime = LargeToGrand (largeTimel) ;

nextTimes.extraTime = SmallToTiny (extraTime3) ;

nextTimes.totalTime = LargeToGrand (WideAddition (largeTimel, SmallToLarge (extraTime3))) ;
return (nextTimes) ;

void
NextSaved (BaseTimer *btPtr, SmallTime intervallO, SmallTime intervall,

LargeTime largeTime, SmallTime extraTime, SmallTime stationTime)

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

139

0

P RPO0O0O~NOOPM~WNLE

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05

BaseTimes *timePtr = btPtr->times;
uintlé_t headIndex, tailIndex, lastIndex, limit;
uint8_t i;

assert (btPtr != NULL) ;
if (btPtr->headIndex == btPtr->tailIndex)
assert (btPtr->validated == FALSE) ;

btPtr->headIndex = 1, btPtr->tailIndex = 0;
timePtr[0] .largeTime = largeTime;
timePtr [0] .smallTime = stationTime;
timePtr[0] .extraTime = extraTime;
timePtr[0] .extraCount = 1;

limit = ARRAY SIZE (btPtr->times);

headIndex = btPtr->headIndex;

lastIndex = PLUS (headIndex, -1, limit);

assert (headIndex < limit && lastIndex < limit) ;

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

Validate the pointer
If not initialized
Indicate not valid
Initial index values
Initialize GM time
and the other time
values, including

an errorTime count

Array index limit
Current-head index
Previous-head index
Index limitatins

T T N N N
SN NI I NI NN

if (timePtr [headIndex] .smallTime == stationTime)
return;
if ((timePtr [headIndex].smallTime - timePtr[lastIndex].smallTime) > (intervalo / 2)) { // If time has changed
btPtr->headIndex = headIndex = PLUS (headIndex, 1, limit); // Advance the headIndex
timePtr [headIndex] .extraCount = timePtr [headIndex] .extraTime = 0; // Initialize extraTime
btPtr->validated = TRUE; // and set validated
timePtr [headIndex] .largeTime = largeTime; // Saved GM time
timePtr [headIndex] .smallTime = stationTime; // Saved station time
timePtr [headIndex] .extraTime += extraTime; // Averaged time value
timePtr [headIndex] .extraCount += 1; // is accumulated
for (i = 0; 1 < 2; i += 1, btPtr->tailIndex = tailIndex) { // Check tailIndex twice
tailIndex = PLUS (btPtr->tailIndex, 1, limit); // Next tailIndex value
if (tailIndex == headIndex) // The tailIndex must
break; // not equal headIndex
if (stationTime - timePtr[taillIndex].smallTime <= intervall) // The tailIndex must
break; // maintain the interval

// RS RS E R R R R R R R R R R R R R R R R EEEEEREEEEEEEEEEREEEEEEEEEEEEEESSES]

[/ *xxxxxkxxxkxkxxkxxxxx Wireless 802.11v wireless state-machine routines *xxxxkkkkkkkkkkkkk
// R R E R SRR RS SRR SR SRR E R E RS RS R RS R ERE R R R EREE R SRR EEEEEEREEEERREEEEEEEEEEESEEREESEEESESESES

Common *R11vRxInit (Common *, char *);

// Receives radio service-interface parameters, sends GrandSync an SDU
// arguments:

// comPtr - associated state-maintaining data structure

// name - initialization trigger and assigned entity name
Common *
R11vRxExec (Common *comPtr, char *name)
uint8 t rlInfo[SizePlus(R1lvInfolInd)], r2Info[SizePlus(R1lvInfo2Ind)],
R11vRxEntity *ePtr = (R11vRxEntity *)comPtr;
RllvInfolInd *rlPtr = (R1lvInfolInd *)rlInfo;
RllvInfo2Ind *r2Ptr = (R1lvInfo2Ind *)r2Info;

txInfo [MTU SIZED] ;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

140

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

GrandSyncInd *txPtr = (GrandSyncInd *)txInfo;
SyncSduData *tsPtr = &(txPtr->service data unit);
RxPort *rlQueuePtr, *r2QueuePtr;

TxPort *txQueuePtr;

GrandTime grandTime;

SmallTime stationTime, cableDelay, totalDelay, smallTime;
TinyTime extraTime;

TicksTime ticksTime;

uint64 t da, sa;

uint32_t sized;

uints8_t hopCount, portID;

Boolean serviced;

if (name != NULL) // The entity name
return (R11vRxInit (comPtr, name)) ; // for initialization.

SetRxQueue2Ptrs (comPtr, rlQueuePtr, r2QueuePtr) ;
SetTxQueuelPtrs (comPtr, txQueuePtr) ;

portID = PortID (comPtr) ;
do {

stationTime = StationTime (comPtr) ;
serviced = FALSE;

// R R R R R R R R R R R R S R R S R S S R R S R EEEE S

// ***xx% Processing arriving MLME PRESENCE REQUEST.indication snapshots ***¥xxx
// R RS RS R R EE SRS EEE R SRS R R R R SR SRR R EER R R RER R R EREEERERERRRER R R EREEREEEEEEEEESEESSES
sized = DeQueue (rlQueuePtr, &rlInfo) ;
if (sized != 0)

assert (sized == sizeof (RllvInfolInd)) ;

ePtr->turnRound = rlPtr->ticksTime3 - rlPtr->ticksTime2;

// R R R R R R R R R R R R S R R R S S R R S R EEEEE S

// ***xx%* Processing arriving MLME PRESENCE RESPONSE.indication snapshots ****xx
// R R R R R R R RS R R R R R R R R R R RS R R R R R R R R R EEEEEEEEEEEEEEEEEEEEEEEEESEEREESEESEERESESEEEESES
sized = DeQueue (r2QueuePtr, &r2Info) ;
if (sized != 0)
assert (sized == sizeof (Rl1lvInfo2Ind)) ;
serviced = TRUE;
ticksTime = R11lvTime (ePtr) ;
cableDelay = MIN(0, r2Ptr-s>roundTrip - ePtr->turnRound) / 2;
totalDelay = cableDelay + (ticksTime - r2Ptr->ticksTime4)
grandTime = LevelToGrand (r2Ptr->levelTime) ;
hopCount = r2Ptr->hopCount;
extraTime = r2Ptr->extraTime;
smallTime = stationTime - MultiplySmall (totalDelay, RADIO TICK TIME) ;

7

// IR R R R R R R R R R S R R S RS

[/ *xxxxxxxxxxxxxx Creation of service-data-unit parameters *xxxkkkkkkkkkkkk
// R R E R R R EEEREEREEREREEEEEEEEESESEESS

LongToFrame (da, txPtr, destination address) ;
LongToFrame (sa, txPtr, source_address) ;
LongToFrame (hopCount, tsPtr, hopCount) ;
LongToFrame (portID, tsPtr, sourcePort);
WideToFrame (grandTime, tsPtr, grandTime) ;

/7

/

Station’s localTime

Station local times
Cable delay ticks
Elapsed time
Grandmaster time
Grandmaster time
Grandmaster time
Local-time stamp

Destination address
Source-port identifier
The ~GM distance.
Source-port identifier
grandTime at snapShot

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

141

P RPO0O0O~NOOPM~WNLE

1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING

LongToFrame (extraTime, tsPtr, extraTime) ; // Next extraTime value
LongToFrame (smallTime, tsPtr, smallTime) ; // Transmitted frame time
LongToFrame (ePtr->syncInterval, tsPtr, syncInterval); // Sync transmit interval
EnQueue (txQueuePtr, txPtr); // Enqueue the result

} while (serviced == TRUE);
return (NULL) ;

Common *
R11vRxInit (Common *o0ldPtr, char *string) {
Common *comPtr;

R11vRxEntity *ePtr;
char temp [TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

comPtr = CommonCreate (oldPtr, sizeof (R11vRxEntity), &R11lvRxExec, TYPE_RX_PORT, Q RX22 LAST, Q TX11l_LAST);

if (comPtr != NULL) ({
ePtr = (R11vRxEntity *)comPtr; // Setup entity pointer
ePtr->syncInterval = SMALL 10ms; // Set default interval
nextPtr = StrPair (strncpy(temp, string, TLIMIT), name, data, NLIMIT);
for (; name[0] != ‘\0’; nextPtr = StrPair (nextPtr, name, data, NLIMIT)) {
if (strcmp(name, “name”) == 0)
strncpy (comPtr->name, data, NLIMIT) ;
else if (strcmp(name, “rx0”) == 0)
assert (comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
else if (strcmp(name, “rxl”) == 0)
assert (comPtr->rxPortCount > 1), strcpy(comPtr->rxPortPtr[1l].name, data);
else if (strcmp(name, “tx0”) == 0)

assert (comPtr->txPortCount > 0), strcpy(comPtr->txPortPtr[0].name, data);
assert (PortsCheck (comPtr, nextPtr) == TRUE) ;

return (comPtr) ;

Common *R11vTxInit (Common *, char *);

// Receives radio GrandSync SDUs, retransmits as service-interface parameters

// arguments:
// comPtr - associated state-maintaining data structure
// name - initialization trigger and assigned entity name
Common *
R11vTxExec (Common *comPtr, char *name)
uint8 t rxInfo[MTU SIZED], c2Info[SizePlus(R1llvInfo2Con)], clInfo[SizePlus(R1llvInfolCon)];
R11vTxEntity *ePtr = (R11vTxEntity *)comPtr;
BaseTimer *btPtr = &(ePtr->baseTimer) ;
GrandSyncReq *rxPtr = (GrandSyncReq *)rxInfo;
R11lvTxSaved *sxPtr = &(ePtr->rxSaved) ;
SyncSduData *rsPtr = &(rxPtr->service data unit);
RllvInfo2Con *c2Ptr = (R1lvInfo2Con *)c2Info;
RllvInfolCon *clPtr = (R1llvInfolCon *)clInfo;

R11vRxEntity *dPtr;
R1llvInfolReq rlInfo, *rlPtr = &rlInfo;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

142

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05 WHITE PAPER CONTRIBUTION TO AVB BRIDGING
RllvInfo2Req *r2Ptr, r2Info;

TxPort *r1QueuePtr, *r2QueuePtr;

RxPort *clQueuePtr, *c2QueuePtr, *rxQueuePtr;

NextTimes nextTimes;

GrandTime grandTime;

SmallTime backInterval, lapseTime, nextTime, ratelInterval, stationTime, smallTime;

TicksTime ticksTime;

TinyTime extraTime;

uint32_t sized;

Boolean serviced;

if (name != NULL) // The entity name
return (R11vTxInit (comPtr, name)) ; // for initialization

SetRxQueuel3dPtrs (comPtr, clQueuePtr, c2QueuePtr, rxQueuePtr) ;
SetTxQueue2Ptrs (comPtr, rlQueuePtr, r2QueuePtr);

assert ((dPtr = (R11vRxEntity *) (comPtr->pairLink)) != NULL); // Receiver pair

do
stationTime = StationTime (comPtr) ; // Station’s localTime
serviced = TRUE;
backInterval = (3 * sxPtr-ssyncInterval + ePtr-ssyncInterval) / 2;

rateInterval = backInterval + (3 * ePtr-s>syncInterval) / 2;

// R R R R R R R R R R R R R S R R S R S S R S R S R E R R EEEEE S

// ***x* Preparing transmitted MLME PRESENCE RESPONSE.request information ****xx
// LR R E R R EEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEREEEEREEREEEEEEEREREEESESEERESRSES]

nextTime = ePtr->lastTime + SMALL 10ms;

if ((stationTime - nextTime) >= 0) // Next sync transmission
serviced = TRUE;
ePtr->lastTime = nextTime; // Restart 10ms timer
EnQueue (r2QueuePtr, rlPtr); // Enqueue the trigger

// R R R R R R R R R R R R R S R R S R S S R S S R EEEEES

[/ KxKkkkkkkkkkkkk Processing arrived MS_DATAUNIT.request framesg *x*x*kkkkkkkkkkk
// R R R R R R R R R R R S R S R R S R S S R S S R EEEES

sized = DeQueue (rxQueuePtr, rxPtr);

if (sized != 0)
serviced = TRUE;
assert (sized == sizeof (GrandSyncReq)) ;
sxPtr->hopCount = FieldToUnsign (rsPtr, hopCount) .lower;
sxPtr->precedence = FieldToUnsign (rsPtr, precedence) ;
sxPtr->syncInterval = FieldToUnsign (rsPtr, syncInterval) .lower;
grandTime = FieldToSigned (rsPtr, grandTime) ;
extraTime = FieldToSigned (rsPtr, extraTime) .lower;
smallTime = FieldToSigned (rsPtr, smallTime) .lower;
NextSaved (btPtr, ePtr-s>syncInterval, rateInterval, GrandTolLarge (grandTime), TinyToSmall (extraTime), smallTime) ;

}

// R R E R R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEREEREEEEEREEREREEEEESEEREEERESES]
// **xxxx Processing arriving MLME_PRESENCE_REQUEST.confirm information *xxxxix
// R R E RS RS EE SRR RS R RS SRR SRS EERREEEREREREREEEERRERERERERERREEEEREEEEEEEEESEEREESE]
sized = DeQueue (clQueuePtr, &clInfo) ;
if (sized != 0)

serviced = TRUE;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

143

0
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

P RPO0O0O~NOOPM~WNLE

JggDvj20050416/D0.718, 2007-08-05

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

assert (sized == sizeof (RllvInfolCon)) ;
ePtr->snapShotl = clPtr->ticksTimel;
ePtr->snapShot4 = clPtr->ticksTime4;

ePtr->respondNow = TRUE;

// R R R R R R R R R R S R R R S S R R S S R S S R EEEEEE S

// ***x* Preparing transmitted MLME_ PRESENCE RESPONSE.request inforomation *****
// R R R R R R R R R R R R R S R R S R S S R S R e R EEEEES

if (ePtr->respondNow == TRUE)
serviced = TRUE;
ePtr->respondNow = TRUE;

ticksTime = R11vTime (dPtr) ;

// Next sync transmission

// Clear the trigger

lapseTime = ticksTime - ePtr->snapShot4; // Elapsed time
smallTime = stationTime - MultiplySmall (lapseTime, RADIO TICK TIME) ; // Extrapolate stationTime

nextTimes = NextTimed (btPtr,

r2Ptr = &r2Info;

r2Ptr->ticksTime4 = ePtr->snapShot4;

r2Ptr->roundTrip = ePtr->roundTrip;

r2Ptr->levelTime = GrandToLevel (nextTimes.grandTime) ;
r2Ptr->extraTime = nextTimes.extraTime;
r2Ptr->precedence = sxPtr->precedence;
r2Ptr->hopCount = sxPtr->hopCount;

EnQueue (r2QueuePtr, r2Ptr);

}

smallTime, backInterval) ;

// Snapshot time transfer
// Snapshot diff transfer
// Grandmaster radio time
// Grandmaster extra time
// GM precedence

// GM hop-count

// Enqueue the result

// R R R R R R R R R R S R S R R S R S S R S S R R R R R R R R R S R EEEES

// **xx*x* Processing arriving MLME_PRESENCE RESPONSE.confirm information *****i*
// hkhkhkdhkhkdhhkhkhkhkdhkdhhkhhkhkhhkdhhdhkhkhkhhdhhdhhdhhhhdhhdhdhhkhkdhhdhhkhkhkhkdhhdhhkdhkhkhhdhhkdkhkhkhhkdhdhkdhhdhdk

sized = DeQueue (c2QueuePtr, &c2Info) ;

if (sized != 0)
serviced = TRUE;
assert (sized == sizeof (RllvInfo2Con)) ;
assert (c2Ptr != NULL) ;
} while (serviced == TRUE);
assert ((nextTime - stationTime) > 0);

SleepOnBase (comPtr, nextTime) ;
return (NULL) ;

}

Common *

R11vTxInit (Common *o0ldPtr, char *string)

Common *comPtr;
R11vTxEntity *ePtr;
BaseTimer *btPtr;

char temp [TLIMIT+1], name [NLIMIT+1],

{

data [NLIMIT+1], *nextPtr;

comPtr = CommonCreate (oldPtr, sizeof (R11vTxEntity), &R11vTxExec, TYPE TX PORT, Q RX33 LAST, Q TX22 LAST);

if (comPtr != NULL) {
ePtr = (R11vTxEntity *)comPtr;
btPtr = &(ePtr->baseTimer) ;
btPtr->validated = 0;

btPtr->headIndex = btPtr->taillIndex = 0;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

144

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05

nextPtr = StrPair (strncpy(temp, string,

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

TLIMIT), name, data, NLIMIT);

for (; name[0] != ‘\0’; nextPtr = StrPair (nextPtr, name, data, NLIMIT)) {

if (strcmp(name, “name”) == 0)

strncpy (comPtr->name, data, NLIMIT) ;
else if (strcmp(name, “rx0”) == 0)

assert (comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
else if (strcmp(name, “rxl”) == 0)

assert (comPtr->rxPortCount > 1), strcpy(comPtr->rxPortPtr[1l].name, data);
else if (strcmp(name, “rx2”) == 0)

assert (comPtr->rxPortCount > 2), strcpy(comPtr->rxPortPtr[2].name, data);
else if (strcmp(name, “tx0”) == 0)

assert (comPtr->txPortCount > 0), strcpy(comPtr->txPortPtr[0].name, data);
else if (strcmp(name, “txl1l”) == 0)

assert (comPtr->txPortCount > 1),

strcpy (comPtr->txPortPtr[1] .name, data);

assert (PortsCheck (comPtr, nextPtr) == TRUE) ;

}

return (comPtr) ;

Common *EponRxInit (Common *, char *);

R NN
NN NN

//

R R R R R R S R R R S S S R R R R R R R R R R R R R R R R RS R EEEE R

KhkKkKKRKRKRRK KKKk KKk ******* Ethernet-PON state-machine routines **x*x*xkkkkkkkkhkkkkk kA xkk k¥ %
s

Receives Ethernet-PON SDUs, reformats and sends to GrandSync
arguments:
comPtr - associated state-maintaining data structure
name - initialization trigger and assigned entity name

Common *
EponRxExec (Common *comPtr, char *name)

uint8 t rxInfo[MTU SIZED], txInfo[MTU SIZED];

EponRxEntity *ePtr = (EponRxEntity *)comPtr;
EponMacInd *rxPtr = (EponMacInd *)rxInfo;
GrandSyncInd *txPtr = (GrandSyncInd *)txInfo;
SyncSduEpon *rsPtr = &(rxPtr->service data_ unit);
SyncSduData *tsPtr = &(txPtr->service data unit);
RxPort *rxQueuePtr;

TxPort *txQueuePtr;

GrandTime grandTime;

SmallTime smallTime, stationTime;

TinyTime extraTime;

TicksTime lapseTime, ticksTime, ponTime;

uint64 t da, sa;

uint32_t sized;

uint8_t hopCount, portID;

Boolean serviced;

if (name != NULL)

return (EponRxInit (comPtr, name)) ;
SetRxQueuelPtrs (comPtr, rxQueuePtr) ;
SetTxQueuelPtrs (comPtr, txQueuePtr);

// The entity name
// for initialization.

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

145

0

P RPO0O0O~NOOPM~WNLE

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05

portID = PortID (comPtr) ;
do
serviced = FALSE;
stationTime = StationTime (comPtr) ;

// R R R R S R R R R R R R S R R S R R R R R S R S R EEEEE
[/ KEFEKRKEKK KKK KKK KKK KK Processing arriving timeSync frames *x %k &k kkkkkkkkkkx kK
// R R R R R R R R R R R RS R RS E R EE R R R EEEEEEEEEEEEREEEEEEREEEEEEEEEEEEEREEEEEEEESESESES]
sized = DeQueue (rxQueuePtr, rxPtr);
if (sized != 0)

serviced = TRUE;

assert (sized == sizeof (EponMacInd)) ;

ponTime = EponTime (ePtr) ;

// IR R R R S R S S R R R R S R R S R EE RS

// **xxx Extract frame parameters and perform basic consistency checks ***x*
// R R R RS R R SR R R R R R SRR R R R R R R R R R R R R R R EEEEEEEEEEEEEEEEEEEEEREEEEEEEEESEESEES]
da = FieldToUnsign (rxPtr, destination address) .lower;

sa = FieldToUnsign (rxPtr, source address) .lower;

hopCount = FieldToUnsign (rsPtr, hopCount) .lower;

grandTime = FieldToSigned(rsPtr, grandTime) ;

extraTime FieldToSigned (rsPtr, extraTime) .lower;

ticksTime FieldToSigned (rsPtr, ticksTime) .lower;

lapseTime = ponTime - ticksTime;

smallTime = stationTime - MultiplySmall (lapseTime, PON_TICK TIME) ;

// IR R R R R S S RS RS

[/ *xxxxxxxxxxxxx Update revised service-data-unit parameters *xxxxkxkkkkkkk
// R R R R R R R R R RS SR R R R R R R R R R R R R R R R R R EEEEEEEEEEEREEEEEEEREEEEEREEESEEEES]
LongToFrame (da, txPtr, destination address) ;

LongToFrame (sa, txPtr, source address) ;

LongToFrame (hopCount, tsPtr, hopCount) ;

LongToFrame (portID, tsPtr, sourcePort) ;

WideToFrame (grandTime, tsPtr, grandTime) ;

LongToFrame (extraTime, tsPtr, extraTime) ;

LongToFrame (smallTime, tsPtr, smallTime) ;

LongToFrame (ePtr->syncInterval, tsPtr, syncInterval);

EnQueue (txQueuePtr, txPtr);

} while (serviced == TRUE);
return (NULL) ;

Common *EponRxInit (Common *oldPtr, char *string) {

Common *comPtr;
EponRxEntity *ePtr;
char temp [TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

T N N
N N

// Station’s localTime

Destination address
Source-port identifier
The ~GM distance.
Source-port identifier
grandTime at snapShot
Next extraTime value
Transmitted frame time
Sync transmit interval
Enqueue the result

comPtr = CommonCreate (0oldPtr, sizeof (EponRxEntity), &EponRxExec, TYPE RX PORT, Q RX11 LAST, Q TX11l LAST);

if (comPtr != NULL) ({
ePtr = (EponRxEntity *)comPtr;
ePtr->syncInterval = SMALL_ 10ms;
nextPtr = StrPair (strncpy(temp, string, TLIMIT), name, data, NLIMIT);
for (; name[0] != ‘\0’; nextPtr = StrPair (nextPtr, name, data, NLIMIT)) {
if (strcmp(name, “name”) == 0)

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

P O0O~NOO O, WNER

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05

else

else

assert (P

}

return (comPt

WHITE PAPER CONTRIBUTION TO AVB BRIDGING
strncpy (comPtr->name, data, NLIMIT) ;

if (strcmp(name, “rx0”) == 0)
assert (comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
if (strcmp(name, “tx0”) == 0)
assert (comPtr->txPortCount > 0), strcpy(comPtr->txPortPtr[0].name, data);
ortsCheck (comPtr, nextPtr) == TRUE);

r);

Common *EponTxInit (Common *, char *);

// Receives GrandSync SDU, reformats/resends as Ethernet-PON SDU

// arguments:

// comPtr -
// name -
Common *

EponTxExec (Commo
uint8_t rxIn
EponTxEntity
BaseTimer
GrandSyncReq
EponTxSaved
EponMacReqg
SyncSduData
SyncSduEpon
RxPort *
TxPort *
NextTimes
GrandTime
SmallTime
TicksTime
TinyTime
LocalTime
uint32 t
Boolean

if (name !=
return (E

SetRxQueuelP

SetTxQueuelP

do {
serviced
stationT
backInte
rateInte

// * ok ok ok k
// * ok ok ok k
// * ok kkk
sized =
if (size

associated state-maintaining data structure
initialization trigger and assigned entity name

n *comPtr, char *name) {
fO[MTUﬁSIZED], tXInfO[MTUﬁSIZED];

*ePtr = (EponTxEntity *)comPtr;
*btPtr = &(ePtr->baseTimer) ;
*rxPtr = (GrandSyncReq *)rxInfo;
*gxPtr = &(ePtr->rxSaved) ;
*txPtr = (EponMacReq *)&txInfo;
*rsPtr = &(rxPtr->service data unit);
*tsPtr = &(txPtr->service data unit);

rxQueuePtr;

txQueuePtr;

nextTimes;

grandTime;

backInterval, smallTime, ratelInterval;

ticksTime;

extraTime;

nextTime, stationTime;

sized;

serviced;

NULL)

ponTxInit (comPtr, name)) ;

trs (comPtr, rxQueuePtr) ;
trs (comPtr, txQueuePtr) ;

= FALSE;

ime = StationTime (comPtr) ;

rval = (3 * sxPtr-ssyncInterval + ePtr-ssynclInterval) / 2;
rval = backInterval + (3 * ePtr->syncInterval) / 2;

R R R R R R R R R R R S R EEE
*k*kkkk*kk*x* Pprocessing arrived MS DATAUNIT.request frames **x*kkkkkkkhkk*
R R R R R R R R R R R R R SRS R EEEEEEEEEEEEEREEREEREEEEEESEEREEESE]
DeQueue (rxQueuePtr, rxPtr);

d !=0)

// The entity name
// for initialization

// Station’s localTime

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

147

0

P RPO0O0O~NOOPM~WNLE

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05

serviced = TRUE;

assert (sized == sizeof (GrandSyncReq)) ;

sxPtr->da = FieldToUnsign (rxPtr, destination_ address) .lower;
sxPtr->sa = FieldToUnsign (rxPtr, source_address) .lower;
sxPtr->hopCount = FieldToUnsign (rsPtr, hopCount) .lower;
sxPtr->precedence = FieldToUnsign (rsPtr, precedence) ;
sxPtr->syncInterval = FieldToUnsign (rsPtr, syncInterval) .lower;

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

grandTime = FieldToSigned (rsPtr, grandTime) ;

extraTime = FieldToSigned (rsPtr, extraTime) .lower;

smallTime = FieldToSigned (rsPtr, smallTime) .lower;

NextSaved (btPtr, ePtr-s>syncInterval, rateInterval, GrandTolLarge (grandTime), TinyToSmall (extraTime), smallTime) ;

}

// R R R R R R R R RS R R R R R R R R R R RS R E R R R R R R R EEEEEEEEEEEEEEEEEEREEEEEREESEEREESEERERESEESEESS

[/ FExxxkAkAkk*kxkKkKkk*x%% Preparing transmitted timeSync frames FEFrrkxEkkkkkxkkkkkkx
// dkhkhkdkhkdhhhkhkhkdhhkdhhkhkhkhkdhhkhhkhkhkhkhkhdhhdhhdhhkhhkdhhdhkdhhkhkdhhdhdhkhkdhhkdhdhkhkdhhdhhkdkhkhkhkhkdhhkdkhkdhkhdddxk
nextTime = ePtr->lastTime + SMALL_10ms;
if ((stationTime - nextTime) >= 0)

serviced = TRUE;

ePtr->lastTime = nextTime;

ticksTime = EponTime ((EponRxEntity *)comPtr) ;

nextTimes = NextTimed (btPtr, stationTime, backInterval) ;

LongToFrame (sxPtr->da, txPtr, destination_ address) ;

LongToFrame (sxPtr->sa, txPtr, source_address) ;

WideToFrame (sxPtr->precedence, tsPtr, precedence);

LongToFrame (sxPtr->hopCount, tsPtr, hopCount) ;

WideToFrame (nextTimes.grandTime, tsPtr, grandTime) ;

LongToFrame (nextTimes.extraTime, tsPtr, extraTime);

LongToFrame (ticksTime, tsPtr, ticksTime) ;

EnQueue (txQueuePtr, txPtr);

} while (serviced == TRUE);
assert ((nextTime - stationTime) > 0);
SleepOnBase (comPtr, nextTime) ;

return (NULL) ;

}

Common *
EponTxInit (Common *oldPtr, char *string)
Common *comPtr;
EponTxEntity *ePtr;
BaseTimer *btPtr;
char temp [TLIMIT+1], name[NLIMIT+1], data[NLIMIT+1], *nextPtr;

comPtr = CommonCreate (oldPtr, sizeof (EponTxEntity), &EponTxExec, TYPE_TX PORT, Q RX11l LAST,
if (comPtr != NULL)

ePtr = (EponTxEntity *)comPtr;

btPtr = &(ePtr->baseTimer) ;

btPtr->validated = 0;

btPtr->headIndex = btPtr->taillIndex = 0;

nextPtr = StrPair (strncpy(temp, string, TLIMIT), name, data, NLIMIT);
for (; name([0] != ‘\0’; nextPtr = StrPair (nextPtr, name, data, NLIMIT)) {
if (strcmp(name, “name”) == 0)
strncpy (comPtr->name, data, NLIMIT);

Next sync transmission

Restart 10ms timer
Get localTime values

The destination address
The source_ address

GM precedence

GM distance

grandTime at snapShot
Next grandTime value
Next extraTime value
Enqueue the result

T T N
SN NN .

Q TX11 LAST);

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

148

P OO0O~NO O, WNPRE

0

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

JggDvj20050416/D0.718, 2007-08-05

WHITE PAPER CONTRIBUTION TO AVB BRIDGING

else if (strcmp(name, “rx0”) == 0)
assert (comPtr->rxPortCount > 0), strcpy(comPtr->rxPortPtr[0].name, data);
else if (strcmp(name, “tx0”) == 0)

assert (comPtr->txPortCount > 0), strcpy(comPtr->txPortPtr[0].name, data);

assert (PortsCheck (comPtr,

}

return (comPtr) ;

nextPtr) == TRUE) ;

Contribution from: dvj@alum.mit.edu. This is an unapproved working paper, subject to change.

149

0
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

P RPO0O0O~NOOPM~WNLE

QWO ~NOoOUTA~,WNEPE

A DB WWWWWWWWWWNDNNDNDNNNNNNRPEPEEPRPEPRPRPERPRERERREERE
P OOOO~NOOPRARWNRPOOONOUR_ARWNPEPOOO~NOOOPWDNPE

SEBE&ELNEHERED

o1 O]
W

JggDvj20050416/D0.718
2007-08-05

150

WHITE PAPER CONTRIBUTION TO

Contribution from: dvj@alum.mit.edu.
This is an unapproved working paper, subject to change.

