Addressing Concerns with Closed Loop Congestion Management Protocols

Guenter Roeck, Teak Technologies

IEEE 802.1Qau
Stockholm Interim Meeting, September 2007
Several concerns have been raised against the use of a Closed Loop CM protocol

List all concerns about Closed Loop CM protocols in a single place

For each concern,

- Determine if it is a real problem
- Propose solutions if necessary
Open Loop Protocols
- CP->RP communication
- Negative feedback only
- Example
 - QCN

Closed Loop Protocols
- CP->RP communication for negative feedback
- RP->CP/RfP->RP communication for positive feedback
- Examples
 - Path probing
 - FECN, E2CM, (ECM-SP, QCN-SP, QCN-PP)
 - CP probing
 - (ECM-P, QCN-P)
 - Tagging
 - ECM
Advantages

- **Open Loop Protocols**
 - Simplicity

- **Closed Loop Protocols**
 - More accurate control loop
Concerns with Closed Loop Protocols

- **CP probes**
 - Wrong RP<->CP association may cause RP to be stuck in low data rates
 - Network re-configuration may cause RP to be stuck with CP which is no longer associated with rate limited flow(s)

- **Path probes**
 - Multi-path environment
 - May cause instability due to probes taking wrong path
 - Shared rate limiters have no well defined path
 - May cause instability

- **All probe based protocols**
 - Protocol packets sent directly to CP/switch
Concerns - continued

- **CPI.D**
 - CPI.D association with shared rate limiters or in multipath-scenarios causing false feedback
 - CPI.D Thrashing
 - CP loses anonymity due to existence of CPI.D

- **All**
 - Security: Fake probe messages
 - Increased complexity
Addressing Concerns - CP Probes

RP stuck with low data rate

- Use aggressive self-increase or a timeout if there is no positive feedback
 - Example: QCN-style self-increase

Network re-configuration may cause RP to be stuck with CP which is no longer associated with rate limited flow(s)

- Change CPID association whenever negative feedback is received
- Use aggressive self-increase if there is no positive feedback
Addressing Concerns - Probes

Probes taking wrong path
- Problem does not apply to directed probes
- Sub-path probes always provide as good or better results than directed probes, thus the problem does not apply to sub-path probes either
 - Use either directed or sub-path probes

No well defined path for shared rate limiters
- No real difference to open loop protocol behavior
- Constantly changing CPID will ensure that lowest throughput CP will dominate

Protocol packets addressed to CP/switch
- Is this really a problem?
Addressing concerns:
CPID Thrashing
N=18 switches; 3 hosts per switch

Node \(<i>\) sends to node \(<i+3>\); Node \(<i+1>\) sends to node \((N-1)*3+1\); node \(<i+2>\) sends to node \(<i+4>\)

100% load from all nodes

Node \((N-1)*3+1\) receives traffic from \(<N>\) sources

N hotspots
CM Packets Received by Nodes 2, 5, 8,...
CM Messages per Protocol

QCN-P ECM ECM-P QCN-SP QCN-H QCN

CIPD not changed CPID changed
Throughput at Switch N CP: Open-Loop Protocols

QCN

QCN-H
Throughput at Switch N CP: Closed-Loop Protocols

ECM

ECM-P

QCN-P

QCN-SP
Conclusions

- In multi-hotspot scenarios, **every** protocol changes its CP association all the time
 - ... even if such an association is not explicitly defined (QCN)
- No evidence that CPID Thrashing could be a problem
- Protocol stability **depends** on changing CPID association in multi-path and multi-hotspot operation
Wrong CPID association with shared rate limiters or in multi-path scenarios

- Update CPID association whenever a negative feedback message is received
 - If rate gets too high, another CP with higher congestion will take over
 - CP with lowest rate (highest level of congestion) will dominate
 - Similar to open loop protocols

- If this is insufficient,
 - Do not use probes if rate limiters are shared
 - Use directed or sub-path probes instead of path probes

- Need to verify in simulation
Fake probe messages

Answer 1: Security is not commonly addressed in 802.1 protocols. Furthermore, every CM protocol has this problem. Why is it a concern here?

Answer 2: What can happen?

Fake probes sent to CP
- CP only replies if feedback is positive
- Worst case, the “offender”, i.e., the host referenced in fake probes, would get more bandwidth
 - Impact similar to the host simply increasing its rate or not caring about negative adjustment requests

Fake probes sent to RP
- RP will reduce its data rate
 - Same impact for all protocols, independent of probe mechanism
Addressing concerns - Complexity

Increased complexity
- RP: Needs to send probes (or tags) and evaluate results
- CP: Detect and evaluate probes/tags

Looking into the code, this seems to be a minor issue
- Most of the code to generate CM packets is already there anyway
 - Arguable, since simulation code and implementation may only be loosely coupled

According to HW engineers, added complexity is not really a problem as long as probes/tags have a well defined (static) packet format
- More concerned with complex calculations
Loss of CP anonymity

- Not really a problem
- CP is not anonymous anyway
 - Always sends its MAC address with each CM message
- Customers like the idea of knowing where they may have a problem in the network
 - Knowing where the problem is seems to have higher value than trying to automatically fix it
Worst case scenarios

- **CP switch disappeared**
 - No probe replies; RL auto-increases data rate until full rate recovered, or until negative adjustment request received from another CP
 - No worse than QCN
- **Path probes take wrong path**
 - Use Sub-path or CP directed probes
 - No positive feedback if protocol designed correctly
 - No worse than QCN
- **Data path changed**
 - Only positive feedback received from CP
 - RL increases data rate until full rate recovered, or until negative rate adjustment request received from another CP
 - Better than QCN
Summary

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong CP-RP Association</td>
<td>✓</td>
</tr>
<tr>
<td>RP stuck in low rate</td>
<td>✓</td>
</tr>
<tr>
<td>Instability due to probes taking wrong path</td>
<td>✓</td>
</tr>
<tr>
<td>No well defined path with shared rate limiters</td>
<td>✓</td>
</tr>
<tr>
<td>Probes sent directly to switch/CP</td>
<td>?</td>
</tr>
<tr>
<td>CPID Thrashing</td>
<td>-</td>
</tr>
<tr>
<td>Loss of anonymity</td>
<td>-</td>
</tr>
<tr>
<td>Fake probe messages</td>
<td>- (✓)</td>
</tr>
<tr>
<td>Increased complexity</td>
<td>- (?)</td>
</tr>
</tbody>
</table>
Conclusions

- Even in worst case scenarios, directed or sub-path probes do not have a negative impact on protocol performance.
- Significant performance gains in all other scenarios.
- Improved performance outweighs increased complexity.
- Protocol elegance and simplicity should not outweigh performance.
- Good performance requires a closed loop protocol.
 - Closed Loop protocol implies use of CPID to identify CP.
Thank you

Questions ?
Backup slides
Probe algorithm overview and assumptions

- Probes sent to solicit positive feedback only
 - CP does not reply if feedback would be negative
 - Options
 - Directed probes
 - Probes sent to CP associated with RL
 - Sub-path probes
 - Probes sent to flow destination address, and reflected by “last” CP supporting switch in path
 - In-path CP removes probe from network if it is congested (Fb would be negative)

- RL associated with CP from which the most recent negative adjustment request was received
 - RP<->CP association will change each time a negative adjustment request is received from a different CP (for a given RL)

- RP<->CP association per RL queue
 - Deleted when a queue/RL is deleted

- RP<->CP context (per RL queue)
 - CPID
 - CP MAC address