Assumptions for Sources of Time Synchronization Error in IEEE 802.1AS Rev 02

Geoffrey M. Garner
SAMSUNG Electronics (Consultant)

IEEE 802.1 AVB TG
2007.05.14

gmgarnet@comcast.net
Introduction

- This presentation provides a summary of assumptions pertaining to sources of error in 802.1AS time synchronization
 - A network that satisfies these assumptions will be capable of meeting the desired time synchronization accuracy of 1 μs over a maximum of 7 hops
 - It is intended that, after discussion and editing, these assumptions will be copied to the master list of AVB assumptions [1]

- This work was requested in the April 30, 2007 AVB timing call, after an initial discussion of sources of error based on [2]
Assumptions Relevant to AVB Time Synch

- **Network diameter**
 - Maximum diameter of any spanning tree of the network is 7 hops
 - This includes end stations
 - E.g., according to this definition, a direct connection between 2 end stations is 1 hop

- **Local oscillator quality**
 - ±100 ppm or better free-run accuracy
 - Rate for 100 Mbit/s Ethernet is nominally 25 MHz
 - Rate for GbE is nominally 25 MHz in some cases and nominally 125 MHz in some cases

- **PTP clock quality**
 - End-point time synchronization accuracy for steady-state operation is 1 μs or better over 7 hops
 - i.e., any 2 PTP clocks separated by at most 7 hops differ by no more than 1 μs
 - End-point time synchronization accuracy during GM changes is TBD
Assumptions Relevant to AVB Time Synch

- Assumptions on error sources present in network, to meet the above time synchronization requirement for PTP clocks
 - Maximum frequency drift rate of local oscillator ≤ 1 ppm/s (this assumption, combined with maximum frequency offset of ±100 ppm, results in maximum time synchronization error due to this effect of < 1 ns (see [2]))
 - Effect of frequency measurement granularity is negligible
 - e.g., if 32 bits is used to express the measured frequency offset, the maximum frequency error due to this effect is 2.3×10^{-10}
Assumptions Relevant to AVB Time Synch (Cont.)

- Assumptions on error sources present in network, to meet the above time synchronization requirement for PTP clocks (Cont.)
 - Effect of PHY latency asymmetry and phase measurement granularity for 100 Mbit/s Ethernet
 - Any PHY latency asymmetry can be known as part of the design and compensated for to within 18% of the maximum allowable PHY latency
 - This means that of the allowable PHY latency asymmetry of IEEE 802.3 for 100BASE-X (table 24-3, plus additional 16 ns; see [2]) of 476 ns per hop, the maximum remaining uncertainty after compensation is 86 ns/hop, or 602 ns for 7 hops
 - The cumulative time synchronization error due to phase measurement granularity over 7 hops is 280 ns (40 ns allowance per hop)
 - This assumes that the variation of this error is sufficiently fast that, with a Sync interval between 10 ms and 100 ms, the effect of this variation can be reduced by endpoint filtering
 - All the above error components, taken together, leave a margin relative to the total 1 μs of approximately 111 ns (11%)
 - i.e., (1000 ns) – (602 ns) – (280 ns) – (7 ns) = 111 ns
Assumptions Relevant to AVB Time Synch (Cont.)

- Assumptions on error sources present in network, to meet the above time synchronization requirement for PTP clocks (Cont.)
 - Effect of PHY latency asymmetry and phase measurement granularity for GbE, assuming a 25 MHz nominal frequency for the local oscillator
 - Any PHY latency asymmetry can be known as part of the design and compensated for to within 25% of the maximum allowable PHY latency
 - This means that of the allowable PHY latency asymmetry of IEEE 802.3 for 100BASE-X (table 40-14, plus additional 16 ns; see [2]) of 344 ns per hop, the maximum remaining uncertainty after compensation is 86 ns/hop, or 602 ns for 7 hops
 - The cumulative time synchronization error due to phase measurement granularity over 7 hops is 280 ns (40 ns allowance per hop)
 - This assumes that the variation of this error is sufficiently fast that, with a Sync interval between 10 ms and 100 ms, the effect of this variation can be reduced by endpoint filtering
 - All the above error components, taken together, leave a margin relative to the total 1 μs of approximately 111 ns (11%)
 - i.e., (1000 ns) – (602 ns) – (280 ns) – (7 ns) = 111 ns
Assumptions Relevant to AVB Time Synch (Cont.)

- Assumptions on error sources present in network, to meet the above time synchronization requirement for PTP clocks (Cont.)

 - Effect of PHY latency asymmetry and phase measurement granularity for GbE, assuming a 125 MHz nominal frequency for the local oscillator

 - Any PHY latency asymmetry can be known as part of the design and compensated for to within 35% of the maximum allowable PHY latency

 - This means that of the allowable PHY latency asymmetry of IEEE 802.3 for 100BASE-X (table 40-14, plus additional 16 ns; see [2]) of 344 ns per hop, the maximum remaining uncertainty after compensation is 120 ns/hop, or 840 ns for 7 hops

 - The cumulative time synchronization error due to phase measurement granularity over 7 hops is 56 ns (8 ns allowance per hop)

 - This assumes that the variation of this error is sufficiently fast that, with a Sync interval between 10 ms and 100 ms, the effect of this variation can be reduced by endpoint filtering

 - All the above error components, taken together, leave a margin relative to the total 1 μs of approximately 97 ns (10%)

 - i.e., (1000 ns) – (840 ns) – (56 ns) – (7 ns) = 97 ns