

Congestion Management Protocols An Implementation Perspective

Guenter Roeck, Teak Technologies Asif Hazarika, Fujitsu

May 29, 2007

1

- Working group focus is on simulation and simulation results
- No or little focus on complexity or implementability

- Evaluate proposed CM protocols from an implementation perspective
 - Evaluation Criteria
 - Protocol Characteristics
 - Classify and evaluate protocols
- Identify issues with current protocol proposals
- Propose possible solutions

- Protocol should be
 - Simple
 - Elegant
 - Easy to implement
 - Flexible
 - Low overhead
 - No inherent (build-in) limitations/restrictions
- And of course it should do its job

Data path handling

- Tagging
 - Active tagging
 - Passive tagging
- Non-tagging
- Feedback mechanisms
 - Forward Notification
 - Backward Notification

- Protocol embedded into data flow ('inband')
 - Some protocol information is attached (tagged) to data packets
 - Higher forward path signaling overhead
 - ECM Tag for 10 packets: 14 * 10 = 140 bytes
 - Probe: 64 bytes
 - Applies only if all (congested) packets are tagged
 - Requires End-to-end protocol support
 - Endpoint has to understand tags
 - May require in-flow packet modification ('active tagging')
 - Requires checksum recalculation
 - May impact data packet latency
 - Must be missing something ...
- Examples
 - ECM, FECN, QCN

- Protocol handling outside data flow ('Outband')
 - Unmodified data packets
 - Reduced forward path signaling overhead
 - End-to-end support not (necessarily) mandatory
 - Flows can benefit even if not completely within congestion controlled domain
 - Flow control (probe) packets can be sent at high priority
 - Improved reaction time
- Examples
 - E2CM

- Protocol covers entire flow data path
- Potential for reduced return path signaling overhead
- Endpoint calculations can improve protocol operation
- End-to-end support mandatory
- Endpoint implementation more complex
 - Needs to calculate and send response
 - May have to support per-flow status
- Slower reaction time
 - Feedback sent through reflection point (L2 endpoint)
 - Yet faster convergence (?)
- Examples
 - E2CM, FECN, QCN (partial)

- Covers part of flow data path
- May have higher return path signaling overhead
- No end-to-end support required
- Faster reaction time
 - Feedback sent directly to reaction point
 - Yet slower convergence (?)
- Examples
 - ECM, QCN (partial)

- Tagging Protocols
 - Reaction point and/or switch must know if entire flow is in CM domain
 - Reaction Point must classify using destination MAC address
 - How does it know if the destination is in the CM domain ?
- Forward Notification Protocols
 - RP and/or switch must know if entire flow is in CM domain
 - Impact of multi-speed links in path
 - Impact of congestion in reaction point and return path
- e All
 - Filtering/handling requirements in CM domain edge switches
 - Incoming: Filter/handle packets w/ congestion managed CoS
 - Outgoing: Filter/handle CM control messages

- ECM
 - None besides generic tagging protocol concerns
- E2CM
 - Reflection point calculation complexity
 - Timestamp synchronization
 - Flow service rate calculation
 - Congestion not only determined by number of queued bytes
 - Switches can also be limited by number of packet descriptors
- FECN, QCN
 - Data packet tagging and modification
 - Requires data packet checksum re-calculation

	Tagging	Non- tagging	Forward Notification	Backward Notification
Simple	0	Х	0	Х
Elegant	Х	Х	Х	Х
Ease of implementation	0	Х	0	Х
Flexible	0	Х	0	Х
No inherent limitations	-	Х	-	Х
Low overhead	0	0	Х	0
Does its job	Х	Х	Х	Х

X: Advantage

O: Neutral

- : Disadvantage

- Conclusion
 - All currently proposed protocols have potential implementation issues
 - All currently proposed protocol proposals require endpoint (reflection point) support
 - Currently no proposal for a non-tagging protocol w/ Backward Notification
- Proposed solution
 - Modify existing protocols to remove tagging and use backward notification
 - Additional modifications to address implementation concerns
 - Validate/compare result against existing protocols
 - At the very least, address concerns in protocol specifications

 Use probes instead of tagged packets to solicit feedback for rate limited flows

- Reaction point sends probes to congested switch
- CP responds to probes with CP queue length (in bytes)
- Reaction point uses CP queue length (instead of amount of queued data in network) to calculate new rate
- Possible variants
 - Send probes to 'longest distance switch' or 'last switch in CM domain'
 - Need to determine address of this switch
 - Intermediate switches can add queue length to probe packets
 - Use elapsed time (probe sent -> response received) for rate calculations
 - Send probes in-band with regular data frames
 - Send replies as high priority packets to reduce return path latency

- Send explicit probe packets instead of tagging data packets
- Send probe packets to congested switch (or to last switch in CM domain)
 - Still need to determine "last switch in CM domain"

- Congested switch sends congested messages to reaction point, with Fb set to level of congestion
 - Similar to ECM / E2CM
- Reaction point performs rate changes as with current QCN
- Reaction point sends probes to congestion point
- Congestion point responds to Reaction Point with updated Fb
- Intermediate switches MAY update Fb
- Variants
 - Send probes to "longest distance" switch
 - Would require adding hop count into control packets

- All modified protocols would use probe packets to solicit feedback
- Protocols vary in
 - Feedback parameters & calculation
 - Flow data rate calculation
- Possibility for converged protocol
 - Needs agreement on feedback parameters and rate calculation
 - Must standardize packet format and feedback parameters
 - Rate calculation can be implementation dependent
 - May be desirable to improve flexibility and enable vendor differentiation
 - May be undesirable to avoid unfairness

- More protocol variants to deal with
- Simulation coverage

Thank you

Backup Slides

Unicast

- MAC address of congested switch
- Multiple congestion points
 - Either send to worst congestion point, or to congestion point with max number of hops
 - Would require hop count in probe and feedback packets
- Or send to L2 endpoint, and have edge switch filter for CM packet type

Multicast

- Create new "CM Probe" Multicast address
- Packet contains MAC address of congested switch or flow endpoint
- Switch packet forwarding rules
 - If embedded address (EA) is local address, or Congestion Point ID is local, terminate and handle packet
 - If EA next hop is outside domain or not a switch, terminate and handle packet
 - Otherwise forward packet to EA next hop port. If necessary/appropriate, update packet contents