
QCN: Notes on a Stable Improvement
of Transient Response

Abdul Kabbani, Rong Pan,
Balaji Prabhakar and Mick Seaman

High Performance
Switching and Routing
Telecom Center Workshop: Sept 4, 1997.

2

Outline

• This is a presentation about two items
1. Discussion of positive feedback, using probes or as in QECM

• Increases gain in the feedback loop, causes loss of stability
• Moreover, it does not probe the path

2. A method for discovering available bandwidth in a 2-QCN world
• Does not increase gain
• Probes the path
• Very quickly recovers bandwidth
• Simplifies 2-QCN

• This is a first presentation; we have more data and further work
which we will discuss next week
– Welcome your feedback

3

Positive Feedback

• Using positive feedback; i.e. Fb > 0 values
– Improves transient response
– But adversely affects stability in large latency scenarios (from

Guenter’s presentation in Stockholm)

• We will see
– This is due to an increase in the gain of the feedback loop
– Large latencies aggravate the problem
– Cannot aggressively increase transmission rate based on

instantaneous value of Fb>0
– Need a more “stable” indication of “available bandwidth”

4

Stability
• Depends on RTT and the number of sources (N)
• Fb goes negative and positive as RTT and N increase
• So, we cannot infer that bandwidth is available at a switch just

because the current value of Fb happens to be positive
– This is the key point
– The next few slides will show this

5

Stability
• Depends on RTT and the number of sources (N)
• Fb goes negative and positive as RTT and N increase
• So, we cannot infer that bandwidth is available at a switch just

because the current value of Fb happens to be positive
– This is the key point
– The next few slides will show this

• Simulation scenario
– Single link, 10G, 100 pkt buffer, qeq = 22, AI increment = 12 Mbps
– Drift timer disabled
– Total starting rate = 10G/N
– We will compare QCN-P and QCN in the following scenarios

– N = 10, RTT = 40 usecs
– N = 10, RTT = 400 usecs
– N=100, RTT = 40 usecs
– N=100, RTT = 400 usecs

– Interested in queue size and Fb values

6

QCN: queue sizes

7

QCN-P: queue size

qeq

qeq

qeq

8

What’s going on
• QCN-P does the following (at least)

– When a source gets Fb<0 signal, same as QCN
– When a source gets Fb>0 (in response to a probe)

– R <-- R + (constant*Fb + cycle_number - 5)*12 Mbps, where
 constant = link_rate*QCN_MAX_INC/(12*63) >= 13
– So, if Fb = +10, cycle_number = 3, then the rate increase = 146 Mbps
 and if Fb = + 30, cycle_number = 3, rate increase = 464 Mbps
– The source then goes to the next cycle of FR or AI, etc

– Probes are launched at least once in 100 pkts

– The point is: due to the aggressive increase in rate when Fb>0 signal
arrives, the large N and large RTT regime adversely affects the
stability of the scheme

– Let’s look at the Fb values

9

QCN: Fb values

10

QCN-P: Fb values

11

QCN: Histogram of FR/AI

12

QCN-P: Histogram of FR/AI

13

Summary of positive feedback
• Since Fb becomes positive even when bandwidth is not available,

and large N and RTT only makes this more likely, reacting to Fb>0
signals increases gain, compromises stability
– We have seen this with QCN-P
– Even the Orlando version of 3-QCN, which reflects Fb>0 values with

increasing probability the more positive Fb is, increases the loop gain
• Hence we changed the reflection probability in the Geneva meeting to 1%

– 2-QCN (without Hyperactive Increase) is stable across a large range of
RTT and N values
– We need to improve its transient response without compromising

stability
– Need a “stable” indicator of “path bandwidth available”

14

Our approach

• We need to ensure that we don’t increase the gain in the loop
– This means not increasing rate whenever Fb > 0
– Because this will occur in large N and RTT scenarios

• Second, we need to probe the path

• Our main idea: Analogous to SONAR
– RL sends periodic pings (details later) probing for extra bandwidth
– A switch which “has no extra bandwidth” responds indicating this; else, it

does not respond
– If no switch responds, then the path has extra bandwidth available
– RL infers this whenever a ping elicits no “echo”

15

The Algorithm at RL

FR
-- 5 cycles, 100 pkts each

AI
-- 100 pkts/cycle, 12 Mbps increase

HAI
-- 100 pkts/cycle,

-- 12 x cycle_cnt Mbps

Bdwdth NOT Available

Bdwdth Available

SONAR Fb < 0

16

SONAR

• The Ping Timer
– The ping timer is in one of 3 states: Waiting to probe (WP), waiting

for echo (WE), short fuse (SF)
– WP is 10 msec duration, WE is 2 msec, SF is 0.5 msec

• The operation
– The RL goes to the WP state whenever it receives an Fb<0 signal
– If the WP timer expires, the next pkt sent by RL is a “special pkt”

• Spl pkt == data packet with 1 bit set to indicate special
– After Spl pkt is launched, RL goes to WE
– If RL hears an echo for the SP

• The ping timer returns to WP; RL continues operation (I.e FR or AI)
– If the WE clock expires

• Ping timer goes to SF; RL goes to HAI
• In HAI, RL increases rate due to 100-pkt byte ctr and the ping timer

17

At the Switch

• Need to determine if switch is congested or not
– Can’t simply look if current value of Fb is positive

• Again, this is why we changed 3-QCN to have constant reflection
probability, instead of Fb-dependent reflection probability

• Bdwdth available if queue-length < 6 pkts (say) for at least
10 msecs
– Q_len < Q_eq (= 22 pkts) means input rate < output rate
– So every time Q_len < 6 pkts, swith starts congestion timer
– If timer expires, bdwdth available; else timer restarted when Q_len

< 6 pkts again

18

Simulations: OG Hotspot
• Parameters

– 10 sources share a 10 G link, whose capacity drops to 0.5G during 2-4 secs
– Max offered rate per source: 1.05G
– RTT = 500 usec
– Buffer size = 100 pkts; Qeq = 22
– Drift timer disabled

Source 1
Source 2

Source 10

10 G 10 G

0.5G

19

Bdwdth Recovery

Time improvement
-- 350+ msces down to 38 msecs

-- 0 false alarms

20

Queue size: No effect on stability

21

Bdwdth Recovery: 1 source, 1 msec RTT
Starting rate 10 Mbps

Time improvement
-- 450+ msecs to 55 msecs

22

• The SONAR idea is a simple way of discovering
available bandwidth without compromising stability
– Clearly, we have been very conservative in grabbing

available bandwidth; we can make the recovery time less
than 20-25 msecs

• We have several other things to present/discuss
– Large RTT and large N simulations of SONAR for stability

checked
– Further simplification of the QCN algorithm (no drift timer)
– Dealing with multipathing in a simple fashion

Conclusions

