Addressing Concerns with Closed Loop Congestion Management Protocols

Guenter Roeck, Teak Technologies

IEEE 802.1Qau
Stockholm Interim Meeting, September 2007
Several concerns have been raised against the use of a Closed Loop CM protocol.

List all concerns about Closed Loop CM protocols in a single place.

For each concern,
- Determine if it is a real problem
- Propose solutions if necessary
Open Loop Protocols
- CP->RP communication
- Negative feedback only
Example
- QCN

Closed Loop Protocols
- CP->RP communication for negative feedback
- RP->CP/RfP->RP communication for positive feedback
Examples
- Path probing
 - FECN, E2CM, (ECM-SP, QCN-SP, QCN-PP)
- CP probing
 - (ECM-P, QCN-P)
- Tagging
 - ECM
Advantages

- **Open Loop Protocols**
 - Simplicity

- **Closed Loop Protocols**
 - More accurate control loop
Concerns with Closed Loop Protocols

CP probes
- Wrong RP<->CP association may cause RP to be stuck in low data rates
- Network re-configuration may cause RP to be stuck with CP which is no longer associated with rate limited flow(s)

Path probes
- Multi-path environment
 - May cause instability due to probes taking wrong path
- Shared rate limiters have no well defined path
 - May cause instability

All probe based protocols
- Protocol packets sent directly to CP/switch
Concerns - continued

- **CPID**
 - CPID association with shared rate limiters or in multipath-scenarios causing false feedback
 - CPID Thrashing
 - CP loses anonymity due to existence of CPID

- **All**
 - Security: Fake probe messages
 - Increased complexity
 - Protocol might have impact on or require modifications of other L2 protocols
Addressing Concerns - CP Probes

- **RP stuck with low data rate**
 - Use aggressive self-increase or a timeout if there is no positive feedback
 - Example: QCN-style self-increase

- **Network re-configuration may cause RP to be stuck with CP which is no longer associated with rate limited flow(s)**
 - Change CPID association whenever negative feedback is received
 - Use aggressive self-increase if there is no positive feedback
Probes taking wrong path

- Problem does not apply to directed probes
- Sub-path probes always provide as good or better results than directed probes, thus the problem does not apply to sub-path probes either
 - Use either directed or sub-path probes

No well defined path for shared rate limiters

- No real difference to open loop protocol behavior
- Constantly changing CPID will ensure that lowest throughput CP will dominate

Protocol packets addressed to CP/switch

- Is this really a problem?
Addressing concerns: CPIID Thrashing
N=18 switches; 3 hosts per switch
Node <i> sends to node <i+3>; Node <i+1> sends to node (N-1)*3+1; node <i+2> sends to node <i+4>
100% load from all nodes
Node (N-1)*3+1 receives traffic from <N> sources
N hotspots
CM Packets Received by Nodes 2,5,8,...
CM Messages per Protocol
Throughput at Switch N CP: Open-Loop Protocols

QCN

QCN-H
Throughput at Switch N CP: Closed-Loop Protocols

ECM

ECM-P

QCN-P

QCN-SP
In multi-hotspot scenarios, every protocol changes its CP association all the time
 ... even if such an association is not explicitly defined (QCN)

No evidence that CPID Thrashing could be a problem

Protocol stability depends on changing CPID association in multi-path and multi-hotspot operation
Wrong CPID association with shared rate limiters or in multi-path scenarios

- Update CPID association whenever a negative feedback message is received
 - If rate gets too high, another CP with higher congestion will take over
 - CP with lowest rate (highest level of congestion) will dominate
 - Similar to open loop protocols

- If this is insufficient,
 - Do not use probes if rate limiters are shared
 - Use directed or sub-path probes instead of path probes

- Need to verify in simulation
Fake probe messages

Answer 1: Security is not commonly addressed in 802.1 protocols. Furthermore, every CM protocol has this problem. Why is it a concern here?

Answer 2: What can happen?

- Fake probes sent to CP
 - CP only replies if feedback is positive
 - Worst case, the “offender”, i.e., the host referenced in fake probes, would get more bandwidth
 - Impact similar to the host simply increasing its rate or not caring about negative adjustment requests

- Fake probes sent to RP
 - RP will reduce its data rate
 - Same impact for all protocols, independent of probe mechanism
Addressing concerns - Complexity

- Increased complexity
 - RP: Needs to send probes (or tags) and evaluate results
 - CP: Detect and evaluate probes/tags

- Looking into the code, this seems to be a minor issue
 - Most of the code to generate CM packets is already there anyway
 - Arguable, since simulation code and implementation may only be loosely coupled

- According to HW engineers, added complexity is not really a problem as long as probes/tags have a well defined (static) packet format
 - More concerned with complex calculations
Addressing concerns – Anonymity

Loss of CP anonymity

- Not really a problem
- CP is not anonymous anyway
 - Always sends its MAC address with each CM message
- Customers like the idea of knowing where they may have a problem in the network
 - Knowing where the problem is seems to have higher value than trying to automatically fix it
Impact on Other Protocols

- Protocol might have impact on or require modifications of other L2 protocols
 - This is a generic argument which can be used against any protocol
 - Does not have much practical value without substantiation
 - Can be addressed by stating that protocol must be independent of other protocols
CP switch disappeared
- No probe replies; RL auto-increases data rate until full rate recovered, or until negative adjustment request received from another CP
 - No worse than QCN

Path probes take wrong path
- Use Sub-path or CP directed probes
- No positive feedback if protocol designed correctly
 - No worse than QCN

Data path changed
- Only positive feedback received from CP
- RL increases data rate until full rate recovered, or until negative rate adjustment request received from another CP
 - Better than QCN
Summary

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong CP-RP Association</td>
<td>✓</td>
</tr>
<tr>
<td>RP stuck in low rate</td>
<td>✓</td>
</tr>
<tr>
<td>Instability due to probes taking wrong path</td>
<td>✓</td>
</tr>
<tr>
<td>No well defined path with shared rate limiters</td>
<td>✓</td>
</tr>
<tr>
<td>Probes sent directly to switch/CP</td>
<td>?</td>
</tr>
<tr>
<td>CPID Thrashing</td>
<td>-</td>
</tr>
<tr>
<td>Loss of anonymity</td>
<td>-</td>
</tr>
<tr>
<td>Fake probe messages</td>
<td>- (✓)</td>
</tr>
<tr>
<td>Increased complexity</td>
<td>- (?)</td>
</tr>
</tbody>
</table>
Conclusions

- Even in worst case scenarios, directed or sub-path probes do not have a negative impact on protocol performance.
- Significant performance gains in all other scenarios.
- Improved performance outweighs increased complexity.
- Protocol elegance and simplicity should not outweigh performance.
- Good performance requires a closed loop protocol
 - Closed Loop protocol implies use of CPID to identify CP.
Thank you

Questions?
Backup slides
Probe algorithm overview and assumptions

- Probes sent to solicit **positive** feedback only
 - CP does not reply if feedback would be negative
- Options
 - Directed probes
 - Probes sent to CP associated with RL
 - Sub-path probes
 - Probes sent to flow destination address, and reflected by “last” CP supporting switch in path
 - In-path CP removes probe from network if it is congested (Fb would be negative)
- RL associated with CP from which the most recent negative adjustment request was received
 - RP<->CP association will change each time a negative adjustment request is received from a different CP (for a given RL)
- RP<->CP association per RL queue
 - Deleted when a queue/RL is deleted
- RP<->CP context (per RL queue)
 - CPIID
 - CP MAC address