
Mick Seaman Proposal for Enhancement to Raj’s FECN
(Date: 01/24/2007)

Rate Reports

The basic idea is that, as part of a Congestion Avoidance algorithm comprising three sets of
algorithms for Sources, Bridges, and Destinations, the Destination originates and transmits
regular Rate Report (RR) frames to each active Source. Each RR traces the reverse path from
the Destination to the Source and carries an advertised rate for use by the Source in transmitting
to that Destination. The RR originally carries a rate set by the destination to be its receiving link
speed. At each Bridge Port, if the rate that that port wishes to advertise for the S->D direction is
lower than the RR rate, the latter is replaced in the RR frame by that lower rate.

The principle purpose of this mechanism is to improve control loop feedback, by ensuring that
feedback is received regularly for all destinations, and to allow the feedback to be provided as a
potential conversation starts, instead of relying on a statistical chance of sampling a forward
going frame to trigger the feedback. The latter (Bridge sampling) naturally means that traffic has
to be sent at a high rate simply to improve the chance of feedback, which essentially means
increasing the chance of congestion and loss is necessary to gain the feedback to avoid it. This
does not seem optimal. The overall goal is to reduce the overall control loop delay and provide
early feedback to the point that no additional link level mechanism (especially PAUSE) is required
to achieve acceptably low loss probability.

The Destination algorithm is to generate RRs every so many received bytes on an 'active'
connection, and to generate an initial RR when a connection transitions from 'idle' to 'active'. By a
connection in this sense I mean a particular {SA, DA} tuple, and such tuples are created a 'soft
state' at Source and Destination in response to the frame flow. The overall RR generation
algorithm is to be chosen to have an overhead of less than 1% bandwidth. As a first cut at the
Destination algorithm, the 'idle' to 'active' transition occurs when two frames from the same
Source are received within some number of mfts (maximum frame times - i.e. the time taken to
transmit a maximum sized frame). The 'active' to 'idle' transition occurs after a time elapses with
no reception , and the RR is sent about every 10 mf bytes (i.e. 15 Kbytes) when the connection is
active. That's about a 0.5% overhead. I think it is likely that RRs could be sent less frequently but
haven't tried lesser numbers yet.

The Source algorithm also treats connections as 'idle' or 'active', with an 'idle' connection being
one for which no recent RR has been received. A low rate is associated with an 'idle' connection
(perhaps 5 Mb/s = 1 max frame per 200 mfts on a 1 Gb/s link), and the rate is only updated when
an RR is received. So a new or idle connection receives a low rate for the first few frames, which
then stimulate the generation of an RR which reports the rate for the link. The Source rate is then
increased towards that reported rate, with the RR rate diminishing as the new connection
receives its share. The same RR rate is advertised to all sources, although any given source can
behave as a number of (or as a fractional) virtual source.

I have only considered this sort of algorithm in terms of reporting rate feedback so far, though it is
possible that the same idea of providing more predictable feedback per connection or
conversation is applicable to feedback couched in other terms, and that the most important
aspect - that of providing timely feedback on conversations that are just starting to be active so
that they do not have to damage the network by injecting excess traffic to get congestion reports -
may also be transferable.

The Bridge Port can calculate the rate to be placed in the RR packets (or other information as
appropriate) periodically or upon some reasonably infrequent stimulus that does not require the

RR to be updated with information that has only become available just as the RR is received. This
simplifies the RR update process to one for checking the (reserved) Ethertype for the RR,
comparing the rate with that held by the Bridge Port, and overwriting if required. No new frames
are injected into the stream of frames processed by this mechanism, and the precalculated rate
held by the port can be that appropriate to the sum of the ports in a link aggregation, I believe that
should simplify the Bridge/Bridge Port architecture as compared to an architecture that requires
rapid injection of frames into the stream.

