Assumptions for Sources of Time Synchronization Error in IEEE 802.1AS Rev 03

Geoffrey M. Garner SAMSUNG Electronics (Consultant)

IEEE 802.1 AVB TG 2007.05.29

gmgarner@comcast.net

Introduction

This presentation provides a summary of assumptions pertaining to sources of error in 802.1AS time synchronization

- A network that satisfies these assumptions will be capable of meeting the desired time synchronization accuracy of 1 μs over a maximum of 7 hops
- It is intended that, after discussion and editing, these assumptions will be copied to the master list of AVB assumptions [1]

This work was requested in the April 30, 2007 AVB timing call, after an initial discussion of sources of error based on [2]

Assumptions Relevant to AVB Time Synch

□Network diameter

- Maximum diameter of any spanning tree of the network is 7 hops
 - •This includes end stations
 - -See avb-pannell-assumptions-0507-v5 for details and examples

Local oscillator quality

- ±100 ppm or better free-run accuracy
- Rate for 100 Mbit/s Ethernet is nominally 25 MHz
- Rate for GbE is nominally 25 MHz in some cases and nominally 125 MHz in some cases

□PTP clock quality

- End-point time synchronization accuracy for steady-state operation is 1 µs or better over 7 hops
 - •i.e., any 2 PTP clocks separated by at most 7 hops differ by no more than 1 μs
- End-point time synchronization accuracy during GM changes is TBD

Assumptions Relevant to AVB Time Synch

Assumptions on error sources present in network, to meet the above time synchronization requirement for PTP clocks

- ■Maximum frquency drift rate of local oscillator ≤ 1 ppm/s (this assumption, combined with maximum frequency offset of ±100 ppm, results in maximum time synchronization error due to this effect of < 1 ns (see [2]))</p>
- •Effect of frequency measurement granularity is negligible
 - •e.g., if 32 bits is used to express the measured frequency offset, the maximum frequency error *due to this effect* is 2.3×10^{-10}

Assumptions Relevant to AVB Time Synch (Cont.)

Assumptions on error sources present in network, to meet the above time synchronization requirement for PTP clocks (Cont.)

- Effect of PHY latency asymmetry and phase measurement granularity for 100 Mbit/s Ethernet
 - •Any PHY latency asymmetry can be known as part of the design and compensated for to within 18% of the maximum allowable PHY latency
 - •This means that of the allowable PHY latency asymmetry of IEEE 802.3 for 100BASE-X (table 24-3, plus additional 16 ns; see [2]) of 476 ns per hop, the maximum remaining uncertainty after compensation is 86 ns/hop, or 602 ns for 7 hops
 - •The cumulative time synchronization error due to phase measurement granularity over 7 hops is 280 ns (40 ns allowance per hop)
 - -This assumes that the variation of this error is sufficiently fast that, with a Sync interval between 10 ms and 100 ms, the effect of this variation can be reduced by endpoint filtering
 - •All the above error components, taken together, leave a margin relative to the total 1 μ s of approximately 111 ns (11%)

-i.e., (1000 ns) - (602 ns) - (280 ns) - (7 ns) = 111 ns

Assumptions Relevant to AVB Time Synch (Cont.)

Assumptions on error sources present in network, to meet the above time synchronization requirement for PTP clocks (Cont.)

- Effect of PHY latency asymmetry and phase measurement granularity for GbE, assuming a 25 MHz nominal frequency for the local oscillator
 - •Any PHY latency asymmetry can be known as part of the design and compensated for to within 25% of the maximum allowable PHY latency
 - •This means that of the allowable PHY latency asymmetry of IEEE 802.3 for 100BASE-X (table 40-14, plus additional 16 ns; see [2]) of 344 ns per hop, the maximum remaining uncertainty after compensation is 86 ns/hop, or 602 ns for 7 hops
 - •The cumulative time synchronization error due to phase measurement granularity over 7 hops is 280 ns (40 ns allowance per hop)
 - -This assumes that the variation of this error is sufficiently fast that, with a Sync interval between 10 ms and 100 ms, the effect of this variation can be reduced by endpoint filtering
 - •All the above error components, taken together, leave a margin relative to the total 1 μ s of approximately 111 ns (11%)

-i.e., (1000 ns) - (602 ns) - (280 ns) - (7 ns) = 111 ns

Assumptions Relevant to AVB Time Synch (Cont.)

Assumptions on error sources present in network, to meet the above time synchronization requirement for PTP clocks (Cont.)

- Effect of PHY latency asymmetry and phase measurement granularity for GbE, assuming a 125 MHz nominal frequency for the local oscillator
 - •Any PHY latency asymmetry can be known as part of the design and compensated for to within 35% of the maximum allowable PHY latency
 - •This means that of the allowable PHY latency asymmetry of IEEE 802.3 for 100BASE-X (table 40-14, plus additional 16 ns; see [2]) of 344 ns per hop, the maximum remaining uncertainty after compensation is 120 ns/hop, or 840 ns for 7 hops
 - •The cumulative time synchronization error due to phase measurement granularity over 7 hops is 56 ns (8 ns allowance per hop)
 - -This assumes that the variation of this error is sufficiently fast that, with a Sync interval between 10 ms and 100 ms, the effect of this variation can be reduced by endpoint filtering
 - •All the above error components, taken together, leave a margin relative to the total 1 μ s of approximately 97 ns (10%)

-i.e., (1000 ns) - (840 ns) - (56 ns) - (7 ns) = 97 ns

References

- 1. Don Pannell, *Audio/Video Bridging (AVB) Assumptions*, IEEE 802.1 AVB Conference Call, April 18, 2007 (available at <u>http://www.ieee802.org/1/files/public/docs2007/avb-pannell-assumptions-0407-v4.pdf</u>).
- Geoffrey M. Garner, Sources of Time Synchronization Error in IEEE 802.1AS, April 29, 2007 (available at <u>http://www.ieee802.org/1/files/public/docs2007/as-garner-error-sources-time-synch-0407.pdf</u>).