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Purpose

1. Ethernet’s link-level flow control (LL-FC) requirement selection
=> Separate LL-FC objectives 

1. must have (correctness)
2. could have (performance)
3. should not have...

2. Agree on a trade-off hierarchy: ordered list

3. Vote and record a requirements document before Florida Plenary

4. Observations
i. No solutions are proposed. However, selected examples are shown to 

illustrate the case.
ii. To avoid confusing terminology we propose the use of:

a) LL-FC instead of PAUSE: abstract protocol mechanics
b) “flow control domain” (FCD) instead of Prio, VL, VC: whenever possible...
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Outline

• LL-FC possible requirements
1. Loss
2. Blocking
3. Deadlocks
4. Scalability

¾ A canonical LL-FC

¾ Conclusions

¾ Explanatory segments 
¾ Definitions, examples, exemplary solutions
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LL-FC Requirements – 1: Loss

1. Compatible: Legacy Ethernet
a) Defaults to lossy operation (virtually all legacy installations)
b) Obeys legacy LL-FC semantics, when PAUSE is needed 

2. Lossless: IPC & storage apps + SAN & StAN emulation
LL Options
a) In-order delivery (IOD , see (5.2.b) in Deadlocks)
b) Reliable delivery (RD) => LL retransmission

3. (1) + (2) => Dual mode: simultaneous lossy & lossless
¾ e.g. VL[0] defaults to lossy (no LL-FC), and,
¾ VL[1] uses LL-FC for losslessness (VL = Virtual Lane)
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LL-FC Requirements – 2: Blocking

4. Free of first-order blocking
a) Priority blocking, aka priority inversion requires

1) Multiple prios (e.g. 2-8, 802.1p) or VLs distinctly LL-
FCed, and,

2) De-blocking mechanism

b) HOL1-blocking, aka hogging requires Virtual 
Output Queueing (VOQ) demultiplexing
1) Full: VOQ-arity = switch port count (24-256 !), or,
2) Partial: a smaller VOQ subset (4-16) + reuse 

mechanism

¾ Observations
9 (a) and (b) are orthogonal; e.g., a 32-port switch 

with 8 priorities elicits up to 256 “flow control 
domains” (1 FCD = queue + channel)

9 Higher order blocking is NOT a LL-FC objective.
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LL-FC Requirements – 3: Deadlocks

5. Free of deadlocks: Three types

1) Circular dependence deadlocks
Why? Un-ordered access to mutually blocking resources.
9 a) Memory-to-memory (inter-switch deadlock in bidirectional 

networks)
» Solution requires partitioning

9 b) Load/Store, Request/Reply (transaction-induced deadlock)
» requires: 2 FCDs + strict ordering rules

2) Routing deadlocks
Why? Cycles in the routing graph (multipath)

» e.g., LL-FC solutions typically employ 2-4 virtual channels (VC)
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LL-FC Requirements – 4: Scalability

6. Maintains losslessness and performance with increase of
a) Signaling speed (1 – 100 Gbps)
b) Link length (0.1 – 1000s m)

- Must reduce, ideally eliminate, the performance 
sensitivity to RTT (normalized delay*Bw)
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Meeting All Requirements: The Canonical LL-FC Solution

Combining the LL-FC requirements for a discussion base :

1. Dual mode (lossy & lossless): 2 FCDs
2. No priority blocking: 8 FCDs
3. No HOL1-blocking: 64 FCDs
4. No RQ/RP deadlocks: 2 FCDs
5. No routing deadlocks: 4 FCDs
6. No FCD is “overloaded” with multiple functions...

⇒ Canonical LL-FC = 2x8x64x2x4 = 8192 FCDs (aka VLs, VCs)...
... per switch! ☺
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Conclusions

I. Requirements above are demanded in datacenter 
applications. 
¾ Performance, efficiency and power increase in importance
¾ Correctness of operation in not optional (no “disable”)

II. The brute force (canonical) approach is not feasible 
for modern datacenter switches
¾ Switch memory, if M=O(#ports2, #prios, RTT)
¾ LL-FC overhead (1000s of FCD IDs)
¾ Logic and scheduling complexity.

III. Requirements must be prioritized
¾ Sensible compromises 
¾ Enable the LL-FC of next-generation Ethernet.
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Explanatory Segments: Definitions and examples

• First-order blocking
• Priority inversion and a ‘Bulldozer’ example
• HOL1-blocking, aka hogging, in a VL-rich architecture
• Deadlocks:

¾ 1. Circular dependence deadlocks
9 a) Memory-to-memory (inter-switch, 1st order deadlock)
9 b) Load/Store, Request/Reply (transaction-induced deadlock)

¾ 2. Routing loops
• Scalability:
• losslessness and performance sensitivity to RTT
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Blocking Phenomena in Packet Switching

• HOL- vs. Priority- blocking: 2 distinct blocking classes

• The difference?
¾ Priority-blocking acts one-way-only, according to the prio

ordering rules
– easy on TX: any form of strict/fixed prio preemptive scheduling
– hard on RX: full dedication per prio req’d => static partitioning (no 

sharing)
¾ HOL-blocking acts multiway (any-to-any blocking)

– is hard on the traffic source: needs full demux solutions, e.g., VOQ
– is easy on the RX buffer: memory-sharing is possible
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Outline
• Datacenter switches  &  the NASA Mars Pathfinder

• Strict priority QoS scheduling

• Priority blocking

• Blocking phenomena in packet switching 

• Solutions against priority-blocking
� Bulldozer architecture
� Selected simulation results

¾ Implementation optimisations

• Conclusions on priority inversions in datacenter ICTNs
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What’s Common Between Switches and the Mars Pathfinder?

Interconnect switches 

• Symptoms:
� loss of Tput

¾ no work-conservation
� increased delays

¾ no QoS compliance 
affects the high-priority traffic, i.e., the premium 

customers...

� if OS mutex / semaphores are 
based on correct QoS
implementation => deadlock

NASA Mars Pathfinder mission

• Symptoms:
� system resets
� data loss
� mission endagered...

Why?

http://www.netrino.com/Publications/Glossary/PriorityInversion.php
http://quest.arc.nasa.gov/mars/photos/pathfinder.html
http://www.kohala.com/start/papers.others/pathfinder.html
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Preemptive Scheduling

• Preemptive = exhaustive = fixed = strict prio: Basic QoS scheduling discipline
• Rigorously defines total/partial ordering rules based on a finite set of priorities
• Universally agreed (!), well-understood principles, simple implementations, yet...

• Two issues of preemptive scheduling in lossless networks
1. [indefinite] starvation potential for low-prios
2. priority blocking, i.e. when stale pkts of low prio flows block the 

forward progress of higher prio flows

• Prio-blocking in packet switching
¾ may occur whenever flows of different prios share a buffer (see next foil)
¾ is [a spatial] cousin of the priority inversion problem in real-time/OS scheduling
¾ aggravates proportionally with

– no. of prios
– link delays and buffer size
– traffic burstiness

http://www.netrino.com/Publications/Glossary/PriorityInversion.html
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Priority-Blocking: When and How Can 
Happen?

• 4 typical requirements for datacenter interconnect switches:
¾ 1) 3-8 strict priorities, compliant to IEEE 802.1p/q 
¾ 2) Work-conservation of any mixture of priorities
¾ 3) Hosed flows: (≤) single {I, O}-tuple is 100% WC (prio-indep.)
¾ 4) Losslessness

In typical implementations the buffers are shared between priorities
� Self-induced Underflow Push-thru Blocking

XPM

Residual

PL

Active PH
Burst of PH

Out

1. PL only active, steady-state 80%

2. PH becomes active 100%

3. PH preempts PL yet remains 80% 
exposed to UDF due to the 
stale pkts of PL in the buffer

20%

80%

P7

P5
100% P5

P5
100% P5

P0 blocked

at IA

1. P5 active at I1..63 , 100%

2. P7  becomes active at I0 and 
blocks under strict prio OQS

3. P0  activates at I0 at 100%

4. P0  remains indefinetly blocked 
behind  P7 due to an 
uncontrolled prio inversion
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How often does prio-blocking occur?

• Occurence/frequency of priority blocking
• Preliminary simulations

� 64x buffered Xbar switch,1M-packet cycles
� Bursty traffic, uniformly distributed over priorities and outputs

• Configurations
� Load = 100%, 90%
� Memory size (credits) = 64, 128 (192, 256) pkts
� Avg. burst size = 10, 30, 100

• Buffer occupancy per crosspoint memory (XPM)
� average occupancy of the entire column
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Results - XPM occupancy data shows:
90% load: prio 7 > 60% memory occ.
100% load: prio 7 > 90% memory occ.
Motivation: A solution to prio-blocking is really 
needed to clear the stale p7 traffic out of the 
XPM to make way for higher priorities
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Two Exemplary Solutions Against Priority-
blocking

� S1. Full Demultiplexing (aka brute force)
¾ A distinct RTT of queuing capacity is dedicated per priority

– wasteful by a factor of P and theoretical (can’t build it)
On average only 1-out-of P prios is scheduled at any given instance. The observed memory 
utilization per prio with non-pathological traffic is extremely low => more wastefulness

E.g., a 64-port @ 40Gbps: M = N2 x P x RTT = 4K x 8 x 64 = 167MB! 

=> Flows must share the limited fast memory capacity. 

• Priority inheritance: PH act as
� S2. “Bulldozer”: push forward the PL towards the output

Flush the stale buffer in “priority-elevation” mode 
- higher latency (deterministic) for PH => justified for longer bursts
- priority disturbance/unfairness (upper bounded)
+ lossless

Next: Sketch “Bulldozer” (BDZ) Architecture and Simulation Results
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4

IAi
Switch

XPMi,j
p0 p3p1p2

present highest 
priority to OQS

BDZ 
Activation
Unit

BDZ
Termination
Unit

OQS, 
RR pointer

"send packet"

VOQ1

VOQN

BDZ Prio
Remapping
Unit

credit
bucket

credit
bucket

BDZ 
Detection & 
Requestor

Memory
Buffer
128 loc.

Bulldozer Architecture: 4 units
1. detection & request
2. activation
3. prio. elevation and re-mapping: 

native/elevated
4. termination

Reference implementation
* Input Adapter-initiated:

P-counters per buffer: reference 

Bulldozer Architecture: The Basic Elements
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Simulation Results: Unfairness of Bulldozer 

• Unfairness: any elevation is a 
statistical perturbation of the 
ordering rule imposed by the 
original priority set

• Baseline unfairness: ~ 1%
� detrimental to PH

� neutral to  PMed

� beneficial to  PL
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• Optimisations
� increase the XPM size 2x, 3x, 4x
� increase the threshold spacing in IA

• Result 
� 2x buffer yields 10x improvement 
� Better delay/jitter performance
� Significant savings in silicon area
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Conclusions
• As a basic QoS scheduling discipline, strict priority must be supported
• Starvation still remains its best-known issue
• Priority-blocking needs attention because it impacts:

¾ work-conservation
¾ delay, jitter, and QoS in general

• Priority elevation is an appealing solution for lossless switches with:
¾ limited buffering capacity
¾ non-negligible RTTs
¾ support for more than 2-3 prios
¾ expected high burstiness
¾ Its cons --latency & priority perturbation-- are strictly upper-bounded and 

practically reducible < ε
� Memory reduction @ ε < 0.01%

¾ from  M = N2 x P x RTT = 4K x 8 x 64 = 167 MB 
¾ to  M = N2 x 2 x RTT = 4K x 2 x 64 = 42 MB 

� Acks: All the Prizma group in IBM ZRL has contributed to this work.
For details see the Globecom 2003 paper .
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Priority Inversion Reference
Memory Sharing Mechanism for Ordered Priority Set with Preemptive Service
• Our problem: How to share a limited resource, eg, memory M or reception buffer (RXB), among an ordered 

set of P priority classes served by a preemptive scheduler? The resource M is strictly sufficient for any 
single priority class. The sufficiency rule could be based on work-conservation, or any other constraint 
imposed by a specific application. Eg, in CIOQs with internal support for large RTTs, the highest prio
currently available must acquire [within a bounded time interval - potential conflict with PIP] the full 
M=RTT of RXB. In most general case, the highest prio class must acquire the full resource ASAP. 

Obstacles to overcome - two classes of spatial priority blocking: (a) self-induced starvation; (b) push-
thru, or chain, blocking (aka priority inversion). Both blocking classes are unbounded. Classical solution 
against spatial prio blocking is to dedicate an M-resource to each prio class. 

Here we propose a solution to spatial prio blocking by the means of prio elevation. Please note the subtle 
distinction from the temporal prio inversion and its PIP solution described below. 

• Background: The related problem of temporal priority blocking (more specifically, inversion) is over two 
decades old in the field of real-time OS. Its classic solution in the temporal domain is known since '86 [1,2]; 
it became widely spread after the '97 Martian module failure. We acknowledge it as predecessor and cousin 
of our research on Bulldozer mechanisms. 

• How does BDZ work? It needs an: 
• Detection & Request unit, either in the upstream comm. device, or local (in switch-initiated BDZ); 
• Activation unit, that grants or rejects the RQ from above; 
• elevation mechanism 

� locally it must distinguish between elevated and native units 
� globally it is a strict / preemptive scheduler 

• termination unit. 
•

* Priority inversion problem: http://www.netrino.com/Publications/Glossary/PriorityInversion.html
* Martian Bug and its solution: http://www.kohala.com/start/papers.others/pathfinder.html
http://catless.ncl.ac.uk/Risks/19.49.html 

• Reference (aka, related "prior" art) 
The first mention of Priority Inheritance: 
1. L.Sha, R.Rajkumar and J.P.Lehoczky, "Priority Inheritance Protocols: An Approach to Real-Time 
Synchronization", CMU-CS-87-181, ComputerScience Department, Carnegie-Mellon University, December 
1987. 
2. (IEEE version) L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority Inheritance Protocols: An Approach to 
Real-Time Synchronization. In IEEE Transactions on Computers, vol. 39, pp. 1175-1185, Sep. 1990. 
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HOL1-Blocking
Example in IBA



24

IBA has 16 VLs: Is this Sufficient?
• IBA has 15 FC-ed VLs for QoS

� SL-to-VL mapping is performed per hop, according to capabilities

• However, IBA doesn’t have VOQ-selective LL-FC
� “selective” = per switch (virtual) output port

• So what?
� Hogging - aka buffer monopolization, HOL1-blocking, output queue lockup, 

single-stage congestion, saturation tree(k=0)

• How can we prove that hogging really occurs in IBA?
� A. Back-of-the-envelope reasoning
� B. Analytical modeling of stability and work-conservation (papers available)

� C. Comparative simulations: IBA, PCI-AS etc. (next slides)
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• Simulation: parallel backup to a RAID across an IBA switch
� TX / SRC 

¾ 16 independent IBA sources, e.g. 16 “producer” CPU/threads
¾ SRC behavior: greedy, using any communication model (UD)
¾ SL: BE service discipline on a single VL

– (the other VLs suffer of their own ☺)

� Fabrics (single stage) 
¾ 16x16 IBA generic SE
¾ 16x16 PCI-AS switch
¾ 16x16 Prizma CI switch

� RX / DST 
¾ 16 HDD “consumers”
¾ t0 : initially each HDD sinks data at full 1x (100%)
¾ tsim : during simulation HDD[0] enters thermal recalibration or sector 

remapping; consequently 
» HDD[0] progressively slows down its incoming link throughput: 90, 80,..., 

10%

IBA SE Hogging Scenario
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First: Friendly Bernoulli Traffic
� 2 Sources (A, B) sending @ (12x + 4x) to 16*1x End Nodes (C..R)
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Myths and Fallacies about HOL1-blocking
• Isn’t IBA’s static rate control sufficient?
• No, because it is STATIC

• IBA’s VLs are sufficient...?!
• No. 

� VLs and ports are orthogonal dimensions of LL-FC
¾ 1. VLs are for SL and QoS => VLs are assigned to prios, not ports!
¾ 2. Max. no. of VLs = 15 << max (SE_degree x SL) = 4K

• Can the SE buffer partitioning solve hogging in 1-hop systems?
• No.

� 1. Partitioning makes sense only w/ Status-based FC (per bridge output port  
- see PCIe/AS SBFC); 

¾ IBA doesn’t have a native Status-based FC
� 2. Sizing becomes the issue => we need dedication per I and O ports

¾ M = O( SL * max{RTT, MTU} * N2 ) very large number!
¾ Papers (available) and theoretical disertations prove stability and work-

conservation, but the amounts of required M are large
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M2M Circular Dependency Deadlocks
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The Mechanism of LL-FC-induced Deadlocks

• When incorrectly implemented, LL-FC-
based flow control can cause hogging and 
deadlocks

• LL-FC-deadlocking in shared-memory 
switches:
� Switches A and B are both full (within the 

granularity of an MTU or Jumbo) => LL-FC 
thresholds exceeded

¾ All traffic from A is destined to B and 
viceversa

� Neither can send, waiting on each other 
indefinitely: Deadlock.

� Note: Traffic from A never takes the path 
from B back to A and vice versa

¾ Due to shortest-path routing

A

B
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LL-FC-caused Deadlocks in BCN Simulations 
16-node 5-stage fabric Bernoulli traffic

SM, no BCN

SM, BCN
Partitioned, 

w/ BCN

Partitioned, 
no BCN
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Typical Solution to Defeat this Deadlock: 
Partitioning

• Architectural: Assert LL-FC on a per-input basis
� No input is allowed to consume more than 1/N-th of the shared 

memory
� All traffic in B’s input buffer for A is guaranteed to be 

destined to a different port than the one leading back to A 
(and vice versa)

� Hence, the circular dependence has been broken!

• Confirmed by simulations
� Assert LL-FC on input i:

¾ occmem >= Th or occ[i] >= Th/N
� Deassert LL-FC on input i:

¾ occmem < Th and occ[i] < Tl/N
� Qeq = M / (2N)

... this deadlock is solved!

A

B
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Breaking the Rq/Reply Deadlock: Bypass Queue

Ordering rules (PCIe-compatible)

1. Seq. Q is FIFO => maintains VL[k] default ordering.
2. Bypass Q is FIFO => local ordering.
3. HOL of Seq. Q is served ahead of the Bypass Q, if the latter is LL-FC blocked => deadlock avoidance.
4. HOL of Bypass Q can not be served as long as an older pkt. exists in the Seq. Q => inter-queue 

ordering.

... this is the kernel of ordering rules.

Sequential Q

Bypassable Q

VL[k] VL[k] HOL
Queue

Selector

FC Seq. VL[k]

FC Bypass VL[k]
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Routing Deadlocks
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Routing Deadlock Scenario

VoIP connection

FTP Up load

Video streaming

Def.: Cyclic dependency relationship between two or more resources 
that are waiting on each other to free resources, but without freeing 
their own. Resources: physical (hardware) or logical (software)
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Deadlocked Buffers: Dependency Loop in the Routing Graph

All buffers in this 
network cycle are full

⇒All the packets are 
waiting for each other

⇒ Thus, no message 
can make forward 
progress.
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Deadlock Recovery in Lossy Networks

TIMEOUT

Packet Drop

Packet drop
=> frees deadlocked 
resources 
⇒ eliminates cycles 
between their inter-
dependencies.
⇒ simplest solution, 
iff voluntary loss is 
allowed
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Deadlock Avoidance by Ordering: Deadlock-free 
Routing

Deadlock-free algorithm => Certain turns will be forbidden in order to eliminate 
cycles. In figure below left-up and right-down turns are prohibited.
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1. Split physical links into several VCs 
2. Define the restrictions / ordering rules in the use of VCs to avoid / recover 

from deadlocks.
=> Enables fully or partially adaptive routing.

Deadlock Avoidance or Recovery: Virtual Channels
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RTT-Sensitivity
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Correctness: Min. Memory for “No Loss”

� "Minimum“: to operate lossless => O(RTTlink)
– Credit : 1 credit = 1 memory location
– Grant : 5 (=RTT+1)  memory locations

� Credits
– Under full load the single credit is constantly looping between RX and TX 

RTT=4 => max. performance = f(up-link utilisation) = 25%
� Grants

– Determined by slow restart: if last packet has left the RX queue, it takes an 
RTT until the next packet arrives
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Performance of Credit vs. Grant @ M = RTT+1 

� "Equivalent" = ‘fair’ comparison
1. Credit scheme: 5 credit = 5 memory locations
2. Grant scheme: 5 (=RTT+1)  memory locations 
Performance loss for LL-FC/Grants is due to lack of underflow protection, because if 

M < 2*RTT the link is not work-conserving (pipeline bubbles on restart)

For equivalent (to credit) performance, M=9 is required for LL-FC... 
...however, this is not an endorsement of any specific scheme!
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