QCN: Notes on a Stable Improvement
of Transient Response: Part 2

Abdul Kabbani, Rong Pan,
Balaji Prabhakar and Mick Seaman

- 2-QCN
— A unified, simplified redefinition
— Settling to lower rate quickly (e.g. severe bottleneck and PAUSE)

 Inferring available bandwidth in multipath scenarios

— Method 1: Probing “congested paths”
— Method 2: “Path-based” congestion notices

2-QCN: A redefinition

- A convenient way of viewing QCN is using
— Current Rate (CR): Current transmission rate of the RL.
— Target Rate (TR): Where CR wants to get to.

TR always greater than CR
TR may exceed 10 Gbps, CR can never exceed 10 Gbps

« Rules for changing CR and TR

— When Fb<0 signal arrives
During FR1 (first cycle of FR)
-- CR goes down with every Fb<0 signal, TR remains unchanged
During FR2 or higher
-- RL into FR1; TR <--- CR just before ding; CR <--- CR(1-G4lF|)
— Atthe end of each FR cycle
CR <--- (CR+TR)/2; TR does not change
— At the end of each cycle of Al or HAI
TR <--- TR + 12 Mbps for Al, or TR <--- TR + 12*cycle_cnt Mbps for HAI
CR <--- (CR+TR)/2

Settling to lower rate quickly

e |tis important to settle RLs quickly to a lower rate

— E.g. when a severe bottleneck appears, or when PAUSE is
asserted and a saturation tree begins to form

- The addition to the algorithm is as follows

At the end of the FR1,
If TR >10*CR, then TR <--- TR/8; CR <--- (TR+CR)/8

— By reducing the transience time
Packet drops or bad effects occurring during congestion episodes
are highly reduced

The effect is most noticeable when the RTT is large, because
bursty dings are quite likely in this case, and the RLs take a long
time to get into steady-state

Sims in Atlanta

Grabbing bandwidth:

The multipath problem

« The SONAR idea presented last week had good recovery times while
leaving stability completely unaffected

— However, in the presence of multipathing, SONAR pings may not
explore all the available paths

« We discuss two methods
— Method 1: “Ping congested paths” is an extension of SONAR
— Method 2: “Path-based congestion notice”

* Method 1
— Insert a flowid into each packet
— A CP sends the flowid back to the RL with an Fb<0 signal
— RL stores the flowid from the last ding

— When It wants to send a ping, it sends out the ping on a packet whose
flowid equals the one stored

— This makes it more likely that the “last congested path” gets pinged,
similar to pinging a CP using CPID

Discussion of Method 1

. It is not exact

— No guarantee that there will be a packet going through the last
congested path

— No guarantee that that path is the only bottleneck
— No guarantee that the flowid we come up with is adequate

- Switch may receive a lot of back-to-back pings

— Because SONAR pings are like pre-sampled packets, even though each
RL only sends one ping every 10ms, it is possible for a switch to get back-
to-back pings from many RLs

— Better if the switch did the sampling

« These and other considerations lead us to Method 2

Method 2: Path-based congestion notices

e The key idea is simple to state
— RLs will try to increase rate using a timer, not just a byte-counter

— Therefore, switches which have no bandwidth available need to pro-actively
push back

— This means, multipathing or not, every congested path will continually push
back

— Main issue: Choosing the timer value at the RL

Too small means aggressive source behavior, too large means longer bandwidth
recovery times; but this is just a trade-off, the method is fundamentally correct

. Method 2: The details
— A switch is either in “bandwidth available mode” or in “bandwidth NOT
available” mode
+ Recall: bandwidth available means queue size is close to zero for a while
— Therefore there are two congestion sensors at each switch at any time
+ FDb: which is a multibit signal

« BA: a binary “bandwidth available” signal; BA = 0 means bandwidth NOT
available

* Note: Fb <0 implies BA =0, but not the other way around

Method 2: Path-based congestion notices

. At the switch

— Sample packets with a probability which increases with Fb, both
positive and negative

— If Fb<0 for sampled packet, send to source Psamp
— If Fb>=0

If BA=0, send “push back” message (Fb99) to source \ /

If BA=1, do nothing

At the RL
— There is a timer which runs for T msecs
Timer is reset every time an Fb<0 or Fb99 message is received
— When Fb<0 signal is received, same actions as before
— When Fb99 signal is received
TR and CR remain unchanged
Increase the length of current cycle by 100 packets
— When timer or byte-counter expires
Go to next cycle, update TR and CR as before

Simulations: Stability with Method 2

2ptQCN Smsec timer - 10sources - RTT=400usec

2ptQCN Smsec timer - 1 00sources - RTT=400usec

queue size qUENE sz —
100 b - 100 o
& b : 20 :
g §
[-N
s ED - - - [=1] -
x 2
o
% 7
3 w} i 3
3 a

Swrulation Time

Simublation Tme

2ptQCN Smsec timer - 400sources - RTT=400usecc

2ptQCN Tmsec timer - 400sources - RT T=400usec

q'usuo size

[e

Queue Size (¥ of Packets)

Quew Siza (¥ of Packets)
8

) M L M L X L L o M N M L 1 L 1
a 0z 04 [J5 02 1 12 14 1.6 138 2 0 02 04 0.6 08 1 1.2 14 16 18 2
Swrulation Time Simulation Tme

Stability improves due to cycle-

stretchinc

2ptQCN Smsec timer - 1 Osources - RTT=400usec

when Fb99 is received

2ptQCN Smsec timer - 1 00sources - RTT=400usec

T T T T T T T T — T T T T T T T T —
queue sze queue [e
100 f - 100 -
an | . 20 .
g §
o
s ED | - = (=] B
% x
o
%]
3 awf i 3
a a
Swrulation Time Simublstion Tme
2ptQCN no timer & no Fb99 - 1 0sources - RTT=400usec 2ptQCN no timer & no Fb99 - 100sources - RTT=400usec
T T T T T T T T — T T T T T T T T —
queue size queue sing ——
100 - 100 -
a0 - 80 -
g §
o
= Ep - s e} -
E S x
] 5
w i
o
E af - i w0 :
=
a S
o 20
o o N . N N 2 N . R 2
a 0z 04 06 0a 1 12 14 1.6 18 2] 02 04 0.6 08 1 1.2 14 1.6 18 2
Swrulation Time

Simubstion Tme

Recovery time: OG Hotspot

. Parameters
— 10 sources share a 10 G link, whose capacity drops to 0.5G during 2-4 secs
— Max offered rate per source: 1.05G
— RTT =40 usec
— Buffer size = 100 pkts; Qeq = 22
— Bandwidth recovery timer: 5 msecs
— Drift timer disabled

10 G 10 G

Source 1

Source 2 0.5G
I :

Source 10 >

vy

11

Bdwdth Recovery

"t ——
10pF

|/

0 1 1 1 1 1 0 1 1 1 1 'l
4 405 41 415 4.2 4.5 13 4 405 41 4.15 4.2 4.25 43

Strdation Time Simudation Time

Time improvement

-- 300+ msecs to 28 msecs

12

Conclusions

- 2-QCN
— Simplified, unified by the TR--CR formalism

— Included a method that improves “downward transience;”
when severe bottleneck appears or saturation trees forms

— Two methods discussed for dealing with “upward transience”
« Method 1 builds on SONAR
« Method 2 more correct, but needs a liberal choice of timer value

« More sims and complements in Atlanta

13

