
QCN: Improving Transient Response

Abdul Kabbani, Rong Pan
Balaji Prabhakar, Mick Seaman

High Performance
Switching and Routing
Telecom Center Workshop: Sept 4, 1997.

2

Outline of presentation

• Statement of problem

• Algorithm for improving transient response of 2-QCN

• A principle underpinning the algorithm

• Trade-offs: Milking the principle further

3

Transient response of 2-QCN

• When bandwidth is available
– 2-QCN takes longer to grab it
– Qs: Is 2-QCN fundamentally handicapped by a lack of

positive feedback? Or, can a source detect and grab
available bdwdth in a simple manner?

• A key issue
– Any attempt at improving transient response should not

harm steady-state stability

4

Algorithm
• Estimate congestion at the source

– Maintain an estimate of Fb, say Fb-hat, at each RL
– Fb-hat is counted using a 5- or 6-bit saturation counter
– Fb-hat is thought of as a source’s estimate of congestion

• Updating Fb-hat
– For every Fb recd by RL: Fb-hat <-- Fb-hat + Fb
– For every 50 pkts transmitted: Fb-hat <-- Fb-hat/2 (just right shift)

• Using Fb-hat: cycle-shrinking
– Every time we begin a cycle of FR or AI…

• If Fb-hat is small (e.g. 0 or 1): reduce length of cycle to 50 pkts from 100 pkts

• Idea: small Fb-hat implies no dings for a while, hence it is likely there is
no congestion; so a source can quickly get to AI and grab extra bdwdth
– Note: in equilibrium, Fb-hat will be more than 1, hence no cycle-shrinking

will occur, hence stability is preserved

5

Simulation Comparison
• Parameters

– 10 sources sharing a link; RTT = 40 microseconds
– Buffer size = 100 pkts; Qeq = 22
– Link BW: 10G during 0--2 sec and 4--6 sec; 0.5G during 2--4 sec
– Fb-hat saturated at 31
– FR cycle-shrinking: 50 pkts if Fb-hat is 0 or 1, 100 pkts otherwise
– AI: also 50 or 100 pkts depending on Fb-hat as above
– AI amount: 25 Mbps

• Note on choice of cycle-shrinking
– We have chosen non-aggressive parameters above for cycle-shrinking

• E.g. we have also tried shrinking cycle lengths to 25, 50 or 100 pkts depending on Fb-hat
• We have also used gentle rate increases during AI

– More aggressive choices certainly improve recovery time a lot, but we need to keep
the basic trade-offs in mind
• Complexity vs performance
• Responsiveness vs stability margin

– But, there is good potential for exploiting Fb-hat better (more later)

6

0.5G Bottleneck: Rate

Old 2-QCN: 202 msec
New 2-QCN: 136 msec
3-QCN: 96 msec

Note: We have seen
recovery times as low
as 113 msecs, the
number above is on
the high side; the
average was around
125 msecs

7

0.5G Bottleneck: Queue

8

0.5G Bottleneck, Max source rate: 0.9G
Straggler

Most sources recover around 100 msecs, one source takes 200 msec

9

0.5G Bottleneck, Max source rate: 0.9G
Effect of straggler (this is random)

Li
nk

 th
ro

ug
hp

ut
, G

bp
s

10

0.5G Bottleneck: Rate
Bernoulli sources, max offered rate 0.85G

With Fb-hat: 110 msecWithout Fb-hat: 180 msec

11

Sanity check: 6 sources sharing 10G link
Queue size with cycle-shrinking

12

Sanity check: 6 sources sharing 10G link
Rate with cycle-shrinking

13

Sanity check: 6 sources sharing 10G link
Individual rates

14

• Introducing Fb-hat symmetrizes the source and switch behavior
– Switch

• Has input: Packets or source rates
• Observes: Qoff, Qdelta
• Goal: Drive Q to Qeq and Qdelta to zero
• Action taken to achieve goal: Send Fb signals to sources

– RL
• Has input: Fb signals from network
• Observes: Fb-hat
• Goal: Drive Fb-hat close to zero (i.e. just above 1, the threshold)
• Action taken: Change transmission rate

• This is like a primal-dual algorithm for congestion management
– Primal variable, source rate: Input to switch but output from RL
– Dual variable, Fb: Input to RL but output from switch

A principle

15

• A principle: The switch and source (or RL) pass just the right signals to
each other so as to solve the global bandwidth partitioning problem in a
distributed fashion

• Clearly, other algorithms can be obtained from this principle; e.g. we
have tried
1. Cycle lengths of 25, 50 and 100 pkts depending on Fb-hat values
2. Stretching cycle lengths to 150 pkts if Fb-hat is large
3. Letting Fb-hat go negative; this lets source know with more certainty that

bdwdth is available

• As mentioned, these improvements reduce the transient response
further (e.g. we had roughly 85 msec recovery time using option 1)
– But they introduce slightly more work at the source and may affect the

stability margin

• Overall, the approach promises to lessen the impact of not receiving
explicit positive feedback at the source

Distributed control

16

• Check stability with large number of sources (100, 200, 500…)
– Want to ensure that cycle shrinking is essentially inactive in

equilibrium; hence it is primarily useful only in transience
– We have found this is indeed the case (sims next week)

• In conclusion, the principle of primal-dual control yielded a
simple Fb-hat based algorithm for improving transient response
– Refinements may improve the performance even more
– However, it is good to be cautious and draw the line somewhere in

trade-off space

Other work done

