

AV Bridging and Ethernet AV[™] Michael Johas Teener Mikejt@broadcom.com

Agenda

- What is AV Bridging?
 and Ethernet AV?
- Why is it needed?
- Where will it be used?
- How does it work?
- How can it be used in carrier networks?

What is AV bridging?

- Add Precise Timing in an 802 network (~100 nS native, ~100 pS achievable)
- Add E2E Bandwidth guarantees using QoS and Admission Control
- Do both with very low cost adder (approaching zero) to meet CE market requirements.

Gaining Support and Momentum

- Names of the companies who has been supporting the IEEE standard activities.
- Stronger support comes from companies who had had triple play trials.

Why is it needed? (1)

- Common IT-oriented networks have inadequate QoS controls
 - all use 802.1 "priority" (actually, "traffic class")
 - can work in controlled environments (same higher layer QoS)
 - no guarantees, timing synchronization difficult
- Ethernet is the best
 - but it's easy for the customer to misconfigure or overload
 - no guarantees, timing synchronization difficult
- Wireless has superior convenience, but inadequate bandwidth and excessive delays for whole-home coverage
 - 802.11n will work for many applications, but ...
 - latencies through multiple A/Ps may be too much for interactive applications
 - difficult environment (interference, variable S/N), so no guarantees

verything

and we still need a backbone for the wireless attachment points

Why is it needed? (2)

- Proposed CE-based networks need new media or are expensive
 - MoCA requires coax everywhere, and is not cheap, and does not carry power, and has modest performance
 - ... but it's part of the solution (it's almost everywhere in NA)
 - Power line is not cheap, has modest performance, is susceptible to interference, and is blocked by protection circuits
 - ... but it's part of the solution (it IS everywhere!)
 - 1394b/c long distance has limited developer base & infrastructure, is not cheap
 - ... but even this is part of the solution (has best QoS guarantees)

Digital Home Media Distribution

Ethernet AV: the Gold Standard

Backbone for home

- Highest quality/lowest cost way to interconnect networked CE devices
- "Perfect" QoS, requires the least customer interaction

Within the entertainment cluster

- Trivial wiring, no configuration, guaranteed 100/1G/2.5G+ per device, not just per room or per house
- PoE for speakers, extra storage (HD/optical), wireless A/Ps, other lowerpower devices
- Ideal long-term replacement for 1394
- Numerous non-"residential" applications
 - Professional audio/video studios, industrial automation, test and measurement, <u>carrier backbone</u>

But it's only part of the solution!

• Ethernet AV is the best backbone for QoS

- But NOT the most convenient in much of the existing market (e.g., requires Cat5)
- Ethernet AV is the most cost-effective high QoS network for endpoints
 - But only if the endpoints are fixed (e.g., not useful for mobile)
- So we need to enable the heterogeneous network
 - Provide QoS services universally, as well as can be done for the particular layer 2 technology

Unified Layer 2 QoS

Enhance network bridging

- Define common QoS services and mapping between different layer 2 technologies
 - E.g., 802.3 Ethernet, 802.11 WiFi, UWB, MoCA, etc
- IEEE 802.1 is the common technology
 - Ethernet "switches" (IEEE 802.1D/Q bridges)
 - Basis of 802.11 A/P attachment to Ethernet
 - Basis of non-802 network bridging (e.g., FDDI, carrier nets)
- Common endpoint interface for QoS
 - "API" for QoS-related services for ALL layer 2 technologies
 - Toolkit for higher layers

The first step: Ethernet AV™

- Simple enhancement to IEEE 802.1 bridges to support streaming QoS
 - 2 ms guaranteed latency through 7 Ethernet bridges
 - Admission controls (reservations) for guaranteed bandwidth
 - Precise timing and synchronization services for timestamps and media coordination
 - < 1µs absolute synchronization between devices</p>
 - jitter less than 100ns, filterable down to 100ps (can meet the MTIE mask for professional uncompressed video)
- Trade group to provide trademark "enforcement" of otherwise optional features
 - Require useful bridge performance, network management, PoE management, auto-configuration features

Proposed architecture

- Changes to both IEEE 802.1Q and layer 2
 - 802.1Q bridges/switches most of work
 - 802.3 Ethernet MAC/PHY possible small change to MAC definition
 - 802.11n WiFi more work, but basic tools in place
 - Not discussed in this presentation, but watch this space!
- Three basic additions to 802.1/802.3
 - Traffic shaping and prioritizing,
 - Admission controls, and
 - Precise synchronization

Topology & connectivity

Establishing the AV cloud

- IEEE Std 802.1AB defines "LLDP": Logical Link Discovery Protocol
 - Allows link peers to determine each other's characteristics
- Will be enhanced with P802.1AS service that gives a relatively precise round trip delay to a peer
 - Allows link peers to discover if any unmanaged bridges or other buffering devices are present on link

Traffic Shaping and Priorities (p802.1Qav - rev to 802.1Q)

Endpoints of Ethernet AV network must "shape traffic"

- Schedule transmissions of streaming data to prevent bunching, which causes overloading of network resources (mainly switch buffers)
- Shaping by limiting transmission to "x bytes in cycle n" where the cycle length is 125 µs or 1ms depending on traffic class
- Traffic shaping in bridges will provide scalability
 - without it, all bridges need larger buffers
- Mapping between traffic class and priorities

Traffic Class?

- 802.1p introduced 8 different traffic classes
 - Highest (6 & 7) reserved for network management
 - low utilization, for emergencies
 - Next two for streaming (4 & 5)
 - Lowest four for "best effort"
- AV bridging:
 - Class 5 is for lowest latency streaming
 - Roughly 250 usec per bridge hop for 100baseTX, near 125 usec for 1G or better: interactive audio/video
 - Class 4 is for moderate latency streaming
 - Perhaps 1ms per bridge hop, longer for wireless, MoCA, power line: voice over IP, movies

Admission controls (p802.1Qat - added to 802.1Q)

- Streaming priority mechanism can reliably deliver data with a deterministic low latency and low jitter
 - but only if the network resources (bandwidth, in particular) are available along the entire path from the talker to the listener(s).
- For AV streams it is the listener's responsibility to guarantee the path is available and to reserve the resources.
- Done via 802.1ak "Multiple Multicast Registration Protocol" and the new SRP ("Stream Registration Protocol")
 - Registers streams as multicast addresses using MMRP
 - Reserves resources for streams as bandwidth/traffic class
 - Specifics for "bandwidth" include at least max packet size and number of packets per traffic class measurement intervals
 - Perhaps other information useful for stream management such as path availability, egress port MAC addresses, etc.

Admission Control (1) (registration)

- With MMRP registration, the talker and intermediate bridges know where are potential listeners and how to get to them
- MMRP floods the registration

Admission Control (2) (successful reservation)

 Reservation signaling triggers admission control operations in intermediate bridges. It also locks resources and updates filtering database if the admission control is successful.

everything[®]

 In this example, admission control is successful along the whole path. Reservation signaling serves as the end-to-end explicit ACK signaling to listener.

Admission Control (3) (failed reservation)

- In this example, admission control fails at B2. The SI (Status Indication) flag of the reservation signaling will be set to FAIL.
- The reservation is still forwarded to the listener. However, down-stream bridges (i.e., B1, B2) will not lock resources for the reservation whose SI is set to FAIL.

BROADCOM

everything[®]

 Listener is noted of the failure since a reservation with FAIL SI serves as an end-to-end explicit NACK

Precise synchronization (p802.1AS)

AV devices will periodically exchange timing information

- both devices synchronize their time-of-day clock very precisely
- the delay time between devices is very precisely known
- This precise synchronization has two purposes:
 - to enable streaming traffic shaping and
 - provide a common time base for sampling data streams at a source device and presenting those streams at the destination device with the same relative timing
- Very similar to IEEE std 1588-2004, but much simpler
 - will be an explicit "native IEEE 802 layer 2 profile" of new IEEE 1588v2

Broadcom

verything

AV Grand Master clock

- There is a single device within an Ethernet AV cloud that provides a master timing signal.
 - All other devices ("ordinary clocks") synchronize their clocks with this master.

Master clock selection

- Selection of the master is largely arbitrary (all AV devices that can source data will be master-capable), but can be overridden if the network is used in an environment that already has a "house clock".
 - Professional A/V studios
 - Homes with provider time-synchronization service
 - Carrier networks
- Selection algorithm and clock attributes are the same as IEEE 1588
 - Typically, fully automatic and transparent to the end user

Changes to Ethernet NIC

- MAC changes
 - Frame Timer Accurately note time of RX/TX Ctrl Frame
 - Not really a change to "MAC", but to buffers for the MAC
- Queuing/DMA
 - Separate queues and DMA for class 4/5 frames to provide appropriate traffic shaping (scheduling)
 - One extra queue/DMA channel possible
- Admission Control (driver firmware)
 - Bandwidth allocation database associated with filtering database
 - Management using same methods (MRP) used for multicast addressing
- Real-time clock module
 - Master clock generator
 - Time Sync correction method

Changes to Ethernet Switch

- MAC changes
 - Frame Timer Accurately note time of RX/TX Ctrl Frame
- Bridging
 - Ingress filtering/shaping at edge of network to ensure proper traffic shaping for class 4/5 (streaming) frames
 - Egress filtering to ensure that streaming CoS not over-utilized
- Admission Control
 - Bandwidth allocation database associated with filtering database
 - Management using same methods (MRP) used for multicast addressing
- Real-time clock module
 - Master clock generator
 - Time Sync correction engine per port only if wanted to reduce switch CPU processing
- Reasonable Microprocessor Cycles
 - Scales with # of ports similarly.

When?

- IEEE standardization process well under way
 - Originally an 802.3 study group, moved to 802.1 in November 2005 as "Audio/Video Bridging Task Group"
 - Early drafts already available
 - Expect technical closure in 2007, final draft standards in 2008
- First hardware/software soon after stabilization
 - Possibly a number of "pre standard" interations
- Will follow Ethernet-type product curve
 - 100M/1G/10G NIC/Switch all have markets for Ethernet AV

Example Enet AV NIC

- PHY is Fast Ethernet or better
 - 1G for backbone/professional, 10G for uncompressed video
- CPU interface is PCI-E
 - Streaming frames on PCI-E use virtual channel
 - Perhaps parallel PCI for CE
- Streaming I/O acceleration
 - MPEG transport stream
 - I²S serial audio
 - DVI for uncompressed video

BROADCOM

everything[®]

Connecting

Example Enet AV bridge

Bridge management admission control Frame filtering/routing Time synchronization
Traffic classifier FIFOS AV MAC
Ethernet PHY

- PHYs are Fast Ethernet or better
 - 1G/5 port for first versions
- Separate CPU at first, but moving to integrated processor ASAP

Example multiport Enet AV NIC

- Best product for TVs, STBs, home gateways, media PCs
- Anything that is a "hub" in the cluster

Key Take Away

 Ethernet AV will be the standard interconnect for uncompromised quality of service

-soon!

- There will be growth in both technology (speeds and feeds) and infrastructure (switches, ICs, intellectual property)
 - The first providers set the real standards, the interoperability requirements

G.8261 (G.pactiming) and 802.1 AV bridging

Michael Johas Teener mikejt@broadcom.com

G.8261 Timing recovery

- Bridging between SDH/SONET (and similar) networks requires carrying <u>both</u> the data with adequate QoS <u>and</u> timing information
 - E.g., an Ethernet network must carry the timing information of one edge SDH/SONET to another.
 - It must also emulate the connection-oriented model for data transport (not lose data from established connections in spite of interfering traffic)

G.8261 Differential Method

- Common reference clock available throughout packet network
- Service clock (at packet network ingress) is encoded using a timestamp with respect to the reference clock and included with data
- Service clock at packet network egress is recovered using reference clock and timestamp information in stream

Using the Differential Method

802.1 Audio/Video Bridging

- Provides precise synchronization services
 - 802.1AS IEEE 1588v2 as applied to 802.1 bridged networks.
 - Probably better MTIE than needed for SDH/SONET
 - (Geoff Garner is currently comparing with TDEV for SDH-1 and -2)
- Provides connection-oriented services
 - 802.1Qat Stream Reservation Protocol to manage streams
 - 802.1Qav Guaranteed latency and bandwidth for established streams
- No need to manage PHYs, no need for external PHY-level synchronization
 - Any 802.3 PHY will work, nothing special needed, full configuration flexibility
 - Support for other full-duplex point-to-point PHYs trivial
 - Support for shared media MACs allowed (802.11/16/17) via sublayer definition

Using 802.1 AVB

The two PRCs may also originate from the same source

Using 802.1 AVB for multiple independent clocked streams

Advantages of 802.1 AVB

- Will be heavily used in consumer electronics and professional AV networks
 - Driven to be a simple and low cost as possible
- Easily scaled to much larger networks
 - Architects of the 802.1 understand and require scaling
- Supports multiple simultaneous TDM streams with different clocks

New work needed

- Telecom core networks must be managed at a high level
 - Limiting automatic switchover of clock sources and routing of packets
 - "protected environment" for management vs. "plug and play" usage models
- Standardized packet format for TDM emulation
 - Mapping/demapping for timing recovery (timestamp usage)
- 802.1 AVB protocols have all the lower layer tools
 - Higher level management interfaces and overrides need to be defined

