
Some ideas for simple
congestion management

Balaji Prabhakar
IEEE 802 Plenary Meeting

Mar 14, 2007
Orlando, Florida

High Performance
Switching and Routing
Telecom Center Workshop: Sept 4, 1997.

2

Overview

• Congestion management scheme
– Algorithm (what to feedback)
– Signaling (how to feedback)

• Presentation format
– Delineate solution space
– Propose a scheme (algorithm and signaling)
– Explore performance and complexity issues

• Further work and thoughts

3

Congestion management loop
components

Source Reaction
Point

Congestion
Point 1

Congestion
Point n

Reflection
Point

Destination

• Rough definitions…

• Source: Where data is generated.
• Reaction Point: Where the rate of injection of a flow (or flows) is changed due

to congestion signals; usually, the place where rate limiters reside.
• Congestion Point: Where resources (buffers/links) exist and can be

congested, and where congestion signals are generated; usually, switch
buffers and the links they are attached to.

• Reflection Point: Where congestion signals are reflected back to the source.
• Destination: Where data is consumed.
• Congestion Management Domain: ReaP -- CPs -- RefP.

• Overarching goals: Good performance (high utilization, low delays, fair, good
response, etc), low implementation complexity, low signaling overhead.

4

CM Architecture

• The overall architecture has the following components
– Algorithm

• What congestion signals should the CPs generate?
• How should the ReaPs react to these signals?

– Signaling
• How should the congestion signals be sent back to the ReaP?
 E.g. backward signaling or forward signaling

• Types of algorithm
– Congestion management
– Rate allocation

• Types of signaling architecture architecture
– 3-point architecture: ReaP --> CPs --> RefP (forward signaling)
– 2-point architecture: ReaP --> CP/RefP (backward signaling)

5

Rate allocation vs congestion management
• Rate allocation, especially max-min rate allocation, is definitely a

solution to the congestion management problem. But it “over-solves”
the congestion management problem.
– Notably, max-min allocation even at a single node is equivalent to a processor-

sharing service discipline. Therefore, it entails “per-flow” work. In the network
context, the per-flow queues are moved to the edge in the form of rate limiters.

– Congestion management is, therefore, a smaller problem than rate allocation.
This gives the hope that it is simpler.

• Secondly, a rate allocation algorithm needs to know the capacity of the link
which it is allocating. When this changes in an unknown fashion, rate
allocation involves two steps: determine the link capacity, then allocate it.
– Congestion management copes with changing link capacities by simply “dinging”

the one or two biggest flows. It gets away with this because it does not have
equal rate allocation as a goal.

• Fairness is achieved by congestion management schemes as follows
– Short-term, not packet-by-packet.
– Proportional fairness, not max-min fairness.
– Fair congestion management schemes favor the growth of low rate flows and

“ding” high rate flows when there is congestion.

6

CM Algorithm

• We now focus on the algorithm and come to signaling later

• Since the algorithm only involves mechanisms at the ReaP and at
the CP (the RefP is not involved in the algorithmics), we describe the
ReaP and CP mechanisms

• Packet Format
– We use a Congestion Indication field in the packet header, which we

assume will be 6 or 7 bits long. This field will tell the ReaP the amount
of congestion in the network. The variable that measures congestion is
indicated “Fb.”

– We will see that Fb values can only be 0 or negative, not positive.
– As an option, we could also have a FlowID field in the header.
– Every packet leaving a ReaP will have Fb value equals 0.

7

Congestion Point Mechanism

• At the CP
– Sample packets with probability p
– Compute: Fb = - [qoff + w qdelta]

• If Fb < 0, and if Fb value is smaller
 (more negative) than Fb value in the packet
 header, then overwrite Fb value in packet header
 with computed Fb value
• Else, do nothing
• Note: w is a parameter, usually a power of 2

qoff = q - qeq
qdelta = # pkts enqueued
 - # pkts dequeued
 between two packet
 arrivals (or sampling
 instants)

qeq

8

Reaction Point
• ReaP Dynamics

– Starting rate for every flow equals 10Gbps
– Insert Fb = 0 in outgoing packet
– Insert a “flowid” into outgoing packet’s header (optional)

• Whenever a ReaP receives a message
– Decrease rate from R to Rnew = R(1 - |Fb|xGd), where Gd is a gain
– Perform “fast recovery” and “active probing”

• Fast recovery
– Let Rd = R |Fb| Gd be the amount of rate decrease; the idea of fast recovery is to quickly regain as

much of this rate as possible
– Fast recovery proceeds in cycles; each cycle clocked by the “fast recovery timer”
– Fast recovery timer

• Increments for every transmitted byte up to BFR, it then resets to zero and counts again
• The cycles of counting are numbered 0, 1, 2, …

– The transmission rate is as follows
• During cycle 0, at rate Rnew
• During cycle 1, at rate Rnew + Rd/2
• During cycle 2, at rate Rnew + Rd/2 + Rd/4
• And so on until cycle 5, as long as it does not receive any further QCN messages

– If a congestion message is received, then cut rate as before and restart fast recovery
– At the end of fast recovery, the source moves to Active Probing

9

Reaction Point

• Active probing (multiplicative increase) always follows fast recovery
– Active probing is clocked by the “rate increase timer”

• Rate increase timer expires every T secs
– When timer expires, the current rate is changed to R*A, where A > 1 is the increase

parameter
– If a congestion message is received, cut rate as before, perform fast recovery and

then active probing

Time

R
at

e

R

Rnew

Congestion message recd

Rd
Rd/2

Rd/4
Rd/8

Fast Recovery

Active Probing

10

Related work and some notes
• The algorithm suggested is heavily influenced by several algorithms

– It calculates Fb as in BCN, and the REM and PI contollers in the Internet literature
– The fast recovery part is from the BIC TCP algorithm

• The CP computes Fb = - [qoff + w qdelta]
– This is different from BCN but similar to REM and PI. It is based on the observation that

even in BCN the sources merely use Fb and not qoff or qdelta
– More fundamentally, Fb becomes the “congestion measure;” a part of it depends on buffer

occupancy, another part depends on link utilization, and the switch is best placed to decide
how to weigh these resources.

• Simplifications with respect to BCN come mainly from quantization, and lack of CP--
RP association through the CM tag.

• A major benefit: Not having the CM tag on allows for perfectly incremental
deployment; i.e. no flowid, no CPID, nothing. Congestion messages use SA of
sampled packet.
– Moreover, in this case, we only need exactly one rate limiter per ReaP.

11

Intuition for Fast Recovery
• The best way to understand fast recovery is by considering TCP

– Recall
• TCP cuts the window by 1/2 for every dropped/marked packet
• And increases window size by 1 each round trip time when there is no drop

– When the bandwidth-delay product is high, the additive increase by 1 can be very
slow, require large buffers, and lead to poor link utilization.

– Fast recovery, or BIC TCP, is a method for overcoming these problems.

• BIC TCP through an example
– Suppose the congestion window size equals 512
– If we now get a packet drop, the window goes down to 256
– After 1 RTT, if there are no drops, the window increases to 256 + 128 = 384
– After another RTT (if there are no drops), the window increases to 384 + 64 = 448
– The complete sequence of window sizes is:

• 512, 256, 384, 448, 480, 496, 504, 508, 510, 511

• Active (additive) probing would start now, increasing the window size by 1, so we get
window sizes: 512, 513, 514, …

• If another drop occurs any time during this process, we go back to binary increase

12

Benefits of BIC TCP
• BIC TCP

– Gets sources high throughputs
– Keeps links highly utilized (this is not exactly the same as the previous point)
– Most importantly, it does this with small buffers
– By doing a binary search for the correct window size, instead of a linear search, BIC

TCP is both quick and gentle in probing for extra bandwidth
– Note: BIC has been invented by Rhee et al

• Comparison of BIC with plain old TCP
– Consider a link with capacity 1000 pkts/sec
– A RTT of 200 msec
– Bandwidth-delay product worth of buffering = 200 pkts

• TCP will not give 100% throughput with less than this amount of buffering for a single source
– We use buffers of depth 20, 50, 100 and 200 pkts

13

BIC TCP: Queue sizes

TCP: Loses throughput with buffer size
BIC TCP: Keeps throughput high

14

BIC TCP: Window sizes

15

Signaling and Reflection Point Dynamics

• Signaling, some motivation: Consider backward signaling as in BCN
– Amount of signaling

• BCN uses a sampling probability of p (= 1%, with extra when congestion increases)
• Without the congestion-related enhancement, the amount of signals is proportional to the

amount of traffic and not to the amount of congestion
– Node- vs path-centric signaling

• BCN generates signals from each congested node, doing it per path will again reduce the
amount of signaling

• So, if forward signaling can fix these problems (the first can be fixed by
BCN itself), why not jump all the way to the Internet schemes
– This means just 1-bit per packet (Fb encoded in 1 bit)

• And will double the number of packets if we have per-packet acks.
– If we gather up multiple acks per source (or flow) at the RefP and reflect that…

• We have to do per-source (or per-flow) work.
• It is actually per-RTT amount of work or per-flow, whichever is minimum.

16

Signaling
• There is also more going on in the Internet…

– Packet sequence numbers, RTT estimation, etc
– So, there is more state at each source which is usable, the 1-bit is misleading

• So while a 1-bit scheme is really tantalizing, esp because we could use the
DE (Discard Eligible) bit, it imposes an overhead.

• Actually, the Ethernet congestion management problem is interesting
because
– Ethernet is not a state-ful network like ATM.
– Ethernet hosts do not keep transport-related state like in TCP/IP.
– This really forces a fundamental rethinking of algorithm and signaling.

• To conclude, we want signaling to
– Depend on amount of congestion and be path-centric.
– Not be complicated to implement.

• We propose a multi-bit, congestion-dependent signaling scheme

17

Forward signaling and RefP Dynamics
• Each CP computes Fb per packet

– It replaces the Fb value in the packet with the computed value if the computed Fb is
more negative

– Thus, Fb values can only decrease as as a packet goes though its path

• RefP Dynamics
– When a packet is received, reflect the Fb value to the source with a probability

which increases with |Fb|

RED
P

QQmin Qmax

|Fb|-based Scheme
P

|Fb|

18

To summarize

• The scheme we propose has
– Reaction Points, Contestion Points and Reflection Points.
1. Reaction Points: Insert Fb = 0 in outgoing packets. When congestion

message arrives: perform multiplicative decrease, fast recovery and active
problng.

2. Congestion Points: Compute Fb, overwrite Fb in packet header.
3. Reflection Points: Reflect Fb values to ReaPs with a probability biased by

the Fb value in the packet.

19

Further work, refinements
• Due to packet-level, random effects some refinements of the basic algorithm are

useful to make
– The main point is that Control Theoretic analyses lose their fidelity with the discrete, packet-level,

random effects present in the real network, especially when the buffers are short. This needs us
to be careful when going from theory to practice. The following points are worth noting in this
regard.

1. BIC TCP makes a binary fast recovery, as opposed to linear or constant recovery. Binary and
linear recovery delineate extreme points in a spectrum from more aggressive to less aggressive
recovery. We could, of course, use something in between.

2. Suppose a source gets multiple congestion messages in a burst, driving its rate down by a lot.
Say that the rates of decrease were Rd1, Rd2 and Rd3. Fast recovery only uses the last amount
of decrease Rd3. Using Rd1+Rd2+Rd3 or max(Rd1, Rd2, Rd3) for fast recovery, when
congestion messages arrive in a burst, improves performance.

• A significant advantage of forward signaling is that both decrease and increase
messages can be signaled by the reflection point, without the need for CM-type tags.
This is purely because forward signaling gathers “path capacity,” not node capacity.
This feature is not explored in our current proposal, but is worth considering.

• Another aspect has to do with the byte-counter timers. These timers make the
system self-clocked and are hence v.useful. However, when the source transmission
is very low, the timers can take too long to expire. So some “state recovery timers”
may be needed here.

