LL-FC: Problem(s) Identification

Mitch Gusat and Cyriel Minkenberg
IBM ZRL Jan 2007
Goal: Prepare for Monterey Interim

1. Set objectives of an ideal LL-FC

2. Identify the issues re. PAUSE (deviations from 1)
 • agree on terminology

3. Select those problems that we can solve in ’07

4. Later: Solution candidates

5. Set the LL-FC agenda for Monterey
Generic Objectives of LL-FC

• I. Correct by design:
 - Doesn't encourage 'simple' and faulty implementations.
 - Doesn't lead to inter-operability faults thru standard misinterpretation by vendor.

• Correctness defines the semantics of
 - (a) lossy-lossless operation,
 - (b) priority level / QoS support,
 - (c) deadlock freedom.

• II. Efficiency options: Enables high performance, Bw- and power-efficient operation. Allows vendor differentiation thru options for
 - (a) e.g. load balancing/AR, reliable delivery;
 - (b) options against, e.g., HOL-blocking, hogging, transient HS congestion, persistent HS congestion.

• III. 3-way Compatibility:
 - Backwards w/ legacy Ethernet; w/ established IETF protocols (IP, TCP, etc.).
 - Upwards w/ storage and cluster transports RDMA, MPI, iSCSI etc.
 - Forwards w/ new apps that may directly use the native capabilities of LL-FC.
Improved PAUSE: A Hollow Strawman

• 10GigE is a discontinuity in the Ethernet evolution
 - opportunity to address new needs and markets
 - however, improvements are needed

• Requirements of next-generation PAUSE
 1. Correct by design, not implementation
 1. Deadlock-free
 2. No HOL₁- and, possibly reduced HOL₂-blocking
 Note: Do not try to address high-order HOL-blocking at link layer
 2. Configurable for both lossy and lossless operation
 3. QoS / 802.1p support
 4. Enables virtualization / 802.1q
 5. Beneficial or neutral to CM schemes (BCN, TCP, ...)
 6. Legacy PAUSE-compatible
 7. Simple to understand and implement by designers
 1. Min. no. of flow control domains: h/w queues and IDs in Ether-frame
 8. Compelling to use => always enabled...!
Boilerplate: Principles of LL-FC. Orthogonality and 5D Control

• LL-FC shall orthogonalize the following 4 dimensions
 ➢ Correctness
 1. C1: lossy - lossless operation
 2. C2: deadlock prevention and recovery
 3. C3: priority classes / QoS service levels
 ➢ Performance
 4. P1: low-order HOL-blocking, resource hogging, transient congestion
 5. [P2: high-order HOL-blocking, persistent congestion (realm of CM).]

• If the solutions to the above 5 concerns are mutually exclusive (can not coexist in implementation or are not simultaneously operational), any such limitation/constrain will be explicitly stated, including the consequences thereof.
Deadlock Taxonomy:
Deadlocks Possible in a Datacenter Interconnects

• The following types of deadlocks may affect an Ethernet system:

 ➢ 1. (DLK1) circular dependency
 ✓ a) memory-2-memory circular dependency (inter-switch, CD = 1st order deadlock)
 ✓ b) Load/Store (Rq/Reply) circular dependency (transaction-induced deadlock)

 ➢ 2. (DLK2) priority blocking (PB=2nd order, improperly called deadlocks);

 ➢ 3. (DLK3) routing loop (RL=3rd order)

• Specific deadlock cases will be illustrated in Monterey
PAUSE Issues

• PAUSE-related issues interfere with BCN simulations
• Correctness
 - Deadlocks (some of them...)
 ✓ cycles in the routing graph (if multipath adaptivity is enabled)
 - multiple solutions exist
 ✓ circular dependencies (in bidir fabrics)
 - BCN can't help this => Solutions required

• Performance (to be elaborated in a future report)
 - low-order HOL-blocking and memory hogging
 ✓ Non-selective PAUSE causes hogging, i.e., monopolization of common resources: e.g. shared memory may be monopolized by frames for a congested port (as shown here)
 ✓ Consequences
 - best: reduced throughput
 - worst: unfairness, starvation, saturation tree, collapse
 ✓ properly tuned, BCN can address this problem