QCN: Improving Transient Response

Abdul Kabbani, Rong Pan
Balaji Prabhakar, Mick Seaman

Outline of presentation

Statement of problem

Algorithm for improving transient response of 2-QCN
A principle underpinning the algorithm

Trade-offs: Milking the principle further

Transient response of 2-QCN

- When bandwidth is available
— 2-QCN takes longer to grab it

— Qs: Is 2-QCN fundamentally handicapped by a lack of
positive feedback? Or, can a source detect and grab
available bdwdth in a simple manner?

* A Kkeyissue

— Any attempt at improving transient response should not
harm steady-state stability

Estimate congestion at the source

— Maintain an estimate of Fb, say Fb-hat, at each RL

— Fb-hat is counted using a 5- or 6-bit saturation counter

— FDb-hat is thought of as a source’s estimate of congestion

Updating Fb-hat
— For every Fb recd by RL: Fb-hat <-- Fb-hat + Fb
— For every 50 pkts transmitted: Fb-hat <-- Fb-hat/2 (just right shift)

Using Fb-hat: cycle-shrinking
— Every time we begin a cycle of FR or Al...
If Fb-hat is small (e.g. 0 or 1): reduce length of cycle to 50 pkts from 100 pkts

|ldea: small Fb-hat implies no dings for a while, hence it is likely there is
no congestion; so a source can quickly get to Al and grab extra bdwdth

— Note: in equilibrium, Fb-hat will be more than 1, hence no cycle-shrinking
will occur, hence stability is preserved

Simulation Comparison

Parameters

10 sources sharing a link; RTT = 40 microseconds

Buffer size = 100 pkts; Qeq = 22

Link BW: 10G during 0--2 sec and 4--6 sec; 0.5G during 2--4 sec
Fb-hat saturated at 31

FR cycle-shrinking: 50 pkis if Fb-hat is 0 or 1, 100 pkts otherwise
Al: also 50 or 100 pkts depending on Fb-hat as above

Al amount: 25 Mbps

Note on choice of cycle-shrinking

We have chosen non-aggressive parameters above for cycle-shrinking
E.g. we have also tried shrinking cycle lengths to 25, 50 or 100 pkts depending on Fb-hat
We have also used gentle rate increases during Al
More aggressive choices certainly improve recovery time a lot, but we need to keep
the basic trade-offs in mind
Complexity vs performance
Responsiveness vs stability margin

But, there is good potential for exploiting Fb-hat better (more later)

0.5G Bottleneck: Rate

12 ! . | . .
3pt QCN
2pt QCN - New
2pt QCN - Old
10] .
L] | .
8 | 1 | _; Old 2-QCN: 202 msgc
, li: New 2-QCN: 136 msec
- 3-QCN: 96 msec
m L]
™ 6 i
o ! ‘

Note: We have seer

_ recovery times as Icrw

4 I | | as 113 msecs, the -
! number above is on|

the high side; the

average was around

125 msecs

Queue

=X
Q
)
c
o
e
e
O
m
O
ol
(e

3pt QCN

2pt QCN - New

- Old

2pt QCN

1 . e -

100

3 g

(s18¥0eg 10 #) 8215 ananp

Simulation Time

0.5G Bottleneck, Max source rate: 0.9G
Straqgler

' flow 0 ——
1.4 | flow 1 =====e- -
flow 2 seesssss
flow 3 e
flow 4
= flow 5 _
1.2 fIDw E LR R TY
flow 7 o er oo
flow 8 <o oo
flowd ——
1F -
='§
E 0.8 E.E _
m I3
06 | i3 i :
2 |
i :
; _;)
:
1
¥
F'lll
- L]
4.2 4.4

Simulation Time

Most sources recover around 100 msecs, one source takes 200 msec

0.5G Bottleneck, Max source rate: 0.9G

Effect of straggler (this is random

Limiting a source rate at 0.9G

12 .
With FB »
WO FB_~
10 F
n f__/j
8 8sF
0]
5
2
[e)) 6
-]
o
<
=
5 4T
2 -
| A
D 1 1 1 1 [
3.6 3.8 4 4.2 4.4

Simulation Time

0.5G Bottleneck: Rate

Bernoulli sources, max offered rate 0.85G

1.0 - T " T 1.0
:g_:_ O.Sf §_ 0.8
S | 5
2 3
o 0.6 o 0.6 -
= kS
5 5
a 0.4 5 |
Q.
3 - <)
g =
£ —
S| = 02}

0.0 N | N | N 1 N | N

0 200 400 600 800 1000 0.0

. | L | A | L | A
0 200 400 600 800 1000

Time (msec
() Time (msec)

Without Fb-hat; 180 msec With Fb-hat: 110 msec

10

Sanity check: 6 sources sharing 10G link

Queue size with cvcle-shrinkinc

' 2pt QCN - New - Bsources
100 F
80
)
@
-
8
a
S 60
®
S
n
4]
-
o 40
C
20
0 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5

Simulation Time
11

Sanity check: 6 sources sharing 10G link

Rate with cycle-shrinking

12

' 2pt QCN - New - Bsources

115 F

1 F

10.5 F

Rate

10 !

9.5

8.5

1 | 1 1
0.1 0.2 0.3 0.4 0.5
Simulation Time

[e]

12

Sanity check: 6 sources sharing 10G link
Individual rates

05 F -

0 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5

Simulation Time

A principle

- Introducing Fb-hat symmetrizes the source and switch behavior

— Switch

« Has input: Packets or source rates

« Observes: Qoff, Qdelta

« Goal: Drive Q to Qeq and Qdelta to zero

« Action taken to achieve goal: Send Fb signals to sources
— RL

« Has input: Fb signals from network

« Observes: Fb-hat
« Goal: Drive Fb-hat close to zero (i.e. just above 1, the threshold)

 Action taken: Change transmission rate

- This is like a primal-dual algorithm for congestion management
— Primal variable, source rate: Input to switch but output from RL

— Dual variable, Fb: Input to RL but output from switch
14

Distributed control

A principle: The switch and source (or RL) pass just the right signals to

each other so as to solve the global bandwidth partitioning problem in a
distributed fashion

Clearly, other algorithms can be obtained from this principle; e.g. we
have tried

1. Cycle lengths of 25, 50 and 100 pkts depending on Fb-hat values

2. Stretching cycle lengths to 150 pkts if Fb-hat is large

3. Letting Fb-hat go negative; this lets source know with more certainty that
bdwdth is available

As mentioned, these improvements reduce the transient response
further (e.g. we had roughly 85 msec recovery time using option 1)

— But they introduce slightly more work at the source and may affect the
stability margin

Overall, the approach promises to lessen the impact of not receiving

explicit positive feedback at the source
15

Other work done

« Check stability with large number of sources (100, 200, 500...)

— Want to ensure that cycle shrinking is essentially inactive in
equilibrium; hence it is primarily useful only in transience

— We have found this is indeed the case (sims next week)

 In conclusion, the principle of primal-dual control yielded a
simple Fb-hat based algorithm for improving transient response

— Refinements may improve the performance even more

— However, it is good to be cautious and draw the line somewhere in
trade-off space

16

